Changes for page LX3V-4LTC

Last modified by Devin Chen on 2024/11/22 09:42

From version 2.1
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Renamed from xwiki:1 Module.Temperature.LX3V-4LTC.WebHome
To version 7.1
edited by Devin Chen
on 2024/10/09 11:36
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -1 Module.Temperature.WebHome
1 +Expansions.1 Module.Temperature.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.admin
1 +XWiki.DevinChen
Content
... ... @@ -1,6 +1,6 @@
1 1  = **1 Introduction** =
2 2  
3 -LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control.
3 +LX3V-4LTC is temperature control module. It has four temperature input ports and four transistor output ports (the collector is open). It reads data from thermocouple, and then output value with PID control.
4 4  
5 5  LX3V-4LTC needs to connect with LX3V series PLC
6 6  
... ... @@ -12,28 +12,19 @@
12 12  = **2 Dimensions** =
13 13  
14 14  (% style="text-align:center" %)
15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]]
15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]
16 16  
17 -①Extension cable and connector
17 +1. Extension cable and connector
18 +1. Com LED: Light when communicating
19 +1. Power LED: Light when connect to 24V
20 +1. State LED: Light when normal condition
21 +1. Module name
22 +1. Analog signal terminal
23 +1. Extension module interface
24 +1. DIN rail mounting slot
25 +1. DIN rail hook
26 +1. Mounting holes (φ4.5)
18 18  
19 -②Com LED: Light when communicating
20 -
21 -③Power LED: Light when connect to 24V
22 -
23 -④State LED: Light when normal condition
24 -
25 -⑤Module name
26 -
27 -⑥Analog signal terminal
28 -
29 -⑦Extension module interface
30 -
31 -⑧DIN rail mounting slot
32 -
33 -⑨DIN rail hook
34 -
35 -⑩Mounting holes (φ4.5)
36 -
37 37  **Using crimp terminations**
38 38  
39 39  (((
... ... @@ -42,32 +42,25 @@
42 42  * Other terminals should be empty but only wiring terminals mention in this manual.
43 43  
44 44  (% style="text-align:center" %)
45 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]]
36 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]
46 46  )))
47 47  
48 48  = **3 Wiring** =
49 49  
50 50  (((
51 -1. The compensating cables that connect with thermocouples could be as follows:
42 +The compensating cables that connect with thermocouples could be as follows:
52 52  
53 -Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
44 +* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
45 +* Type J: JX-G, JX-H
46 +* Type K: SC-G, SC-H
47 +* Type N: NC-G, NC-H
48 +* Type E: EX-G, EX-H
49 +* Type T: TX-G, TX-H
50 +* Type B: BC-G, BC-H
51 +* Type R: RC-G, RC-H
54 54  
55 -Type J: JX-G, JX-H
56 -
57 -Type K: SC-G, SC-H
58 -
59 -Type N: NC-G, NC-H
60 -
61 -Type E: EX-G, EX-H
62 -
63 -Type T: TX-G, TX-H
64 -
65 -Type B: BC-G, BC-H
66 -
67 -Type R: RC-G, RC-H
68 -
69 69  (% style="text-align:center" %)
70 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]]
54 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]
71 71  )))
72 72  
73 73  For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
... ... @@ -88,56 +88,54 @@
88 88  **General specification**
89 89  
90 90  (% class="table-bordered" %)
91 -|**Item**|**Specification**
92 -|General specifications|Same as those for the main unit
93 -|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground)
75 +|=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**
76 +|=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit
77 +|=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)
94 94  
95 95  **Power supply specification**
96 96  
97 97  (% class="table-bordered" %)
98 -|**Item**|**Specification**
99 -|Analog circuits|24V DC ± 10%, 50mA
100 -|Digital circuits|24V DC, 35mA (internal power supply from the main unit)
82 +|=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**
83 +|=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA
84 +|=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)
101 101  
102 102  **Performance specification**
103 103  
104 -(% class="table-bordered" %)
105 -|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)**
106 -|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
107 -|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
108 -|(% rowspan="8" %)(((
109 -Rated temperature
110 -
111 -range
112 -)))|Type K|-100 to +1,200|Type K|-148 to +2,192
113 -|Type J|-100 to +600|Type J|-148 to +1,112
114 -|Type T|-100 to +400|Type T|-148 to +752
115 -|Type E|-100 to +1,000|Type E|-148 to +1,832
116 -|Type N|-100 to +1,300|Type N|-148 to +2,372
117 -|Type B|+250 to +1,800|Type B|-482 to +3,272℉
118 -|Type R|-50 to +1,768|Type R|-58 to +3,214.4
119 -|Type S|-50 to +1,768|Type S|-58 to +3,214.4
120 -|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form
121 -|Type K|-1,000 to +12,000|Type K|-1480 to +21,920
122 -|Type J|-1,000 to +6,000|Type J|-1480 to +11,120
123 -|Type T|-1,000 to +4,000|Type T|-1480 to +7,520
124 -|Type E|-1,000 to +10,000|Type E|-1480 to +18,320
125 -|Type N|-1,000 to +13,000|Type N|-1480 to +23,720
126 -|Type B|+2,500 to +18,000|Type B|-4820 to +32,720
127 -|Type R|-500 to +17,680|Type R|-580 to +32,144
128 -|Type S|-500 to +17,680|Type S|-580 to +32,144
129 -|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F
130 -|Type J|0.3°C|Type J|0.54°F
131 -|Type T|0.4°C|Type T|0.72°F
132 -|Type E|0.25°C|Type E|0.45°F
133 -|Type N|0.52°C|Type N|0.936°F
134 -|Type B|(((
88 +(% class="table-bordered" style="width:1117px" %)
89 +|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)**
90 +|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
91 +|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most.
92 +|(% rowspan="8" style="width:253px" %)(((
93 +Rated temperature range
94 +)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192
95 +|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112
96 +|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752
97 +|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832
98 +|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372
99 +|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉
100 +|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4
101 +|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4
102 +|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form
103 +|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920
104 +|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120
105 +|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520
106 +|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320
107 +|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720
108 +|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720
109 +|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144
110 +|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144
111 +|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F
112 +|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F
113 +|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F
114 +|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F
115 +|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F
116 +|(% style="width:130px" %)Type B|(% style="width:248px" %)(((
135 135  2.09°C
136 136  
137 137  2.97°C (less than 1,000°C)
138 138  
139 139  1.64°C (more than 1,000°C)
140 -)))|Type B|(((
122 +)))|(% style="width:147px" %)Type B|(% style="width:298px" %)(((
141 141  3.762°F
142 142  
143 143  5.346°F (less than 1,832°F)
... ... @@ -144,13 +144,13 @@
144 144  
145 145  2.952°F (more than 1,832°F)
146 146  )))
147 -|Type R|(((
129 +|(% style="width:130px" %)Type R|(% style="width:248px" %)(((
148 148  1.53°C
149 149  
150 150  1.87°C (less than 800°C)
151 151  
152 152  1.32°C (more than 800°C)
153 -)))|Type R|(((
135 +)))|(% style="width:147px" %)Type R|(% style="width:298px" %)(((
154 154  2.754°F
155 155  
156 156  3.366°F (less than 1,472°F)
... ... @@ -157,13 +157,13 @@
157 157  
158 158  2.376°F (more than 1,472°F)
159 159  )))
160 -|Type S|(((
142 +|(% style="width:130px" %)Type S|(% style="width:248px" %)(((
161 161  1.72°C
162 162  
163 163  2.01°C (less than 800°C)
164 164  
165 165  1.53°C (more than 800°C)
166 -)))|Type S|(((
148 +)))|(% style="width:147px" %)Type S|(% style="width:298px" %)(((
167 167  3.096°F
168 168  
169 169  3.618°F (less than 1,472°F)
... ... @@ -170,27 +170,30 @@
170 170  
171 171  2.754°F (more than 1,472°F)
172 172  )))
173 -|(((
174 -Overall accuracy
175 -
176 -Calibration point
177 -)))|(% colspan="4" %)(((
155 +|(% style="width:253px" %)(((
156 +Overall accuracy calibration point
157 +)))|(% colspan="4" style="width:823px" %)(((
178 178  ± (0.5% full scale +1°C)
179 179  
180 180  Freezing point of pure water 0°C / 32°F
181 181  )))
182 182  
183 -**✎Note: **Earth-tipped thermocouples are not suitable for this unit.
163 +(% class="box infomessage" %)
164 +(((
165 +**✎Note: **
184 184  
185 -Earth-tipped thermocouples are not suitable for this unit.
167 +* Earth-tipped thermocouples are not suitable for this unit.
168 +* Earth-tipped thermocouples are not suitable for this unit.
169 +)))
186 186  
171 +
187 187  **Analog Input**
188 188  
189 189  (% class="table-bordered" %)
190 -|(% colspan="2" %)(((
175 +|=(% colspan="2" %)(((
191 191  **Conversion Characteristics**
192 192  
193 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy)
178 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (Subject to the overall accuracy)
194 194  )))
195 195  |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]]
196 196  
... ... @@ -197,8 +197,8 @@
197 197  **Miscellaneous**
198 198  
199 199  (% class="table-bordered" %)
200 -|**Item**|**Specification**
201 -|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
185 +|=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**
186 +|=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
202 202  
203 203  = **5 Buffer Memory (BFM)** =
204 204  
... ... @@ -210,13 +210,10 @@
210 210  |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
211 211  Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
212 212  
213 -0: Type K
198 +* 0: Type K
199 +* 1: Type J
200 +* 2: Type T
214 214  
215 -1: Type J
216 -
217 -2: Type T
218 -
219 -
220 220  (((
221 221  [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
222 222  
... ... @@ -241,88 +241,55 @@
241 241  |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
242 242  |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
243 243  |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
244 -B0: A/D conversion would be stopped when b2 or b3 is ON.
245 -
246 -B1: Not used;
247 -
248 -B2: power failed;
249 -
250 -B3: Hardware failed;
251 -
252 -B4~~B7: Not used;
253 -
254 -B8: Values backup error;
255 -
256 -B10: Digital output/analog input value is out of the specified range;
257 -
258 -B11: Averaged value is out of the available range;
259 -
260 -B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
261 -
262 -B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
263 -
264 -B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
226 +* B0: A/D conversion would be stopped when b2 or b3 is ON.
227 +* B1: Not used;
228 +* B2: power failed;
229 +* B3: Hardware failed;
230 +* B4~~B7: Not used;
231 +* B8: Values backup error;
232 +* B10: Digital output/analog input value is out of the specified range;
233 +* B11: Averaged value is out of the available range;
234 +* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
235 +* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
236 +* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
265 265  )))
266 266  |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
267 267  |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
268 268  |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
269 269  |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
270 -0: Performs nothing
271 -
272 -1: Initializes all data
273 -
274 -2: Initializes BFM #19 to BFM #174
275 -
276 -3: Initializes error
277 -
278 -Others: No action
242 +* 0: Performs nothing
243 +* 1: Initializes all data
244 +* 2: Initializes BFM #19 to BFM #174
245 +* 3: Initializes error
246 +* Others: No action
279 279  )))
280 280  |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
281 -0: Performs nothing
282 -
283 -Other: Performs backups
249 +* 0: Performs nothing
250 +* Other: Performs backups
284 284  )))
285 285  |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
286 -b0: Reserved;
287 -
288 -b1: value range setting error;
289 -
290 -b2: PID self-tuning error;
291 -
292 -b3: The difference of setting value and offset value of PID self-tuning is too small;
293 -
294 -b4~~b5: Reserved;
295 -
296 -b6: Channel mode Error/ This channel is not enabled;
297 -
298 -b7: PV exceeded;
299 -
300 -b8: PID self-tuning parameters are changed in process;
253 +* b0: Reserved;
254 +* b1: value range setting error;
255 +* b2: PID self-tuning error;
256 +* b3: The difference of setting value and offset value of PID self-tuning is too small;
257 +* b4~~b5: Reserved;
258 +* b6: Channel mode Error/ This channel is not enabled;
259 +* b7: PV exceeded;
260 +* b8: PID self-tuning parameters are changed in process;
301 301  )))
302 302  |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
303 -b0 & b15: Reserved;
304 -
305 -b4: Alarm 1 - When alarm 1 occurs, it is set ON;
306 -
307 -b5: Alarm 2 - When alarm 2 occurs, it is set ON;
308 -
309 -b6: Alarm 3 - When alarm 3 occurs, it is set ON;
310 -
311 -b7: Alarm 4 - When alarm 4 occurs, it is set ON;
312 -
313 -b8: Heating control;
314 -
315 -b9: Cooling control;
316 -
317 -b10: PID terminals output;
318 -
319 -b11: PID control flag;
320 -
321 -b12: Manual flag;
322 -
323 -b13: Self-tuning;
324 -
325 -b14: ON / OFF control;
263 +* b0 & b15: Reserved;
264 +* b4: Alarm 1 - When alarm 1 occurs, it is set ON;
265 +* b5: Alarm 2 - When alarm 2 occurs, it is set ON;
266 +* b6: Alarm 3 - When alarm 3 occurs, it is set ON;
267 +* b7: Alarm 4 - When alarm 4 occurs, it is set ON;
268 +* b8: Heating control;
269 +* b9: Cooling control;
270 +* b10: PID terminals output;
271 +* b11: PID control flag;
272 +* b12: Manual flag;
273 +* b13: Self-tuning;
274 +* b14: ON / OFF control;
326 326  )))
327 327  |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
328 328  Unit: 0.1 °C
... ... @@ -331,25 +331,21 @@
331 331  )))
332 332  |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
333 333  |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
334 -0: Stops control;
335 -
336 -Other: Starts control;
283 +* 0: Stops control;
284 +* Other: Starts control;
337 337  )))
338 338  |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
339 -0: AUTO;
340 -
341 -Other: MAN;
287 +* 0: AUTO;
288 +* Other: MAN;
342 342  )))
343 343  |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
344 344  |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
345 -0: Stops self-tuning;
346 -
347 -Other : starts self-tuning;
292 +* 0: Stops self-tuning;
293 +* Other : starts self-tuning;
348 348  )))
349 349  |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
350 -0: Heating control;
351 -
352 -1: Cooling control;
296 +* 0: Heating control;
297 +* 1: Cooling control;
353 353  )))
354 354  |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
355 355  Unit: 0.1 °C
... ... @@ -359,14 +359,17 @@
359 359  |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
360 360  KP = 0, ON / OFF control is executed.
361 361  
362 -Range: 0-32767.
307 +Range: 0 ~~ 32767.
363 363  
364 -Note: This value is magnified 256 times; the actual value is KP / 256.
309 +(% class="box infomessage" %)
310 +(((
311 +**✎Note: ** This value is magnified 256 times; the actual value is KP / 256.
365 365  )))
366 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767
367 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767
368 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms)
369 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023
313 +)))
314 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767
315 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767
316 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms)
317 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023
370 370  |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
371 371  The maximum rate of rise: 0-320;
372 372  
... ... @@ -373,9 +373,9 @@
373 373  Range: 0-32000 (0-320);
374 374  )))
375 375  |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
376 -1-100 (*500ms);
324 +1~~100 (*500ms);
377 377  
378 -Range: 0.5s-50s;
326 +Range: 0.5s~~50s;
379 379  )))
380 380  |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
381 381  |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
... ... @@ -382,7 +382,7 @@
382 382  |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
383 383  Dead zone is used for ON/OFF control mode
384 384  
385 -Range: 0-100 (Unit: 0.1%)
333 +Range: 0~~100 (Unit: 0.1%)
386 386  )))
387 387  |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
388 388  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -391,9 +391,8 @@
391 391  
392 392  Range:
393 393  
394 -K type: -100°C - 1200°C
395 -
396 -J type: -100°C - 600°C
342 +* K type: -100°C ~~1200°C
343 +* J type: -100°C ~~ 600°C
397 397  )))
398 398  |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
399 399  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -402,19 +402,18 @@
402 402  
403 403  Range:
404 404  
405 -K type: -100°C - 1200°C
406 -
407 -J type: -100°C - 600°C
352 +* K type: -100°C~~1200°C
353 +* J type: -100°C~~600°C
408 408  )))
409 409  |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
410 410  This BFM is used for setting the upper threshold of output.
411 411  
412 -Range: 0-2000
358 +Range: 0~~2000
413 413  )))
414 414  |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
415 415  This BFM is used for setting the lower threshold of output.
416 416  
417 -Range: 0-2000
363 +Range: 0~~2000
418 418  )))
419 419  |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
420 420  |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
... ... @@ -433,113 +433,119 @@
433 433  |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
434 434  Calculation of dead zone
435 435  
436 -Bias: (SV+ bias)* dead zone
437 -
438 -Upper & lower threshold mode: Alarm setting value* dead zone
382 +* Bias: (SV+ bias)* dead zone
383 +* Upper & lower threshold mode: Alarm setting value* dead zone
439 439  )))
440 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255
385 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255
441 441  |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
442 -0: Normal;
443 -
444 -Others: Error in setting address
387 +* 0: Normal;
388 +* Others: Error in setting address
445 445  )))
446 446  |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
447 447  
392 +(% class="box infomessage" %)
393 +(((
448 448  **✎Note: **
449 449  
450 -0: Retentive;
396 +* 0: Retentive;
397 +* X: Non-retentive;
398 +* R: Only read is enabled;
399 +* R/W: Both read and write are enabled;
400 +)))
451 451  
452 -X: Non-retentive;
453 -
454 -R: Only read is enabled;
455 -
456 -R/W: Both read and write are enabled;
457 -
458 458  **Details of buffer memories**
459 459  
460 -* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
404 +**Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
461 461  
462 462  BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
463 463  
464 464  (% style="text-align:center" %)
465 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]]
409 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]
466 466  
467 467  The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
468 468  
469 469  240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
470 470  
471 -* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
415 +**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
472 472  
473 473  When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
474 474  
475 -* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
419 +**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
476 476  
477 477  These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
478 478  
479 -* **Buffer Memory BFM #28: Digital range error latch**
423 +**Buffer Memory BFM #28: Digital range error latch**
480 480  
481 -BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
425 +* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
426 +* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
482 482  
483 -BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
484 -
485 485  (((
486 486  (% class="table-bordered" %)
487 -|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0**
430 +|=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**
488 488  |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
489 489  |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
490 490  )))
491 491  
492 -**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
435 +* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
436 +* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
493 493  
494 -**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
495 -
496 496  When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
497 497  
498 498  An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
499 499  
500 -* **Buffer Memory BFM #29: Error status**
442 +**Buffer Memory BFM #29: Error status**
501 501  
502 502  (((
503 503  (% class="table-bordered" %)
504 -|**Bit devices of BFM #29**|**Error information**
505 -|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
506 -|b1, b4~~b7|Not used;
507 -|b2|24V DC power supply failed;
508 -|b3|Hardware failed;
509 -|b8|Backup error of set value.
510 -|b10|Digital output/analog input value is out of the specified range;
511 -|b11|The value of averaged results is out of the available range;
512 -|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
513 -|b14|It is in backup status, this bit sets to ON;
514 -|b15|Initialization completion flag;
446 +|=(% scope="row" %)**Bit devices of BFM #29**|=**Error information**
447 +|=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
448 +|=b1, b4~~b7|Not used;
449 +|=b2|24V DC power supply failed;
450 +|=b3|Hardware failed;
451 +|=b8|Backup error of set value.
452 +|=b10|Digital output/analog input value is out of the specified range;
453 +|=b11|The value of averaged results is out of the available range;
454 +|=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
455 +|=b14|It is in backup status, this bit sets to ON;
456 +|=b15|Initialization completion flag;
515 515  )))
516 516  
517 -* **ID Code Buffer Memory BFM #30**
459 +**ID Code Buffer Memory BFM #30**
518 518  
519 519  The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
520 520  
521 -* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
463 +**Power-down retention flag BFM#42**
522 522  
465 +First, configure the parameters to be saved, and then set the power-down retention flag BFM#42 to 1. This enables power-down retention for the configured parameters.
466 +
467 +The operation steps are illustrated as follows:
468 +
469 +1. Set the power-down retention register to a value of 100 (e.g., BFM#52 is set to 100).
470 +1. Set the power-down retention flag BFM#42 to 1 (data is saved at this point, and BFM#42 will automatically reset to zero upon completion).
471 +1. Change the data of the power-down retention register to 1000 (e.g., BFM#52 is set to 1000).
472 +1. Power off and then power on again. At this point, check the value of the power-down retention register, which should be 100 (e.g., BFM#52 shows a value of 100)."
473 +
474 +**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
475 +
523 523  (((
524 524  (% class="table-bordered" %)
525 -|**Error flag**|**Content**|**Remark**
526 -|b0, b4, b5|Not used;|-
527 -|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
528 -|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON
529 -|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
530 -|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON.
531 -|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON.
532 -|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
478 +|=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**
479 +|=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-
480 +|=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
481 +|=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON
482 +|=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
483 +|=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.
484 +|=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.
485 +|=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
533 533  )))
534 534  
535 -* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
488 +**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
536 536  
537 537  BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
538 538  
539 -When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
492 +* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
493 +* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
540 540  
541 -When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
542 -
543 543  **Auto mode:**
544 544  
545 545  The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
... ... @@ -554,10 +554,8 @@
554 554  
555 555  The temperature alarm function is effective even in the manual mode.
556 556  
557 -1. **Self-tuning function**
509 +**Self-tuning function**
558 558  
559 -**Self-tuning**
560 -
561 561  The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
562 562  
563 563  When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
... ... @@ -579,7 +579,7 @@
579 579  Self-tuning would be canceled with one of the following conditions:
580 580  
581 581  (% style="text-align:center" %)
582 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]]
532 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]
583 583  
584 584  * SV value has been changed.
585 585  * The control has been stopped, the operation mode is "0: Stops control".
... ... @@ -594,7 +594,7 @@
594 594  If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
595 595  
596 596  (% style="text-align:center" %)
597 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]]
547 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]
598 598  
599 599  **Dead zone (adjustment sensitivity) setting**
600 600  
... ... @@ -608,37 +608,32 @@
608 608  
609 609  **Example**
610 610  
611 -* Conditions:
561 +Conditions:
612 612  
613 -When BFM #41/#60 is set to "10.0%" in the range span of 400°C
563 +* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C
564 +* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
565 +* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
614 614  
615 -400°C x 10.0% / 100 = 40°C
616 -
617 -When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
618 -
619 -When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
620 -
621 621  (% style="text-align:center" %)
622 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]]
568 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]
623 623  
624 -* **Output(MV) upper threshold: BFM #65/#103/#141/#179**
570 +**Output(MV) upper threshold: BFM #65/#103/#141/#179**
625 625  
626 626  **Output(MV) lower threshold: BFM #66/#104/#142/#180**
627 627  
628 -BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
574 +* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
575 +* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
629 629  
630 -BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
631 -
632 632  These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
633 633  
634 634  (% style="text-align:center" %)
635 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]]
580 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]
636 636  
637 637  1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
638 638  1. The output limiter would not be active when two-position control is active,.
639 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control.
584 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control
640 640  
641 -* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
586 +**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
642 642  
643 643  LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
644 644  
... ... @@ -645,7 +645,7 @@
645 645  Each channel could have four alarm modes.
646 646  
647 647  (% style="text-align:center" %)
648 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]]
593 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]
649 649  
650 650  Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
651 651  
... ... @@ -653,21 +653,23 @@
653 653  
654 654  (((
655 655  (% class="table-bordered" %)
656 -|**Alarm No.**|**Alarm mode**|**Description**|**Set range**
657 -|0|Alarm is disabled|Alarm function is disabled.|~-~--
658 -|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range
659 -|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range
660 -|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width
661 -|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width
662 -|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
663 -|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
664 -|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range
665 -|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range
666 -|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width
667 -|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width
668 -|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width
601 +|(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**
602 +|(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--
603 +|(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range
604 +|(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range
605 +|(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width
606 +|(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width
607 +|(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
608 +|(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
609 +|(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range
610 +|(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range
611 +|(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
612 +|(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
613 +|(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width
669 669  )))
670 670  
616 +(% class="box infomessage" %)
617 +(((
671 671  **✎Note: **
672 672  
673 673  * Input range: it is from the lower threshold to the upper threshold of input value
... ... @@ -674,8 +674,9 @@
674 674  * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value).
675 675  * ±Input width: it could be positive and negative.
676 676  * + Input width: it could be positive only.
624 +)))
677 677  
678 -1. **Alarm dead zone setting**
626 +**Alarm dead zone setting**
679 679  
680 680  BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
681 681  
... ... @@ -687,22 +687,22 @@
687 687  
688 688  In upper/lower threshold mode: dead zone=alarm setting value*dead zone
689 689  
690 -1. Upper threshold input alarm and upper threshold deviation alarm
638 +* Upper threshold input alarm and upper threshold deviation alarm
691 691  
692 692  (% style="text-align:center" %)
693 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]]
641 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]
694 694  
695 -1. Lower threshold input alarm and lower threshold deviation alarm
643 +* Lower threshold input alarm and lower threshold deviation alarm
696 696  
697 697  (% style="text-align:center" %)
698 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]]
646 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]
699 699  
700 -1. Upper/lower threshold deviation alarm
648 +* Upper/lower threshold deviation alarm
701 701  
702 702  (% style="text-align:center" %)
703 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]]
651 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]
704 704  
705 -* **Number of times of alarm delay**
653 +**Number of times of alarm delay**
706 706  
707 707  BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
708 708  
... ... @@ -711,9 +711,9 @@
711 711  Example: the number of alarm delay sets to 5 times
712 712  
713 713  (% style="text-align:center" %)
714 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]]
662 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]
715 715  
716 -* **Address of value range error**
664 +**Address of value range error**
717 717  
718 718  When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
719 719  
... ... @@ -721,7 +721,7 @@
721 721  
722 722  When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
723 723  
724 -* **Output cycle control**
672 +**Output cycle control**
725 725  
726 726  BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
727 727  
... ... @@ -730,27 +730,27 @@
730 730  The allowable range of this value is from 1 to 100 sec.
731 731  
732 732  (% style="text-align:center" %)
733 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]]
681 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]
734 734  
735 735  = **6 Program Example** =
736 736  
737 -* Keep doing nothing while the power is supplied.
685 +**Keep doing nothing while the power is supplied.**
738 738  
739 739  If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
740 740  
741 -* Make sure the power be OFF before cleaning the unit or tightening the terminals.
689 +**Make sure the power be OFF before cleaning the unit or tightening the terminals.**
742 742  
743 743  If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
744 744  
745 -* To run temperature control module in safe, please read this manual carefully firstly.
693 +**To run temperature control module in safe, please read this manual carefully firstly.**
746 746  
747 747  Damages or accidents would happen if the operations is not right.
748 748  
749 -* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
697 +Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
750 750  
751 751  ~* For repair, contact WECON Technology Co., Ltd.
752 752  
753 -* Make sure power is off before wiring.
701 +**Make sure power is off before wiring.**
754 754  
755 755  Failure or malfunction maybe happen because of wiring during power is on.
756 756  
... ... @@ -759,42 +759,32 @@
759 759  In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
760 760  
761 761  (% style="text-align:center" %)
762 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]]
710 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]
763 763  
764 764  Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
765 765  
766 766  **Program example**
767 767  
768 -Input range: K type ~-~- 100.0 to 400.0 °C
716 +* Input range: K type ~-~- 100.0 to 400.0 °C
717 +* PID values: it is determined by auto-tuning
718 +* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
719 +* Heater/cooling control: Heater (Initialization)
769 769  
770 -PID values: it is determined by auto-tuning
721 +Device assignment:
771 771  
772 -Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
723 +* X000: initialization
724 +* X001: Reset the flag of error bit.
725 +* X002: Control starts (ON)/stop (OFF);
726 +* X003: self-tuning beginning when it changes from 0 to 1.
727 +* M0~~M15: Flags of error
728 +* M20~~M35: Flags of events
729 +* D0~~D199: Read value from BFM
730 +* D200~~D399: Write set value(SV) into BFM
773 773  
774 -Heater/cooling control: Heater (Initialization)
732 +Project:
775 775  
776 -* Device assignment:
777 -
778 -X000: initialization
779 -
780 -X001: Reset the flag of error bit.
781 -
782 -X002: Control starts (ON)/stop (OFF);
783 -
784 -X003: self-tuning beginning when it changes from 0 to 1.
785 -
786 -M0~~M15: Flags of error
787 -
788 -M20~~M35: Flags of events
789 -
790 -D0~~D199: Read value from BFM
791 -
792 -D200~~D399: Write set value(SV) into BFM
793 -
794 -* Project:
795 -
796 796  (% style="text-align:center" %)
797 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]]
735 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]
798 798  
799 799  = **7 Diagnostic** =
800 800