Changes for page LX3V-4LTC
Last modified by Devin Chen on 2024/11/22 09:42
From version 2.1
edited by Leo Wei
on 2022/06/08 14:42
on 2022/06/08 14:42
Change comment:
Renamed from xwiki:1 Module.Temperature.LX3V-4LTC.WebHome
To version 8.1
edited by Devin Chen
on 2024/11/22 09:42
on 2024/11/22 09:42
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -1 Module.Temperature.WebHome 1 +Expansions.1 Module.Temperature.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. admin1 +XWiki.DevinChen - Content
-
... ... @@ -1,6 +1,6 @@ 1 1 = **1 Introduction** = 2 2 3 -LX3V-4LTC is temperature control module ,it has four temperature input ports and four transistor output ports (the collector is open),it reads data from thermocouple, and then output value with PID control.3 +LX3V-4LTC is temperature control module. It has four temperature input ports and four transistor output ports (the collector is open). It reads data from thermocouple, and then output value with PID control. 4 4 5 5 LX3V-4LTC needs to connect with LX3V series PLC 6 6 ... ... @@ -12,28 +12,19 @@ 12 12 = **2 Dimensions** = 13 13 14 14 (% style="text-align:center" %) 15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png|| class="img-thumbnail" height="394" width="1000"]]15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]] 16 16 17 -①Extension cable and connector 17 +1. Extension cable and connector 18 +1. Com LED: Light when communicating 19 +1. Power LED: Light when connect to 24V 20 +1. State LED: Light when normal condition 21 +1. Module name 22 +1. Analog signal terminal 23 +1. Extension module interface 24 +1. DIN rail mounting slot 25 +1. DIN rail hook 26 +1. Mounting holes (φ4.5) 18 18 19 -②Com LED: Light when communicating 20 - 21 -③Power LED: Light when connect to 24V 22 - 23 -④State LED: Light when normal condition 24 - 25 -⑤Module name 26 - 27 -⑥Analog signal terminal 28 - 29 -⑦Extension module interface 30 - 31 -⑧DIN rail mounting slot 32 - 33 -⑨DIN rail hook 34 - 35 -⑩Mounting holes (φ4.5) 36 - 37 37 **Using crimp terminations** 38 38 39 39 ((( ... ... @@ -42,32 +42,25 @@ 42 42 * Other terminals should be empty but only wiring terminals mention in this manual. 43 43 44 44 (% style="text-align:center" %) 45 -[[image:LX3V-4LTC_html_67891e8f02a25438.png|| class="img-thumbnail" height="199" width="300"]]36 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]] 46 46 ))) 47 47 48 48 = **3 Wiring** = 49 49 50 50 ((( 51 - 1.The compensating cables that connect with thermocouples could be as follows:42 +The compensating cables that connect with thermocouples could be as follows: 52 52 53 -Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 44 +* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 45 +* Type J: JX-G, JX-H 46 +* Type K: SC-G, SC-H 47 +* Type N: NC-G, NC-H 48 +* Type E: EX-G, EX-H 49 +* Type T: TX-G, TX-H 50 +* Type B: BC-G, BC-H 51 +* Type R: RC-G, RC-H 54 54 55 -Type J: JX-G, JX-H 56 - 57 -Type K: SC-G, SC-H 58 - 59 -Type N: NC-G, NC-H 60 - 61 -Type E: EX-G, EX-H 62 - 63 -Type T: TX-G, TX-H 64 - 65 -Type B: BC-G, BC-H 66 - 67 -Type R: RC-G, RC-H 68 - 69 69 (% style="text-align:center" %) 70 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png|| class="img-thumbnail" height="360" width="400"]]54 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]] 71 71 ))) 72 72 73 73 For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended. ... ... @@ -88,56 +88,54 @@ 88 88 **General specification** 89 89 90 90 (% class="table-bordered" %) 91 -|**Item**|**Specification** 92 -|General specifications|Same as those for the main unit 93 -|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground) 75 +|=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification** 76 +|=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit 77 +|=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground) 94 94 95 95 **Power supply specification** 96 96 97 97 (% class="table-bordered" %) 98 -|**Item**|**Specification** 99 -|Analog circuits|24V DC ± 10%, 50mA 100 -|Digital circuits|24V DC, 35mA (internal power supply from the main unit) 82 +|=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification** 83 +|=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA 84 +|=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit) 101 101 102 102 **Performance specification** 103 103 104 -(% class="table-bordered" %) 105 -|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)** 106 -|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 107 -|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most. 108 -|(% rowspan="8" %)((( 109 -Rated temperature 110 - 111 -range 112 -)))|Type K|-100 to +1,200|Type K|-148 to +2,192 113 -|Type J|-100 to +600|Type J|-148 to +1,112 114 -|Type T|-100 to +400|Type T|-148 to +752 115 -|Type E|-100 to +1,000|Type E|-148 to +1,832 116 -|Type N|-100 to +1,300|Type N|-148 to +2,372 117 -|Type B|+250 to +1,800|Type B|-482 to +3,272℉ 118 -|Type R|-50 to +1,768|Type R|-58 to +3,214.4 119 -|Type S|-50 to +1,768|Type S|-58 to +3,214.4 120 -|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form 121 -|Type K|-1,000 to +12,000|Type K|-1480 to +21,920 122 -|Type J|-1,000 to +6,000|Type J|-1480 to +11,120 123 -|Type T|-1,000 to +4,000|Type T|-1480 to +7,520 124 -|Type E|-1,000 to +10,000|Type E|-1480 to +18,320 125 -|Type N|-1,000 to +13,000|Type N|-1480 to +23,720 126 -|Type B|+2,500 to +18,000|Type B|-4820 to +32,720 127 -|Type R|-500 to +17,680|Type R|-580 to +32,144 128 -|Type S|-500 to +17,680|Type S|-580 to +32,144 129 -|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F 130 -|Type J|0.3°C|Type J|0.54°F 131 -|Type T|0.4°C|Type T|0.72°F 132 -|Type E|0.25°C|Type E|0.45°F 133 -|Type N|0.52°C|Type N|0.936°F 134 -|Type B|((( 88 +(% class="table-bordered" style="width:1117px" %) 89 +|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)** 90 +|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 91 +|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most. 92 +|(% rowspan="8" style="width:253px" %)((( 93 +Rated temperature range 94 +)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192 95 +|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112 96 +|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752 97 +|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832 98 +|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372 99 +|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉ 100 +|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4 101 +|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4 102 +|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form 103 +|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920 104 +|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120 105 +|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520 106 +|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320 107 +|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720 108 +|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720 109 +|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144 110 +|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144 111 +|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F 112 +|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F 113 +|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F 114 +|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F 115 +|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F 116 +|(% style="width:130px" %)Type B|(% style="width:248px" %)((( 135 135 2.09°C 136 136 137 137 2.97°C (less than 1,000°C) 138 138 139 139 1.64°C (more than 1,000°C) 140 -)))|Type B|((( 122 +)))|(% style="width:147px" %)Type B|(% style="width:298px" %)((( 141 141 3.762°F 142 142 143 143 5.346°F (less than 1,832°F) ... ... @@ -144,13 +144,13 @@ 144 144 145 145 2.952°F (more than 1,832°F) 146 146 ))) 147 -|Type R|((( 129 +|(% style="width:130px" %)Type R|(% style="width:248px" %)((( 148 148 1.53°C 149 149 150 150 1.87°C (less than 800°C) 151 151 152 152 1.32°C (more than 800°C) 153 -)))|Type R|((( 135 +)))|(% style="width:147px" %)Type R|(% style="width:298px" %)((( 154 154 2.754°F 155 155 156 156 3.366°F (less than 1,472°F) ... ... @@ -157,13 +157,13 @@ 157 157 158 158 2.376°F (more than 1,472°F) 159 159 ))) 160 -|Type S|((( 142 +|(% style="width:130px" %)Type S|(% style="width:248px" %)((( 161 161 1.72°C 162 162 163 163 2.01°C (less than 800°C) 164 164 165 165 1.53°C (more than 800°C) 166 -)))|Type S|((( 148 +)))|(% style="width:147px" %)Type S|(% style="width:298px" %)((( 167 167 3.096°F 168 168 169 169 3.618°F (less than 1,472°F) ... ... @@ -170,27 +170,30 @@ 170 170 171 171 2.754°F (more than 1,472°F) 172 172 ))) 173 -|((( 174 -Overall accuracy 175 - 176 -Calibration point 177 -)))|(% colspan="4" %)((( 155 +|(% style="width:253px" %)((( 156 +Overall accuracy calibration point 157 +)))|(% colspan="4" style="width:823px" %)((( 178 178 ± (0.5% full scale +1°C) 179 179 180 180 Freezing point of pure water 0°C / 32°F 181 181 ))) 182 182 183 -**✎Note: **Earth-tipped thermocouples are not suitable for this unit. 163 +(% class="box infomessage" %) 164 +((( 165 +**✎Note: ** 184 184 185 -Earth-tipped thermocouples are not suitable for this unit. 167 +* Earth-tipped thermocouples are not suitable for this unit. 168 +* Earth-tipped thermocouples are not suitable for this unit. 169 +))) 186 186 171 + 187 187 **Analog Input** 188 188 189 189 (% class="table-bordered" %) 190 -|(% colspan="2" %)((( 175 +|=(% colspan="2" %)((( 191 191 **Conversion Characteristics** 192 192 193 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. ( subject to the overall accuracy)178 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (Subject to the overall accuracy) 194 194 ))) 195 195 |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]] 196 196 ... ... @@ -197,8 +197,8 @@ 197 197 **Miscellaneous** 198 198 199 199 (% class="table-bordered" %) 200 -|**Item**|**Specification** 201 -|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel. 185 +|=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification** 186 +|=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel. 202 202 203 203 = **5 Buffer Memory (BFM)** = 204 204 ... ... @@ -210,13 +210,10 @@ 210 210 |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)((( 211 211 Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1. 212 212 213 -0: Type K 198 +* 0: Type K 199 +* 1: Type J 200 +* 2: Type T 214 214 215 -1: Type J 216 - 217 -2: Type T 218 - 219 - 220 220 ((( 221 221 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]] 222 222 ... ... @@ -241,88 +241,55 @@ 241 241 |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)- 242 242 |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch 243 243 |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)((( 244 -B0: A/D conversion would be stopped when b2 or b3 is ON. 245 - 246 -B1: Not used; 247 - 248 -B2: power failed; 249 - 250 -B3: Hardware failed; 251 - 252 -B4~~B7: Not used; 253 - 254 -B8: Values backup error; 255 - 256 -B10: Digital output/analog input value is out of the specified range; 257 - 258 -B11: Averaged value is out of the available range; 259 - 260 -B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 261 - 262 -B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 263 - 264 -B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 226 +* B0: A/D conversion would be stopped when b2 or b3 is ON. 227 +* B1: Not used; 228 +* B2: power failed; 229 +* B3: Hardware failed; 230 +* B4~~B7: Not used; 231 +* B8: Values backup error; 232 +* B10: Digital output/analog input value is out of the specified range; 233 +* B11: Averaged value is out of the available range; 234 +* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 235 +* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 236 +* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 265 265 ))) 266 266 |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130 267 267 |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version 268 268 |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 269 269 |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 270 -0: Performs nothing 271 - 272 -1: Initializes all data 273 - 274 -2: Initializes BFM #19 to BFM #174 275 - 276 -3: Initializes error 277 - 278 -Others: No action 242 +* 0: Performs nothing 243 +* 1: Initializes all data 244 +* 2: Initializes BFM #19 to BFM #174 245 +* 3: Initializes error 246 +* Others: No action 279 279 ))) 280 280 |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 281 -0: Performs nothing 282 - 283 -Other: Performs backups 249 +* 0: Performs nothing 250 +* Other: Performs backups 284 284 ))) 285 285 |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 286 -b0: Reserved; 287 - 288 -b1: value range setting error; 289 - 290 -b2: PID self-tuning error; 291 - 292 -b3: The difference of setting value and offset value of PID self-tuning is too small; 293 - 294 -b4~~b5: Reserved; 295 - 296 -b6: Channel mode Error/ This channel is not enabled; 297 - 298 -b7: PV exceeded; 299 - 300 -b8: PID self-tuning parameters are changed in process; 253 +* b0: Reserved; 254 +* b1: value range setting error; 255 +* b2: PID self-tuning error; 256 +* b3: The difference of setting value and offset value of PID self-tuning is too small; 257 +* b4~~b5: Reserved; 258 +* b6: Channel mode Error/ This channel is not enabled; 259 +* b7: PV exceeded; 260 +* b8: PID self-tuning parameters are changed in process; 301 301 ))) 302 302 |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)((( 303 -b0 & b15: Reserved; 304 - 305 -b4: Alarm 1 - When alarm 1 occurs, it is set ON; 306 - 307 -b5: Alarm 2 - When alarm 2 occurs, it is set ON; 308 - 309 -b6: Alarm 3 - When alarm 3 occurs, it is set ON; 310 - 311 -b7: Alarm 4 - When alarm 4 occurs, it is set ON; 312 - 313 -b8: Heating control; 314 - 315 -b9: Cooling control; 316 - 317 -b10: PID terminals output; 318 - 319 -b11: PID control flag; 320 - 321 -b12: Manual flag; 322 - 323 -b13: Self-tuning; 324 - 325 -b14: ON / OFF control; 263 +* b0 & b15: Reserved; 264 +* b4: Alarm 1 - When alarm 1 occurs, it is set ON; 265 +* b5: Alarm 2 - When alarm 2 occurs, it is set ON; 266 +* b6: Alarm 3 - When alarm 3 occurs, it is set ON; 267 +* b7: Alarm 4 - When alarm 4 occurs, it is set ON; 268 +* b8: Heating control; 269 +* b9: Cooling control; 270 +* b10: PID terminals output; 271 +* b11: PID control flag; 272 +* b12: Manual flag; 273 +* b13: Self-tuning; 274 +* b14: ON / OFF control; 326 326 ))) 327 327 |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 328 328 Unit: 0.1 °C ... ... @@ -331,25 +331,21 @@ 331 331 ))) 332 332 |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control. 333 333 |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 334 -0: Stops control; 335 - 336 -Other: Starts control; 283 +* 0: Stops control; 284 +* Other: Starts control; 337 337 ))) 338 338 |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 339 -0: AUTO; 340 - 341 -Other: MAN; 287 +* 0: Autol mode; 288 +* Other: Manual mode; 342 342 ))) 343 343 |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode. 344 344 |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 345 -0: Stops self-tuning; 346 - 347 -Other : starts self-tuning; 292 +* 0: Stops self-tuning; 293 +* Other : starts self-tuning; 348 348 ))) 349 349 |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 350 -0: Heating control; 351 - 352 -1: Cooling control; 296 +* 0: Heating control; 297 +* 1: Cooling control; 353 353 ))) 354 354 |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 355 355 Unit: 0.1 °C ... ... @@ -359,14 +359,17 @@ 359 359 |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)((( 360 360 KP = 0, ON / OFF control is executed. 361 361 362 -Range: 0 -32767.307 +Range: 0 ~~ 32767. 363 363 364 -Note: This value is magnified 256 times; the actual value is KP / 256. 309 +(% class="box infomessage" %) 310 +((( 311 +**✎Note: ** This value is magnified 256 times; the actual value is KP / 256. 365 365 ))) 366 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767 367 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767 368 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms) 369 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023 313 +))) 314 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767 315 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767 316 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms) 317 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023 370 370 |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 371 371 The maximum rate of rise: 0-320; 372 372 ... ... @@ -373,9 +373,9 @@ 373 373 Range: 0-32000 (0-320); 374 374 ))) 375 375 |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)((( 376 -1 -100 (*500ms);324 +1~~100 (*500ms); 377 377 378 -Range: 0.5s -50s;326 +Range: 0.5s~~50s; 379 379 ))) 380 380 |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C) 381 381 |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved ... ... @@ -382,7 +382,7 @@ 382 382 |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 383 383 Dead zone is used for ON/OFF control mode 384 384 385 -Range: 0 -100 (Unit: 0.1%)333 +Range: 0~~100 (Unit: 0.1%) 386 386 ))) 387 387 |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)((( 388 388 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -391,9 +391,8 @@ 391 391 392 392 Range: 393 393 394 -K type: -100°C - 1200°C 395 - 396 -J type: -100°C - 600°C 342 +* K type: -100°C ~~1200°C 343 +* J type: -100°C ~~ 600°C 397 397 ))) 398 398 |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)((( 399 399 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -402,19 +402,18 @@ 402 402 403 403 Range: 404 404 405 -K type: -100°C - 1200°C 406 - 407 -J type: -100°C - 600°C 352 +* K type: -100°C~~1200°C 353 +* J type: -100°C~~600°C 408 408 ))) 409 409 |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 410 410 This BFM is used for setting the upper threshold of output. 411 411 412 -Range: 0 -2000358 +Range: 0~~2000 413 413 ))) 414 414 |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 415 415 This BFM is used for setting the lower threshold of output. 416 416 417 -Range: 0 -2000363 +Range: 0~~2000 418 418 ))) 419 419 |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 420 420 |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( ... ... @@ -433,113 +433,119 @@ 433 433 |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 434 434 Calculation of dead zone 435 435 436 -Bias: (SV+ bias)* dead zone 437 - 438 -Upper & lower threshold mode: Alarm setting value* dead zone 382 +* Bias: (SV+ bias)* dead zone 383 +* Upper & lower threshold mode: Alarm setting value* dead zone 439 439 ))) 440 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0 -255385 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255 441 441 |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 442 -0: Normal; 443 - 444 -Others: Error in setting address 387 +* 0: Normal; 388 +* Others: Error in setting address 445 445 ))) 446 446 |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 447 447 392 +(% class="box infomessage" %) 393 +((( 448 448 **✎Note: ** 449 449 450 -0: Retentive; 396 +* 0: Retentive; 397 +* X: Non-retentive; 398 +* R: Only read is enabled; 399 +* R/W: Both read and write are enabled; 400 +))) 451 451 452 -X: Non-retentive; 453 - 454 -R: Only read is enabled; 455 - 456 -R/W: Both read and write are enabled; 457 - 458 458 **Details of buffer memories** 459 459 460 -* *Buffer Memory BFM #0: Thermocouple Type K or J selection mode**404 +**Buffer Memory BFM #0: Thermocouple Type K or J selection mode** 461 461 462 462 BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1. 463 463 464 464 (% style="text-align:center" %) 465 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif|| class="img-thumbnail" height="173" width="300"]]409 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]] 466 466 467 467 The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows: 468 468 469 469 240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time) 470 470 471 -* *Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**415 +**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged** 472 472 473 473 When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8. 474 474 475 -* *Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**419 +**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature** 476 476 477 477 These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J. 478 478 479 -* *Buffer Memory BFM #28: Digital range error latch**423 +**Buffer Memory BFM #28: Digital range error latch** 480 480 481 -BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 425 +* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 426 +* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 482 482 483 -BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 484 - 485 485 ((( 486 486 (% class="table-bordered" %) 487 -|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0** 430 +|=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0** 488 488 |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low 489 489 |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1 490 490 ))) 491 491 492 -**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 435 +* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 436 +* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 493 493 494 -**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 495 - 496 496 When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28)) 497 497 498 498 An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power. 499 499 500 -* *Buffer Memory BFM #29: Error status**442 +**Buffer Memory BFM #29: Error status** 501 501 502 502 ((( 503 503 (% class="table-bordered" %) 504 -|**Bit devices of BFM #29**|**Error information** 505 -|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped. 506 -|b1, b4~~b7|Not used; 507 -|b2|24V DC power supply failed; 508 -|b3|Hardware failed; 509 -|b8|Backup error of set value. 510 -|b10|Digital output/analog input value is out of the specified range; 511 -|b11|The value of averaged results is out of the available range; 512 -|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON; 513 -|b14|It is in backup status, this bit sets to ON; 514 -|b15|Initialization completion flag; 446 +|=(% scope="row" %)**Bit devices of BFM #29**|=**Error information** 447 +|=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped. 448 +|=b1, b4~~b7|Not used; 449 +|=b2|24V DC power supply failed; 450 +|=b3|Hardware failed; 451 +|=b8|Backup error of set value. 452 +|=b10|Digital output/analog input value is out of the specified range; 453 +|=b11|The value of averaged results is out of the available range; 454 +|=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON; 455 +|=b14|It is in backup status, this bit sets to ON; 456 +|=b15|Initialization completion flag; 515 515 ))) 516 516 517 -* *ID Code Buffer Memory BFM #30**459 +**ID Code Buffer Memory BFM #30** 518 518 519 519 The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block. 520 520 521 -* *Error flag BFM3, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**463 +**Power-down retention flag BFM#42** 522 522 465 +First, configure the parameters to be saved, and then set the power-down retention flag BFM#42 to 1. This enables power-down retention for the configured parameters. 466 + 467 +The operation steps are illustrated as follows: 468 + 469 +1. Set the power-down retention register to a value of 100 (e.g., BFM#52 is set to 100). 470 +1. Set the power-down retention flag BFM#42 to 1 (data is saved at this point, and BFM#42 will automatically reset to zero upon completion). 471 +1. Change the data of the power-down retention register to 1000 (e.g., BFM#52 is set to 1000). 472 +1. Power off and then power on again. At this point, check the value of the power-down retention register, which should be 100 (e.g., BFM#52 shows a value of 100)." 473 + 474 +**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)** 475 + 523 523 ((( 524 524 (% class="table-bordered" %) 525 -|**Error flag**|**Content**|**Remark** 526 -|b0, b4, b5|Not used;|- 527 -|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189 528 -|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON 529 -|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON 530 -|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON. 531 -|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON. 532 -|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON. 478 +|=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark** 479 +|=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)- 480 +|=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189 481 +|=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON 482 +|=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON 483 +|=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON. 484 +|=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON. 485 +|=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON. 533 533 ))) 534 534 535 -* *BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**488 +**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover** 536 536 537 537 BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4. 538 538 539 -When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 492 +* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 493 +* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 540 540 541 -When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 542 - 543 543 **Auto mode:** 544 544 545 545 The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV). ... ... @@ -554,10 +554,8 @@ 554 554 555 555 The temperature alarm function is effective even in the manual mode. 556 556 557 - 1.**Self-tuning function**509 +**Self-tuning function** 558 558 559 -**Self-tuning** 560 - 561 561 The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature. 562 562 563 563 When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.) ... ... @@ -579,7 +579,7 @@ 579 579 Self-tuning would be canceled with one of the following conditions: 580 580 581 581 (% style="text-align:center" %) 582 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png|| class="img-thumbnail" height="217" width="500"]]532 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]] 583 583 584 584 * SV value has been changed. 585 585 * The control has been stopped, the operation mode is "0: Stops control". ... ... @@ -594,7 +594,7 @@ 594 594 If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set. 595 595 596 596 (% style="text-align:center" %) 597 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png|| class="img-thumbnail" height="197" width="500"]]547 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]] 598 598 599 599 **Dead zone (adjustment sensitivity) setting** 600 600 ... ... @@ -608,37 +608,32 @@ 608 608 609 609 **Example** 610 610 611 - *Conditions:561 +Conditions: 612 612 613 -When BFM #41/#60 is set to "10.0%" in the range span of 400°C 563 +* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C 564 +* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 565 +* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 614 614 615 -400°C x 10.0% / 100 = 40°C 616 - 617 -When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 618 - 619 -When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 620 - 621 621 (% style="text-align:center" %) 622 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png|| class="img-thumbnail" height="226" width="600"]]568 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]] 623 623 624 -* *Output(MV) upper threshold: BFM #65/#103/#141/#179**570 +**Output(MV) upper threshold: BFM #65/#103/#141/#179** 625 625 626 626 **Output(MV) lower threshold: BFM #66/#104/#142/#180** 627 627 628 -BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 574 +* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 575 +* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 629 629 630 -BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 631 - 632 632 These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter. 633 633 634 634 (% style="text-align:center" %) 635 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png|| class="img-thumbnail" height="222" width="400"]]580 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]] 636 636 637 637 1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active. 638 638 1. The output limiter would not be active when two-position control is active,. 639 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control .584 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control 640 640 641 -* *Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**586 +**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182** 642 642 643 643 LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode. 644 644 ... ... @@ -645,7 +645,7 @@ 645 645 Each channel could have four alarm modes. 646 646 647 647 (% style="text-align:center" %) 648 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif|| class="img-thumbnail" height="166" width="500"]]593 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]] 649 649 650 650 Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm. 651 651 ... ... @@ -653,21 +653,23 @@ 653 653 654 654 ((( 655 655 (% class="table-bordered" %) 656 -|**Alarm No.**|**Alarm mode**|**Description**|**Set range** 657 -|0|Alarm is disabled|Alarm function is disabled.|~-~-- 658 -|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range 659 -|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range 660 -|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width 661 -|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width 662 -|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 663 -|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 664 -|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range 665 -|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range 666 -|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width 667 -|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width 668 -|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width 601 +|(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range** 602 +|(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~-- 603 +|(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range 604 +|(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range 605 +|(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width 606 +|(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width 607 +|(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width 608 +|(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width 609 +|(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range 610 +|(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range 611 +|(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width 612 +|(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width 613 +|(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width 669 669 ))) 670 670 616 +(% class="box infomessage" %) 617 +((( 671 671 **✎Note: ** 672 672 673 673 * Input range: it is from the lower threshold to the upper threshold of input value ... ... @@ -674,8 +674,9 @@ 674 674 * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value). 675 675 * ±Input width: it could be positive and negative. 676 676 * + Input width: it could be positive only. 624 +))) 677 677 678 - 1.**Alarm dead zone setting**626 +**Alarm dead zone setting** 679 679 680 680 BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status. 681 681 ... ... @@ -687,22 +687,22 @@ 687 687 688 688 In upper/lower threshold mode: dead zone=alarm setting value*dead zone 689 689 690 - 1.Upper threshold input alarm and upper threshold deviation alarm638 +* Upper threshold input alarm and upper threshold deviation alarm 691 691 692 692 (% style="text-align:center" %) 693 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png|| class="img-thumbnail" height="198" width="600"]]641 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]] 694 694 695 - 1.Lower threshold input alarm and lower threshold deviation alarm643 +* Lower threshold input alarm and lower threshold deviation alarm 696 696 697 697 (% style="text-align:center" %) 698 -[[image:LX3V-4LTC_html_89ce396354c991f8.png|| class="img-thumbnail" height="190" width="600"]]646 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]] 699 699 700 - 1.Upper/lower threshold deviation alarm648 +* Upper/lower threshold deviation alarm 701 701 702 702 (% style="text-align:center" %) 703 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png|| class="img-thumbnail" height="241" width="600"]]651 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]] 704 704 705 -* *Number of times of alarm delay**653 +**Number of times of alarm delay** 706 706 707 707 BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4. 708 708 ... ... @@ -711,9 +711,9 @@ 711 711 Example: the number of alarm delay sets to 5 times 712 712 713 713 (% style="text-align:center" %) 714 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png|| class="img-thumbnail" height="346" width="600"]]662 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]] 715 715 716 -* *Address of value range error**664 +**Address of value range error** 717 717 718 718 When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address, 719 719 ... ... @@ -721,7 +721,7 @@ 721 721 722 722 When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41). 723 723 724 -* *Output cycle control**672 +**Output cycle control** 725 725 726 726 BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle. 727 727 ... ... @@ -730,27 +730,27 @@ 730 730 The allowable range of this value is from 1 to 100 sec. 731 731 732 732 (% style="text-align:center" %) 733 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png|| class="img-thumbnail" height="102" width="500"]]681 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]] 734 734 735 735 = **6 Program Example** = 736 736 737 -* 685 +**Keep doing nothing while the power is supplied.** 738 738 739 739 If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction. 740 740 741 -* 689 +**Make sure the power be OFF before cleaning the unit or tightening the terminals.** 742 742 743 743 If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock. 744 744 745 -* 693 +**To run temperature control module in safe, please read this manual carefully firstly.** 746 746 747 747 Damages or accidents would happen if the operations is not right. 748 748 749 - *Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.697 +Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire. 750 750 751 751 ~* For repair, contact WECON Technology Co., Ltd. 752 752 753 -* 701 +**Make sure power is off before wiring.** 754 754 755 755 Failure or malfunction maybe happen because of wiring during power is on. 756 756 ... ... @@ -759,42 +759,32 @@ 759 759 In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3. 760 760 761 761 (% style="text-align:center" %) 762 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png|| class="img-thumbnail" height="116" width="600"]]710 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]] 763 763 764 764 Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30). 765 765 766 766 **Program example** 767 767 768 -Input range: K type ~-~- 100.0 to 400.0 °C 716 +* Input range: K type ~-~- 100.0 to 400.0 °C 717 +* PID values: it is determined by auto-tuning 718 +* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 719 +* Heater/cooling control: Heater (Initialization) 769 769 770 - PIDalues:it isdetermined by auto-tuning721 +Device assignment: 771 771 772 -Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 723 +* X000: initialization 724 +* X001: Reset the flag of error bit. 725 +* X002: Control starts (ON)/stop (OFF); 726 +* X003: self-tuning beginning when it changes from 0 to 1. 727 +* M0~~M15: Flags of error 728 +* M20~~M35: Flags of events 729 +* D0~~D199: Read value from BFM 730 +* D200~~D399: Write set value(SV) into BFM 773 773 774 - Heater/coolingcontrol:Heater (Initialization)732 +Project: 775 775 776 -* Device assignment: 777 - 778 -X000: initialization 779 - 780 -X001: Reset the flag of error bit. 781 - 782 -X002: Control starts (ON)/stop (OFF); 783 - 784 -X003: self-tuning beginning when it changes from 0 to 1. 785 - 786 -M0~~M15: Flags of error 787 - 788 -M20~~M35: Flags of events 789 - 790 -D0~~D199: Read value from BFM 791 - 792 -D200~~D399: Write set value(SV) into BFM 793 - 794 -* Project: 795 - 796 796 (% style="text-align:center" %) 797 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png|| class="img-thumbnail" height="770" width="700"]]735 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]] 798 798 799 799 = **7 Diagnostic** = 800 800