Changes for page LX3V-4LTC

Last modified by Devin Chen on 2024/11/22 09:42

From version 3.1
edited by Stone Wu
on 2022/09/14 16:28
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Expansions.1 Module.Temperature.WebHome
1 +1 Module.Temperature.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -12,19 +12,28 @@
12 12  = **2 Dimensions** =
13 13  
14 14  (% style="text-align:center" %)
15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]
15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]]
16 16  
17 -1. Extension cable and connector
18 -1. Com LED: Light when communicating
19 -1. Power LED: Light when connect to 24V
20 -1. State LED: Light when normal condition
21 -1. Module name
22 -1. Analog signal terminal
23 -1. Extension module interface
24 -1. DIN rail mounting slot
25 -1. DIN rail hook
26 -1. Mounting holes (φ4.5)
17 +①Extension cable and connector
27 27  
19 +②Com LED: Light when communicating
20 +
21 +③Power LED: Light when connect to 24V
22 +
23 +④State LED: Light when normal condition
24 +
25 +⑤Module name
26 +
27 +⑥Analog signal terminal
28 +
29 +⑦Extension module interface
30 +
31 +⑧DIN rail mounting slot
32 +
33 +⑨DIN rail hook
34 +
35 +⑩Mounting holes (φ4.5)
36 +
28 28  **Using crimp terminations**
29 29  
30 30  (((
... ... @@ -33,25 +33,32 @@
33 33  * Other terminals should be empty but only wiring terminals mention in this manual.
34 34  
35 35  (% style="text-align:center" %)
36 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]
45 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]]
37 37  )))
38 38  
39 39  = **3 Wiring** =
40 40  
41 41  (((
42 -The compensating cables that connect with thermocouples could be as follows:
51 +1. The compensating cables that connect with thermocouples could be as follows:
43 43  
44 -* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
45 -* Type J: JX-G, JX-H
46 -* Type K: SC-G, SC-H
47 -* Type N: NC-G, NC-H
48 -* Type E: EX-G, EX-H
49 -* Type T: TX-G, TX-H
50 -* Type B: BC-G, BC-H
51 -* Type R: RC-G, RC-H
53 +Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
52 52  
55 +Type J: JX-G, JX-H
56 +
57 +Type K: SC-G, SC-H
58 +
59 +Type N: NC-G, NC-H
60 +
61 +Type E: EX-G, EX-H
62 +
63 +Type T: TX-G, TX-H
64 +
65 +Type B: BC-G, BC-H
66 +
67 +Type R: RC-G, RC-H
68 +
53 53  (% style="text-align:center" %)
54 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]
70 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]]
55 55  )))
56 56  
57 57  For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
... ... @@ -72,54 +72,56 @@
72 72  **General specification**
73 73  
74 74  (% class="table-bordered" %)
75 -|=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**
76 -|=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit
77 -|=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)
91 +|**Item**|**Specification**
92 +|General specifications|Same as those for the main unit
93 +|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground)
78 78  
79 79  **Power supply specification**
80 80  
81 81  (% class="table-bordered" %)
82 -|=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**
83 -|=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA
84 -|=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)
98 +|**Item**|**Specification**
99 +|Analog circuits|24V DC ± 10%, 50mA
100 +|Digital circuits|24V DC, 35mA (internal power supply from the main unit)
85 85  
86 86  **Performance specification**
87 87  
88 -(% class="table-bordered" style="width:1117px" %)
89 -|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)**
90 -|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
91 -|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
92 -|(% rowspan="8" style="width:253px" %)(((
93 -Rated temperature range
94 -)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192
95 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112
96 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752
97 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832
98 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372
99 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉
100 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4
101 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4
102 -|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form
103 -|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920
104 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120
105 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520
106 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320
107 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720
108 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720
109 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144
110 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144
111 -|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F
112 -|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F
113 -|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F
114 -|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F
115 -|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F
116 -|(% style="width:130px" %)Type B|(% style="width:248px" %)(((
104 +(% class="table-bordered" %)
105 +|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)**
106 +|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
107 +|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
108 +|(% rowspan="8" %)(((
109 +Rated temperature
110 +
111 +range
112 +)))|Type K|-100 to +1,200|Type K|-148 to +2,192
113 +|Type J|-100 to +600|Type J|-148 to +1,112
114 +|Type T|-100 to +400|Type T|-148 to +752
115 +|Type E|-100 to +1,000|Type E|-148 to +1,832
116 +|Type N|-100 to +1,300|Type N|-148 to +2,372
117 +|Type B|+250 to +1,800|Type B|-482 to +3,272℉
118 +|Type R|-50 to +1,768|Type R|-58 to +3,214.4
119 +|Type S|-50 to +1,768|Type S|-58 to +3,214.4
120 +|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form
121 +|Type K|-1,000 to +12,000|Type K|-1480 to +21,920
122 +|Type J|-1,000 to +6,000|Type J|-1480 to +11,120
123 +|Type T|-1,000 to +4,000|Type T|-1480 to +7,520
124 +|Type E|-1,000 to +10,000|Type E|-1480 to +18,320
125 +|Type N|-1,000 to +13,000|Type N|-1480 to +23,720
126 +|Type B|+2,500 to +18,000|Type B|-4820 to +32,720
127 +|Type R|-500 to +17,680|Type R|-580 to +32,144
128 +|Type S|-500 to +17,680|Type S|-580 to +32,144
129 +|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F
130 +|Type J|0.3°C|Type J|0.54°F
131 +|Type T|0.4°C|Type T|0.72°F
132 +|Type E|0.25°C|Type E|0.45°F
133 +|Type N|0.52°C|Type N|0.936°F
134 +|Type B|(((
117 117  2.09°C
118 118  
119 119  2.97°C (less than 1,000°C)
120 120  
121 121  1.64°C (more than 1,000°C)
122 -)))|(% style="width:147px" %)Type B|(% style="width:298px" %)(((
140 +)))|Type B|(((
123 123  3.762°F
124 124  
125 125  5.346°F (less than 1,832°F)
... ... @@ -126,13 +126,13 @@
126 126  
127 127  2.952°F (more than 1,832°F)
128 128  )))
129 -|(% style="width:130px" %)Type R|(% style="width:248px" %)(((
147 +|Type R|(((
130 130  1.53°C
131 131  
132 132  1.87°C (less than 800°C)
133 133  
134 134  1.32°C (more than 800°C)
135 -)))|(% style="width:147px" %)Type R|(% style="width:298px" %)(((
153 +)))|Type R|(((
136 136  2.754°F
137 137  
138 138  3.366°F (less than 1,472°F)
... ... @@ -139,13 +139,13 @@
139 139  
140 140  2.376°F (more than 1,472°F)
141 141  )))
142 -|(% style="width:130px" %)Type S|(% style="width:248px" %)(((
160 +|Type S|(((
143 143  1.72°C
144 144  
145 145  2.01°C (less than 800°C)
146 146  
147 147  1.53°C (more than 800°C)
148 -)))|(% style="width:147px" %)Type S|(% style="width:298px" %)(((
166 +)))|Type S|(((
149 149  3.096°F
150 150  
151 151  3.618°F (less than 1,472°F)
... ... @@ -152,27 +152,24 @@
152 152  
153 153  2.754°F (more than 1,472°F)
154 154  )))
155 -|(% style="width:253px" %)(((
156 -Overall accuracy calibration point
157 -)))|(% colspan="4" style="width:823px" %)(((
173 +|(((
174 +Overall accuracy
175 +
176 +Calibration point
177 +)))|(% colspan="4" %)(((
158 158  ± (0.5% full scale +1°C)
159 159  
160 160  Freezing point of pure water 0°C / 32°F
161 161  )))
162 162  
163 -(% class="box infomessage" %)
164 -(((
165 -**✎Note: **
183 +**✎Note: **Earth-tipped thermocouples are not suitable for this unit.
166 166  
167 -* Earth-tipped thermocouples are not suitable for this unit.
168 -* Earth-tipped thermocouples are not suitable for this unit.
169 -)))
185 +Earth-tipped thermocouples are not suitable for this unit.
170 170  
171 -
172 172  **Analog Input**
173 173  
174 174  (% class="table-bordered" %)
175 -|=(% colspan="2" %)(((
190 +|(% colspan="2" %)(((
176 176  **Conversion Characteristics**
177 177  
178 178  Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy)
... ... @@ -182,8 +182,8 @@
182 182  **Miscellaneous**
183 183  
184 184  (% class="table-bordered" %)
185 -|=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**
186 -|=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
200 +|**Item**|**Specification**
201 +|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
187 187  
188 188  = **5 Buffer Memory (BFM)** =
189 189  
... ... @@ -195,11 +195,13 @@
195 195  |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
196 196  Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
197 197  
198 -* 0: Type K
199 -* 1: Type J
200 -* 2: Type T
213 +0: Type K
201 201  
215 +1: Type J
202 202  
217 +2: Type T
218 +
219 +
203 203  (((
204 204  [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
205 205  
... ... @@ -224,55 +224,88 @@
224 224  |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
225 225  |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
226 226  |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
227 -* B0: A/D conversion would be stopped when b2 or b3 is ON.
228 -* B1: Not used;
229 -* B2: power failed;
230 -* B3: Hardware failed;
231 -* B4~~B7: Not used;
232 -* B8: Values backup error;
233 -* B10: Digital output/analog input value is out of the specified range;
234 -* B11: Averaged value is out of the available range;
235 -* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
236 -* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
237 -* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
244 +B0: A/D conversion would be stopped when b2 or b3 is ON.
245 +
246 +B1: Not used;
247 +
248 +B2: power failed;
249 +
250 +B3: Hardware failed;
251 +
252 +B4~~B7: Not used;
253 +
254 +B8: Values backup error;
255 +
256 +B10: Digital output/analog input value is out of the specified range;
257 +
258 +B11: Averaged value is out of the available range;
259 +
260 +B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
261 +
262 +B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
263 +
264 +B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
238 238  )))
239 239  |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
240 240  |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
241 241  |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
242 242  |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
243 -* 0: Performs nothing
244 -* 1: Initializes all data
245 -* 2: Initializes BFM #19 to BFM #174
246 -* 3: Initializes error
247 -* Others: No action
270 +0: Performs nothing
271 +
272 +1: Initializes all data
273 +
274 +2: Initializes BFM #19 to BFM #174
275 +
276 +3: Initializes error
277 +
278 +Others: No action
248 248  )))
249 249  |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
250 -* 0: Performs nothing
251 -* Other: Performs backups
281 +0: Performs nothing
282 +
283 +Other: Performs backups
252 252  )))
253 253  |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
254 -* b0: Reserved;
255 -* b1: value range setting error;
256 -* b2: PID self-tuning error;
257 -* b3: The difference of setting value and offset value of PID self-tuning is too small;
258 -* b4~~b5: Reserved;
259 -* b6: Channel mode Error/ This channel is not enabled;
260 -* b7: PV exceeded;
261 -* b8: PID self-tuning parameters are changed in process;
286 +b0: Reserved;
287 +
288 +b1: value range setting error;
289 +
290 +b2: PID self-tuning error;
291 +
292 +b3: The difference of setting value and offset value of PID self-tuning is too small;
293 +
294 +b4~~b5: Reserved;
295 +
296 +b6: Channel mode Error/ This channel is not enabled;
297 +
298 +b7: PV exceeded;
299 +
300 +b8: PID self-tuning parameters are changed in process;
262 262  )))
263 263  |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
264 -* b0 & b15: Reserved;
265 -* b4: Alarm 1 - When alarm 1 occurs, it is set ON;
266 -* b5: Alarm 2 - When alarm 2 occurs, it is set ON;
267 -* b6: Alarm 3 - When alarm 3 occurs, it is set ON;
268 -* b7: Alarm 4 - When alarm 4 occurs, it is set ON;
269 -* b8: Heating control;
270 -* b9: Cooling control;
271 -* b10: PID terminals output;
272 -* b11: PID control flag;
273 -* b12: Manual flag;
274 -* b13: Self-tuning;
275 -* b14: ON / OFF control;
303 +b0 & b15: Reserved;
304 +
305 +b4: Alarm 1 - When alarm 1 occurs, it is set ON;
306 +
307 +b5: Alarm 2 - When alarm 2 occurs, it is set ON;
308 +
309 +b6: Alarm 3 - When alarm 3 occurs, it is set ON;
310 +
311 +b7: Alarm 4 - When alarm 4 occurs, it is set ON;
312 +
313 +b8: Heating control;
314 +
315 +b9: Cooling control;
316 +
317 +b10: PID terminals output;
318 +
319 +b11: PID control flag;
320 +
321 +b12: Manual flag;
322 +
323 +b13: Self-tuning;
324 +
325 +b14: ON / OFF control;
276 276  )))
277 277  |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
278 278  Unit: 0.1 °C
... ... @@ -281,21 +281,25 @@
281 281  )))
282 282  |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
283 283  |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
284 -* 0: Stops control;
285 -* Other: Starts control;
334 +0: Stops control;
335 +
336 +Other: Starts control;
286 286  )))
287 287  |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
288 -* 0: AUTO;
289 -* Other: MAN;
339 +0: AUTO;
340 +
341 +Other: MAN;
290 290  )))
291 291  |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
292 292  |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
293 -* 0: Stops self-tuning;
294 -* Other : starts self-tuning;
345 +0: Stops self-tuning;
346 +
347 +Other : starts self-tuning;
295 295  )))
296 296  |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
297 -* 0: Heating control;
298 -* 1: Cooling control;
350 +0: Heating control;
351 +
352 +1: Cooling control;
299 299  )))
300 300  |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
301 301  Unit: 0.1 °C
... ... @@ -305,17 +305,14 @@
305 305  |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
306 306  KP = 0, ON / OFF control is executed.
307 307  
308 -Range: 0 ~~ 32767.
362 +Range: 0-32767.
309 309  
310 -(% class="box infomessage" %)
311 -(((
312 -**✎Note: ** This value is magnified 256 times; the actual value is KP / 256.
364 +Note: This value is magnified 256 times; the actual value is KP / 256.
313 313  )))
314 -)))
315 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767
316 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767
317 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms)
318 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023
366 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767
367 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767
368 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms)
369 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023
319 319  |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
320 320  The maximum rate of rise: 0-320;
321 321  
... ... @@ -322,9 +322,9 @@
322 322  Range: 0-32000 (0-320);
323 323  )))
324 324  |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
325 -1~~100 (*500ms);
376 +1-100 (*500ms);
326 326  
327 -Range: 0.5s~~50s;
378 +Range: 0.5s-50s;
328 328  )))
329 329  |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
330 330  |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
... ... @@ -331,7 +331,7 @@
331 331  |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
332 332  Dead zone is used for ON/OFF control mode
333 333  
334 -Range: 0~~100 (Unit: 0.1%)
385 +Range: 0-100 (Unit: 0.1%)
335 335  )))
336 336  |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
337 337  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -340,8 +340,9 @@
340 340  
341 341  Range:
342 342  
343 -* K type: -100°C ~~1200°C
344 -* J type: -100°C ~~ 600°C
394 +K type: -100°C - 1200°C
395 +
396 +J type: -100°C - 600°C
345 345  )))
346 346  |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
347 347  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -350,18 +350,19 @@
350 350  
351 351  Range:
352 352  
353 -* K type: -100°C~~1200°C
354 -* J type: -100°C~~600°C
405 +K type: -100°C - 1200°C
406 +
407 +J type: -100°C - 600°C
355 355  )))
356 356  |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
357 357  This BFM is used for setting the upper threshold of output.
358 358  
359 -Range: 0~~2000
412 +Range: 0-2000
360 360  )))
361 361  |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
362 362  This BFM is used for setting the lower threshold of output.
363 363  
364 -Range: 0~~2000
417 +Range: 0-2000
365 365  )))
366 366  |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
367 367  |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
... ... @@ -380,105 +380,113 @@
380 380  |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
381 381  Calculation of dead zone
382 382  
383 -* Bias: (SV+ bias)* dead zone
384 -* Upper & lower threshold mode: Alarm setting value* dead zone
436 +Bias: (SV+ bias)* dead zone
437 +
438 +Upper & lower threshold mode: Alarm setting value* dead zone
385 385  )))
386 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255
440 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255
387 387  |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
388 -* 0: Normal;
389 -* Others: Error in setting address
442 +0: Normal;
443 +
444 +Others: Error in setting address
390 390  )))
391 391  |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
392 392  
393 393  **✎Note: **
394 394  
395 -* 0: Retentive;
396 -* X: Non-retentive;
397 -* R: Only read is enabled;
398 -* R/W: Both read and write are enabled;
450 +0: Retentive;
399 399  
452 +X: Non-retentive;
453 +
454 +R: Only read is enabled;
455 +
456 +R/W: Both read and write are enabled;
457 +
400 400  **Details of buffer memories**
401 401  
402 -**Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
460 +* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
403 403  
404 404  BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
405 405  
406 406  (% style="text-align:center" %)
407 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]
465 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]]
408 408  
409 409  The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
410 410  
411 411  240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
412 412  
413 -**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
471 +* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
414 414  
415 415  When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
416 416  
417 -**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
475 +* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
418 418  
419 419  These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
420 420  
421 -**Buffer Memory BFM #28: Digital range error latch**
479 +* **Buffer Memory BFM #28: Digital range error latch**
422 422  
423 -* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
424 -* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
481 +BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
425 425  
483 +BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
484 +
426 426  (((
427 427  (% class="table-bordered" %)
428 -|=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**
487 +|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0**
429 429  |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
430 430  |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
431 431  )))
432 432  
433 -* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
434 -* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
492 +**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
435 435  
494 +**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
495 +
436 436  When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
437 437  
438 438  An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
439 439  
440 -**Buffer Memory BFM #29: Error status**
500 +* **Buffer Memory BFM #29: Error status**
441 441  
442 442  (((
443 443  (% class="table-bordered" %)
444 -|=(% scope="row" %)**Bit devices of BFM #29**|=**Error information**
445 -|=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
446 -|=b1, b4~~b7|Not used;
447 -|=b2|24V DC power supply failed;
448 -|=b3|Hardware failed;
449 -|=b8|Backup error of set value.
450 -|=b10|Digital output/analog input value is out of the specified range;
451 -|=b11|The value of averaged results is out of the available range;
452 -|=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
453 -|=b14|It is in backup status, this bit sets to ON;
454 -|=b15|Initialization completion flag;
504 +|**Bit devices of BFM #29**|**Error information**
505 +|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
506 +|b1, b4~~b7|Not used;
507 +|b2|24V DC power supply failed;
508 +|b3|Hardware failed;
509 +|b8|Backup error of set value.
510 +|b10|Digital output/analog input value is out of the specified range;
511 +|b11|The value of averaged results is out of the available range;
512 +|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
513 +|b14|It is in backup status, this bit sets to ON;
514 +|b15|Initialization completion flag;
455 455  )))
456 456  
457 -**ID Code Buffer Memory BFM #30**
517 +* **ID Code Buffer Memory BFM #30**
458 458  
459 459  The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
460 460  
461 -**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
521 +* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
462 462  
463 463  (((
464 464  (% class="table-bordered" %)
465 -|=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**
466 -|=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-
467 -|=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
468 -|=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON
469 -|=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
470 -|=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.
471 -|=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.
472 -|=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
525 +|**Error flag**|**Content**|**Remark**
526 +|b0, b4, b5|Not used;|-
527 +|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
528 +|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON
529 +|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
530 +|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON.
531 +|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON.
532 +|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
473 473  )))
474 474  
475 -**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
535 +* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
476 476  
477 477  BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
478 478  
479 -* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
480 -* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
539 +When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
481 481  
541 +When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
542 +
482 482  **Auto mode:**
483 483  
484 484  The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
... ... @@ -493,8 +493,10 @@
493 493  
494 494  The temperature alarm function is effective even in the manual mode.
495 495  
496 -**Self-tuning function**
557 +1. **Self-tuning function**
497 497  
559 +**Self-tuning**
560 +
498 498  The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
499 499  
500 500  When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
... ... @@ -516,7 +516,7 @@
516 516  Self-tuning would be canceled with one of the following conditions:
517 517  
518 518  (% style="text-align:center" %)
519 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]
582 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]]
520 520  
521 521  * SV value has been changed.
522 522  * The control has been stopped, the operation mode is "0: Stops control".
... ... @@ -531,7 +531,7 @@
531 531  If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
532 532  
533 533  (% style="text-align:center" %)
534 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]
597 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]]
535 535  
536 536  **Dead zone (adjustment sensitivity) setting**
537 537  
... ... @@ -545,32 +545,37 @@
545 545  
546 546  **Example**
547 547  
548 -Conditions:
611 +* Conditions:
549 549  
550 -* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C
551 -* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
552 -* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
613 +When BFM #41/#60 is set to "10.0%" in the range span of 400°C
553 553  
615 +400°C x 10.0% / 100 = 40°C
616 +
617 +When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
618 +
619 +When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
620 +
554 554  (% style="text-align:center" %)
555 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]
622 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]]
556 556  
557 -**Output(MV) upper threshold: BFM #65/#103/#141/#179**
624 +* **Output(MV) upper threshold: BFM #65/#103/#141/#179**
558 558  
559 559  **Output(MV) lower threshold: BFM #66/#104/#142/#180**
560 560  
561 -* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
562 -* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
628 +BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
563 563  
630 +BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
631 +
564 564  These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
565 565  
566 566  (% style="text-align:center" %)
567 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]
635 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]]
568 568  
569 569  1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
570 570  1. The output limiter would not be active when two-position control is active,.
571 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control
639 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control.
572 572  
573 -**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
641 +* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
574 574  
575 575  LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
576 576  
... ... @@ -577,7 +577,7 @@
577 577  Each channel could have four alarm modes.
578 578  
579 579  (% style="text-align:center" %)
580 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]
648 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]]
581 581  
582 582  Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
583 583  
... ... @@ -585,19 +585,19 @@
585 585  
586 586  (((
587 587  (% class="table-bordered" %)
588 -|(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**
589 -|(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--
590 -|(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range
591 -|(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range
592 -|(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width
593 -|(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width
594 -|(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
595 -|(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
596 -|(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range
597 -|(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range
598 -|(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
599 -|(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
600 -|(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width
656 +|**Alarm No.**|**Alarm mode**|**Description**|**Set range**
657 +|0|Alarm is disabled|Alarm function is disabled.|~-~--
658 +|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range
659 +|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range
660 +|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width
661 +|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width
662 +|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
663 +|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
664 +|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range
665 +|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range
666 +|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width
667 +|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width
668 +|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width
601 601  )))
602 602  
603 603  **✎Note: **
... ... @@ -607,7 +607,7 @@
607 607  * ±Input width: it could be positive and negative.
608 608  * + Input width: it could be positive only.
609 609  
610 -**Alarm dead zone setting**
678 +1. **Alarm dead zone setting**
611 611  
612 612  BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
613 613  
... ... @@ -619,22 +619,22 @@
619 619  
620 620  In upper/lower threshold mode: dead zone=alarm setting value*dead zone
621 621  
622 -* Upper threshold input alarm and upper threshold deviation alarm
690 +1. Upper threshold input alarm and upper threshold deviation alarm
623 623  
624 624  (% style="text-align:center" %)
625 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]
693 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]]
626 626  
627 -* Lower threshold input alarm and lower threshold deviation alarm
695 +1. Lower threshold input alarm and lower threshold deviation alarm
628 628  
629 629  (% style="text-align:center" %)
630 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]
698 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]]
631 631  
632 -* Upper/lower threshold deviation alarm
700 +1. Upper/lower threshold deviation alarm
633 633  
634 634  (% style="text-align:center" %)
635 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]
703 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]]
636 636  
637 -**Number of times of alarm delay**
705 +* **Number of times of alarm delay**
638 638  
639 639  BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
640 640  
... ... @@ -643,9 +643,9 @@
643 643  Example: the number of alarm delay sets to 5 times
644 644  
645 645  (% style="text-align:center" %)
646 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]
714 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]]
647 647  
648 -**Address of value range error**
716 +* **Address of value range error**
649 649  
650 650  When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
651 651  
... ... @@ -653,7 +653,7 @@
653 653  
654 654  When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
655 655  
656 -**Output cycle control**
724 +* **Output cycle control**
657 657  
658 658  BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
659 659  
... ... @@ -662,27 +662,27 @@
662 662  The allowable range of this value is from 1 to 100 sec.
663 663  
664 664  (% style="text-align:center" %)
665 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]
733 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]]
666 666  
667 667  = **6 Program Example** =
668 668  
669 -**Keep doing nothing while the power is supplied.**
737 +* Keep doing nothing while the power is supplied.
670 670  
671 671  If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
672 672  
673 -**Make sure the power be OFF before cleaning the unit or tightening the terminals.**
741 +* Make sure the power be OFF before cleaning the unit or tightening the terminals.
674 674  
675 675  If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
676 676  
677 -**To run temperature control module in safe, please read this manual carefully firstly.**
745 +* To run temperature control module in safe, please read this manual carefully firstly.
678 678  
679 679  Damages or accidents would happen if the operations is not right.
680 680  
681 -Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
749 +* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
682 682  
683 683  ~* For repair, contact WECON Technology Co., Ltd.
684 684  
685 -**Make sure power is off before wiring.**
753 +* Make sure power is off before wiring.
686 686  
687 687  Failure or malfunction maybe happen because of wiring during power is on.
688 688  
... ... @@ -691,32 +691,42 @@
691 691  In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
692 692  
693 693  (% style="text-align:center" %)
694 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]
762 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]]
695 695  
696 696  Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
697 697  
698 698  **Program example**
699 699  
700 -* Input range: K type ~-~- 100.0 to 400.0 °C
701 -* PID values: it is determined by auto-tuning
702 -* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
703 -* Heater/cooling control: Heater (Initialization)
768 +Input range: K type ~-~- 100.0 to 400.0 °C
704 704  
705 -Device assignment:
770 +PID values: it is determined by auto-tuning
706 706  
707 -* X000: initialization
708 -* X001: Reset the flag of error bit.
709 -* X002: Control starts (ON)/stop (OFF);
710 -* X003: self-tuning beginning when it changes from 0 to 1.
711 -* M0~~M15: Flags of error
712 -* M20~~M35: Flags of events
713 -* D0~~D199: Read value from BFM
714 -* D200~~D399: Write set value(SV) into BFM
772 +Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
715 715  
716 -Project:
774 +Heater/cooling control: Heater (Initialization)
717 717  
776 +* Device assignment:
777 +
778 +X000: initialization
779 +
780 +X001: Reset the flag of error bit.
781 +
782 +X002: Control starts (ON)/stop (OFF);
783 +
784 +X003: self-tuning beginning when it changes from 0 to 1.
785 +
786 +M0~~M15: Flags of error
787 +
788 +M20~~M35: Flags of events
789 +
790 +D0~~D199: Read value from BFM
791 +
792 +D200~~D399: Write set value(SV) into BFM
793 +
794 +* Project:
795 +
718 718  (% style="text-align:center" %)
719 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]
797 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]]
720 720  
721 721  = **7 Diagnostic** =
722 722