Changes for page LX3V-4LTC

Last modified by Devin Chen on 2024/11/22 09:42

From version 5.1
edited by Mora Zhou
on 2023/11/22 10:33
Change comment: There is no comment for this version
To version 2.2
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Update document after refactoring.

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.admin
Content
... ... @@ -1,6 +1,6 @@
1 1  = **1 Introduction** =
2 2  
3 -LX3V-4LTC is temperature control module. It has four temperature input ports and four transistor output ports (the collector is open). It reads data from thermocouple, and then output value with PID control.
3 +LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control.
4 4  
5 5  LX3V-4LTC needs to connect with LX3V series PLC
6 6  
... ... @@ -12,19 +12,28 @@
12 12  = **2 Dimensions** =
13 13  
14 14  (% style="text-align:center" %)
15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]
15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]]
16 16  
17 -1. Extension cable and connector
18 -1. Com LED: Light when communicating
19 -1. Power LED: Light when connect to 24V
20 -1. State LED: Light when normal condition
21 -1. Module name
22 -1. Analog signal terminal
23 -1. Extension module interface
24 -1. DIN rail mounting slot
25 -1. DIN rail hook
26 -1. Mounting holes (φ4.5)
17 +①Extension cable and connector
27 27  
19 +②Com LED: Light when communicating
20 +
21 +③Power LED: Light when connect to 24V
22 +
23 +④State LED: Light when normal condition
24 +
25 +⑤Module name
26 +
27 +⑥Analog signal terminal
28 +
29 +⑦Extension module interface
30 +
31 +⑧DIN rail mounting slot
32 +
33 +⑨DIN rail hook
34 +
35 +⑩Mounting holes (φ4.5)
36 +
28 28  **Using crimp terminations**
29 29  
30 30  (((
... ... @@ -33,25 +33,32 @@
33 33  * Other terminals should be empty but only wiring terminals mention in this manual.
34 34  
35 35  (% style="text-align:center" %)
36 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]
45 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]]
37 37  )))
38 38  
39 39  = **3 Wiring** =
40 40  
41 41  (((
42 -The compensating cables that connect with thermocouples could be as follows:
51 +1. The compensating cables that connect with thermocouples could be as follows:
43 43  
44 -* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
45 -* Type J: JX-G, JX-H
46 -* Type K: SC-G, SC-H
47 -* Type N: NC-G, NC-H
48 -* Type E: EX-G, EX-H
49 -* Type T: TX-G, TX-H
50 -* Type B: BC-G, BC-H
51 -* Type R: RC-G, RC-H
53 +Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
52 52  
55 +Type J: JX-G, JX-H
56 +
57 +Type K: SC-G, SC-H
58 +
59 +Type N: NC-G, NC-H
60 +
61 +Type E: EX-G, EX-H
62 +
63 +Type T: TX-G, TX-H
64 +
65 +Type B: BC-G, BC-H
66 +
67 +Type R: RC-G, RC-H
68 +
53 53  (% style="text-align:center" %)
54 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]
70 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]]
55 55  )))
56 56  
57 57  For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
... ... @@ -72,54 +72,56 @@
72 72  **General specification**
73 73  
74 74  (% class="table-bordered" %)
75 -|=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**
76 -|=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit
77 -|=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)
91 +|**Item**|**Specification**
92 +|General specifications|Same as those for the main unit
93 +|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground)
78 78  
79 79  **Power supply specification**
80 80  
81 81  (% class="table-bordered" %)
82 -|=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**
83 -|=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA
84 -|=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)
98 +|**Item**|**Specification**
99 +|Analog circuits|24V DC ± 10%, 50mA
100 +|Digital circuits|24V DC, 35mA (internal power supply from the main unit)
85 85  
86 86  **Performance specification**
87 87  
88 -(% class="table-bordered" style="width:1117px" %)
89 -|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)**
90 -|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
91 -|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most.
92 -|(% rowspan="8" style="width:253px" %)(((
93 -Rated temperature range
94 -)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192
95 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112
96 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752
97 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832
98 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372
99 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉
100 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4
101 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4
102 -|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form
103 -|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920
104 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120
105 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520
106 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320
107 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720
108 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720
109 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144
110 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144
111 -|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F
112 -|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F
113 -|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F
114 -|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F
115 -|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F
116 -|(% style="width:130px" %)Type B|(% style="width:248px" %)(((
104 +(% class="table-bordered" %)
105 +|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)**
106 +|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
107 +|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
108 +|(% rowspan="8" %)(((
109 +Rated temperature
110 +
111 +range
112 +)))|Type K|-100 to +1,200|Type K|-148 to +2,192
113 +|Type J|-100 to +600|Type J|-148 to +1,112
114 +|Type T|-100 to +400|Type T|-148 to +752
115 +|Type E|-100 to +1,000|Type E|-148 to +1,832
116 +|Type N|-100 to +1,300|Type N|-148 to +2,372
117 +|Type B|+250 to +1,800|Type B|-482 to +3,272℉
118 +|Type R|-50 to +1,768|Type R|-58 to +3,214.4
119 +|Type S|-50 to +1,768|Type S|-58 to +3,214.4
120 +|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form
121 +|Type K|-1,000 to +12,000|Type K|-1480 to +21,920
122 +|Type J|-1,000 to +6,000|Type J|-1480 to +11,120
123 +|Type T|-1,000 to +4,000|Type T|-1480 to +7,520
124 +|Type E|-1,000 to +10,000|Type E|-1480 to +18,320
125 +|Type N|-1,000 to +13,000|Type N|-1480 to +23,720
126 +|Type B|+2,500 to +18,000|Type B|-4820 to +32,720
127 +|Type R|-500 to +17,680|Type R|-580 to +32,144
128 +|Type S|-500 to +17,680|Type S|-580 to +32,144
129 +|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F
130 +|Type J|0.3°C|Type J|0.54°F
131 +|Type T|0.4°C|Type T|0.72°F
132 +|Type E|0.25°C|Type E|0.45°F
133 +|Type N|0.52°C|Type N|0.936°F
134 +|Type B|(((
117 117  2.09°C
118 118  
119 119  2.97°C (less than 1,000°C)
120 120  
121 121  1.64°C (more than 1,000°C)
122 -)))|(% style="width:147px" %)Type B|(% style="width:298px" %)(((
140 +)))|Type B|(((
123 123  3.762°F
124 124  
125 125  5.346°F (less than 1,832°F)
... ... @@ -126,13 +126,13 @@
126 126  
127 127  2.952°F (more than 1,832°F)
128 128  )))
129 -|(% style="width:130px" %)Type R|(% style="width:248px" %)(((
147 +|Type R|(((
130 130  1.53°C
131 131  
132 132  1.87°C (less than 800°C)
133 133  
134 134  1.32°C (more than 800°C)
135 -)))|(% style="width:147px" %)Type R|(% style="width:298px" %)(((
153 +)))|Type R|(((
136 136  2.754°F
137 137  
138 138  3.366°F (less than 1,472°F)
... ... @@ -139,13 +139,13 @@
139 139  
140 140  2.376°F (more than 1,472°F)
141 141  )))
142 -|(% style="width:130px" %)Type S|(% style="width:248px" %)(((
160 +|Type S|(((
143 143  1.72°C
144 144  
145 145  2.01°C (less than 800°C)
146 146  
147 147  1.53°C (more than 800°C)
148 -)))|(% style="width:147px" %)Type S|(% style="width:298px" %)(((
166 +)))|Type S|(((
149 149  3.096°F
150 150  
151 151  3.618°F (less than 1,472°F)
... ... @@ -152,30 +152,27 @@
152 152  
153 153  2.754°F (more than 1,472°F)
154 154  )))
155 -|(% style="width:253px" %)(((
156 -Overall accuracy calibration point
157 -)))|(% colspan="4" style="width:823px" %)(((
173 +|(((
174 +Overall accuracy
175 +
176 +Calibration point
177 +)))|(% colspan="4" %)(((
158 158  ± (0.5% full scale +1°C)
159 159  
160 160  Freezing point of pure water 0°C / 32°F
161 161  )))
162 162  
163 -(% class="box infomessage" %)
164 -(((
165 -**✎Note: **
183 +**✎Note: **Earth-tipped thermocouples are not suitable for this unit.
166 166  
167 -* Earth-tipped thermocouples are not suitable for this unit.
168 -* Earth-tipped thermocouples are not suitable for this unit.
169 -)))
185 +Earth-tipped thermocouples are not suitable for this unit.
170 170  
171 -
172 172  **Analog Input**
173 173  
174 174  (% class="table-bordered" %)
175 -|=(% colspan="2" %)(((
190 +|(% colspan="2" %)(((
176 176  **Conversion Characteristics**
177 177  
178 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. (Subject to the overall accuracy)
193 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy)
179 179  )))
180 180  |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]]
181 181  
... ... @@ -182,8 +182,8 @@
182 182  **Miscellaneous**
183 183  
184 184  (% class="table-bordered" %)
185 -|=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**
186 -|=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
200 +|**Item**|**Specification**
201 +|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
187 187  
188 188  = **5 Buffer Memory (BFM)** =
189 189  
... ... @@ -195,10 +195,13 @@
195 195  |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
196 196  Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
197 197  
198 -* 0: Type K
199 -* 1: Type J
200 -* 2: Type T
213 +0: Type K
201 201  
215 +1: Type J
216 +
217 +2: Type T
218 +
219 +
202 202  (((
203 203  [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
204 204  
... ... @@ -223,55 +223,88 @@
223 223  |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
224 224  |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
225 225  |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
226 -* B0: A/D conversion would be stopped when b2 or b3 is ON.
227 -* B1: Not used;
228 -* B2: power failed;
229 -* B3: Hardware failed;
230 -* B4~~B7: Not used;
231 -* B8: Values backup error;
232 -* B10: Digital output/analog input value is out of the specified range;
233 -* B11: Averaged value is out of the available range;
234 -* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
235 -* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
236 -* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
244 +B0: A/D conversion would be stopped when b2 or b3 is ON.
245 +
246 +B1: Not used;
247 +
248 +B2: power failed;
249 +
250 +B3: Hardware failed;
251 +
252 +B4~~B7: Not used;
253 +
254 +B8: Values backup error;
255 +
256 +B10: Digital output/analog input value is out of the specified range;
257 +
258 +B11: Averaged value is out of the available range;
259 +
260 +B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
261 +
262 +B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
263 +
264 +B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
237 237  )))
238 238  |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
239 239  |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
240 240  |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
241 241  |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
242 -* 0: Performs nothing
243 -* 1: Initializes all data
244 -* 2: Initializes BFM #19 to BFM #174
245 -* 3: Initializes error
246 -* Others: No action
270 +0: Performs nothing
271 +
272 +1: Initializes all data
273 +
274 +2: Initializes BFM #19 to BFM #174
275 +
276 +3: Initializes error
277 +
278 +Others: No action
247 247  )))
248 248  |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
249 -* 0: Performs nothing
250 -* Other: Performs backups
281 +0: Performs nothing
282 +
283 +Other: Performs backups
251 251  )))
252 252  |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
253 -* b0: Reserved;
254 -* b1: value range setting error;
255 -* b2: PID self-tuning error;
256 -* b3: The difference of setting value and offset value of PID self-tuning is too small;
257 -* b4~~b5: Reserved;
258 -* b6: Channel mode Error/ This channel is not enabled;
259 -* b7: PV exceeded;
260 -* b8: PID self-tuning parameters are changed in process;
286 +b0: Reserved;
287 +
288 +b1: value range setting error;
289 +
290 +b2: PID self-tuning error;
291 +
292 +b3: The difference of setting value and offset value of PID self-tuning is too small;
293 +
294 +b4~~b5: Reserved;
295 +
296 +b6: Channel mode Error/ This channel is not enabled;
297 +
298 +b7: PV exceeded;
299 +
300 +b8: PID self-tuning parameters are changed in process;
261 261  )))
262 262  |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
263 -* b0 & b15: Reserved;
264 -* b4: Alarm 1 - When alarm 1 occurs, it is set ON;
265 -* b5: Alarm 2 - When alarm 2 occurs, it is set ON;
266 -* b6: Alarm 3 - When alarm 3 occurs, it is set ON;
267 -* b7: Alarm 4 - When alarm 4 occurs, it is set ON;
268 -* b8: Heating control;
269 -* b9: Cooling control;
270 -* b10: PID terminals output;
271 -* b11: PID control flag;
272 -* b12: Manual flag;
273 -* b13: Self-tuning;
274 -* b14: ON / OFF control;
303 +b0 & b15: Reserved;
304 +
305 +b4: Alarm 1 - When alarm 1 occurs, it is set ON;
306 +
307 +b5: Alarm 2 - When alarm 2 occurs, it is set ON;
308 +
309 +b6: Alarm 3 - When alarm 3 occurs, it is set ON;
310 +
311 +b7: Alarm 4 - When alarm 4 occurs, it is set ON;
312 +
313 +b8: Heating control;
314 +
315 +b9: Cooling control;
316 +
317 +b10: PID terminals output;
318 +
319 +b11: PID control flag;
320 +
321 +b12: Manual flag;
322 +
323 +b13: Self-tuning;
324 +
325 +b14: ON / OFF control;
275 275  )))
276 276  |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
277 277  Unit: 0.1 °C
... ... @@ -280,21 +280,25 @@
280 280  )))
281 281  |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
282 282  |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
283 -* 0: Stops control;
284 -* Other: Starts control;
334 +0: Stops control;
335 +
336 +Other: Starts control;
285 285  )))
286 286  |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
287 -* 0: AUTO;
288 -* Other: MAN;
339 +0: AUTO;
340 +
341 +Other: MAN;
289 289  )))
290 290  |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
291 291  |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
292 -* 0: Stops self-tuning;
293 -* Other : starts self-tuning;
345 +0: Stops self-tuning;
346 +
347 +Other : starts self-tuning;
294 294  )))
295 295  |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
296 -* 0: Heating control;
297 -* 1: Cooling control;
350 +0: Heating control;
351 +
352 +1: Cooling control;
298 298  )))
299 299  |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
300 300  Unit: 0.1 °C
... ... @@ -304,17 +304,14 @@
304 304  |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
305 305  KP = 0, ON / OFF control is executed.
306 306  
307 -Range: 0 ~~ 32767.
362 +Range: 0-32767.
308 308  
309 -(% class="box infomessage" %)
310 -(((
311 -**✎Note: ** This value is magnified 256 times; the actual value is KP / 256.
364 +Note: This value is magnified 256 times; the actual value is KP / 256.
312 312  )))
313 -)))
314 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767
315 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767
316 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms)
317 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023
366 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767
367 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767
368 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms)
369 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023
318 318  |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
319 319  The maximum rate of rise: 0-320;
320 320  
... ... @@ -321,9 +321,9 @@
321 321  Range: 0-32000 (0-320);
322 322  )))
323 323  |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
324 -1~~100 (*500ms);
376 +1-100 (*500ms);
325 325  
326 -Range: 0.5s~~50s;
378 +Range: 0.5s-50s;
327 327  )))
328 328  |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
329 329  |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
... ... @@ -330,7 +330,7 @@
330 330  |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
331 331  Dead zone is used for ON/OFF control mode
332 332  
333 -Range: 0~~100 (Unit: 0.1%)
385 +Range: 0-100 (Unit: 0.1%)
334 334  )))
335 335  |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
336 336  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -339,8 +339,9 @@
339 339  
340 340  Range:
341 341  
342 -* K type: -100°C ~~1200°C
343 -* J type: -100°C ~~ 600°C
394 +K type: -100°C - 1200°C
395 +
396 +J type: -100°C - 600°C
344 344  )))
345 345  |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
346 346  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -349,18 +349,19 @@
349 349  
350 350  Range:
351 351  
352 -* K type: -100°C~~1200°C
353 -* J type: -100°C~~600°C
405 +K type: -100°C - 1200°C
406 +
407 +J type: -100°C - 600°C
354 354  )))
355 355  |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
356 356  This BFM is used for setting the upper threshold of output.
357 357  
358 -Range: 0~~2000
412 +Range: 0-2000
359 359  )))
360 360  |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
361 361  This BFM is used for setting the lower threshold of output.
362 362  
363 -Range: 0~~2000
417 +Range: 0-2000
364 364  )))
365 365  |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
366 366  |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
... ... @@ -379,105 +379,113 @@
379 379  |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
380 380  Calculation of dead zone
381 381  
382 -* Bias: (SV+ bias)* dead zone
383 -* Upper & lower threshold mode: Alarm setting value* dead zone
436 +Bias: (SV+ bias)* dead zone
437 +
438 +Upper & lower threshold mode: Alarm setting value* dead zone
384 384  )))
385 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255
440 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255
386 386  |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
387 -* 0: Normal;
388 -* Others: Error in setting address
442 +0: Normal;
443 +
444 +Others: Error in setting address
389 389  )))
390 390  |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
391 391  
392 392  **✎Note: **
393 393  
394 -* 0: Retentive;
395 -* X: Non-retentive;
396 -* R: Only read is enabled;
397 -* R/W: Both read and write are enabled;
450 +0: Retentive;
398 398  
452 +X: Non-retentive;
453 +
454 +R: Only read is enabled;
455 +
456 +R/W: Both read and write are enabled;
457 +
399 399  **Details of buffer memories**
400 400  
401 -**Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
460 +* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
402 402  
403 403  BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
404 404  
405 405  (% style="text-align:center" %)
406 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]
465 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]]
407 407  
408 408  The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
409 409  
410 410  240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
411 411  
412 -**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
471 +* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
413 413  
414 414  When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
415 415  
416 -**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
475 +* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
417 417  
418 418  These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
419 419  
420 -**Buffer Memory BFM #28: Digital range error latch**
479 +* **Buffer Memory BFM #28: Digital range error latch**
421 421  
422 -* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
423 -* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
481 +BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
424 424  
483 +BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
484 +
425 425  (((
426 426  (% class="table-bordered" %)
427 -|=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**
487 +|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0**
428 428  |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
429 429  |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
430 430  )))
431 431  
432 -* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
433 -* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
492 +**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
434 434  
494 +**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
495 +
435 435  When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
436 436  
437 437  An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
438 438  
439 -**Buffer Memory BFM #29: Error status**
500 +* **Buffer Memory BFM #29: Error status**
440 440  
441 441  (((
442 442  (% class="table-bordered" %)
443 -|=(% scope="row" %)**Bit devices of BFM #29**|=**Error information**
444 -|=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
445 -|=b1, b4~~b7|Not used;
446 -|=b2|24V DC power supply failed;
447 -|=b3|Hardware failed;
448 -|=b8|Backup error of set value.
449 -|=b10|Digital output/analog input value is out of the specified range;
450 -|=b11|The value of averaged results is out of the available range;
451 -|=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
452 -|=b14|It is in backup status, this bit sets to ON;
453 -|=b15|Initialization completion flag;
504 +|**Bit devices of BFM #29**|**Error information**
505 +|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
506 +|b1, b4~~b7|Not used;
507 +|b2|24V DC power supply failed;
508 +|b3|Hardware failed;
509 +|b8|Backup error of set value.
510 +|b10|Digital output/analog input value is out of the specified range;
511 +|b11|The value of averaged results is out of the available range;
512 +|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
513 +|b14|It is in backup status, this bit sets to ON;
514 +|b15|Initialization completion flag;
454 454  )))
455 455  
456 -**ID Code Buffer Memory BFM #30**
517 +* **ID Code Buffer Memory BFM #30**
457 457  
458 458  The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
459 459  
460 -**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
521 +* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
461 461  
462 462  (((
463 463  (% class="table-bordered" %)
464 -|=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**
465 -|=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-
466 -|=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
467 -|=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON
468 -|=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
469 -|=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.
470 -|=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.
471 -|=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
525 +|**Error flag**|**Content**|**Remark**
526 +|b0, b4, b5|Not used;|-
527 +|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
528 +|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON
529 +|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
530 +|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON.
531 +|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON.
532 +|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
472 472  )))
473 473  
474 -**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
535 +* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
475 475  
476 476  BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
477 477  
478 -* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
479 -* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
539 +When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
480 480  
541 +When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
542 +
481 481  **Auto mode:**
482 482  
483 483  The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
... ... @@ -492,8 +492,10 @@
492 492  
493 493  The temperature alarm function is effective even in the manual mode.
494 494  
495 -**Self-tuning function**
557 +1. **Self-tuning function**
496 496  
559 +**Self-tuning**
560 +
497 497  The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
498 498  
499 499  When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
... ... @@ -515,7 +515,7 @@
515 515  Self-tuning would be canceled with one of the following conditions:
516 516  
517 517  (% style="text-align:center" %)
518 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]
582 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]]
519 519  
520 520  * SV value has been changed.
521 521  * The control has been stopped, the operation mode is "0: Stops control".
... ... @@ -530,7 +530,7 @@
530 530  If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
531 531  
532 532  (% style="text-align:center" %)
533 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]
597 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]]
534 534  
535 535  **Dead zone (adjustment sensitivity) setting**
536 536  
... ... @@ -544,32 +544,37 @@
544 544  
545 545  **Example**
546 546  
547 -Conditions:
611 +* Conditions:
548 548  
549 -* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C
550 -* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
551 -* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
613 +When BFM #41/#60 is set to "10.0%" in the range span of 400°C
552 552  
615 +400°C x 10.0% / 100 = 40°C
616 +
617 +When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
618 +
619 +When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
620 +
553 553  (% style="text-align:center" %)
554 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]
622 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]]
555 555  
556 -**Output(MV) upper threshold: BFM #65/#103/#141/#179**
624 +* **Output(MV) upper threshold: BFM #65/#103/#141/#179**
557 557  
558 558  **Output(MV) lower threshold: BFM #66/#104/#142/#180**
559 559  
560 -* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
561 -* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
628 +BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
562 562  
630 +BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
631 +
563 563  These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
564 564  
565 565  (% style="text-align:center" %)
566 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]
635 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]]
567 567  
568 568  1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
569 569  1. The output limiter would not be active when two-position control is active,.
570 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control
639 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control.
571 571  
572 -**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
641 +* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
573 573  
574 574  LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
575 575  
... ... @@ -576,7 +576,7 @@
576 576  Each channel could have four alarm modes.
577 577  
578 578  (% style="text-align:center" %)
579 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]
648 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]]
580 580  
581 581  Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
582 582  
... ... @@ -584,19 +584,19 @@
584 584  
585 585  (((
586 586  (% class="table-bordered" %)
587 -|(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**
588 -|(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--
589 -|(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range
590 -|(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range
591 -|(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width
592 -|(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width
593 -|(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
594 -|(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
595 -|(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range
596 -|(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range
597 -|(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
598 -|(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
599 -|(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width
656 +|**Alarm No.**|**Alarm mode**|**Description**|**Set range**
657 +|0|Alarm is disabled|Alarm function is disabled.|~-~--
658 +|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range
659 +|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range
660 +|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width
661 +|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width
662 +|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
663 +|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
664 +|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range
665 +|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range
666 +|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width
667 +|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width
668 +|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width
600 600  )))
601 601  
602 602  **✎Note: **
... ... @@ -606,7 +606,7 @@
606 606  * ±Input width: it could be positive and negative.
607 607  * + Input width: it could be positive only.
608 608  
609 -**Alarm dead zone setting**
678 +1. **Alarm dead zone setting**
610 610  
611 611  BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
612 612  
... ... @@ -618,22 +618,22 @@
618 618  
619 619  In upper/lower threshold mode: dead zone=alarm setting value*dead zone
620 620  
621 -* Upper threshold input alarm and upper threshold deviation alarm
690 +1. Upper threshold input alarm and upper threshold deviation alarm
622 622  
623 623  (% style="text-align:center" %)
624 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]
693 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]]
625 625  
626 -* Lower threshold input alarm and lower threshold deviation alarm
695 +1. Lower threshold input alarm and lower threshold deviation alarm
627 627  
628 628  (% style="text-align:center" %)
629 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]
698 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]]
630 630  
631 -* Upper/lower threshold deviation alarm
700 +1. Upper/lower threshold deviation alarm
632 632  
633 633  (% style="text-align:center" %)
634 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]
703 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]]
635 635  
636 -**Number of times of alarm delay**
705 +* **Number of times of alarm delay**
637 637  
638 638  BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
639 639  
... ... @@ -642,9 +642,9 @@
642 642  Example: the number of alarm delay sets to 5 times
643 643  
644 644  (% style="text-align:center" %)
645 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]
714 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]]
646 646  
647 -**Address of value range error**
716 +* **Address of value range error**
648 648  
649 649  When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
650 650  
... ... @@ -652,7 +652,7 @@
652 652  
653 653  When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
654 654  
655 -**Output cycle control**
724 +* **Output cycle control**
656 656  
657 657  BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
658 658  
... ... @@ -661,27 +661,27 @@
661 661  The allowable range of this value is from 1 to 100 sec.
662 662  
663 663  (% style="text-align:center" %)
664 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]
733 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]]
665 665  
666 666  = **6 Program Example** =
667 667  
668 -**Keep doing nothing while the power is supplied.**
737 +* Keep doing nothing while the power is supplied.
669 669  
670 670  If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
671 671  
672 -**Make sure the power be OFF before cleaning the unit or tightening the terminals.**
741 +* Make sure the power be OFF before cleaning the unit or tightening the terminals.
673 673  
674 674  If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
675 675  
676 -**To run temperature control module in safe, please read this manual carefully firstly.**
745 +* To run temperature control module in safe, please read this manual carefully firstly.
677 677  
678 678  Damages or accidents would happen if the operations is not right.
679 679  
680 -Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
749 +* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
681 681  
682 682  ~* For repair, contact WECON Technology Co., Ltd.
683 683  
684 -**Make sure power is off before wiring.**
753 +* Make sure power is off before wiring.
685 685  
686 686  Failure or malfunction maybe happen because of wiring during power is on.
687 687  
... ... @@ -690,32 +690,42 @@
690 690  In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
691 691  
692 692  (% style="text-align:center" %)
693 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]
762 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]]
694 694  
695 695  Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
696 696  
697 697  **Program example**
698 698  
699 -* Input range: K type ~-~- 100.0 to 400.0 °C
700 -* PID values: it is determined by auto-tuning
701 -* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
702 -* Heater/cooling control: Heater (Initialization)
768 +Input range: K type ~-~- 100.0 to 400.0 °C
703 703  
704 -Device assignment:
770 +PID values: it is determined by auto-tuning
705 705  
706 -* X000: initialization
707 -* X001: Reset the flag of error bit.
708 -* X002: Control starts (ON)/stop (OFF);
709 -* X003: self-tuning beginning when it changes from 0 to 1.
710 -* M0~~M15: Flags of error
711 -* M20~~M35: Flags of events
712 -* D0~~D199: Read value from BFM
713 -* D200~~D399: Write set value(SV) into BFM
772 +Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
714 714  
715 -Project:
774 +Heater/cooling control: Heater (Initialization)
716 716  
776 +* Device assignment:
777 +
778 +X000: initialization
779 +
780 +X001: Reset the flag of error bit.
781 +
782 +X002: Control starts (ON)/stop (OFF);
783 +
784 +X003: self-tuning beginning when it changes from 0 to 1.
785 +
786 +M0~~M15: Flags of error
787 +
788 +M20~~M35: Flags of events
789 +
790 +D0~~D199: Read value from BFM
791 +
792 +D200~~D399: Write set value(SV) into BFM
793 +
794 +* Project:
795 +
717 717  (% style="text-align:center" %)
718 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]
797 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]]
719 719  
720 720  = **7 Diagnostic** =
721 721