Changes for page LX3V-4LTC
Last modified by Devin Chen on 2024/11/22 09:42
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Mora1 +XWiki.admin - Content
-
... ... @@ -1,6 +1,6 @@ 1 1 = **1 Introduction** = 2 2 3 -LX3V-4LTC is temperature control module .It has four temperature input ports and four transistor output ports (the collector is open).It reads data from thermocouple, and then output value with PID control.3 +LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control. 4 4 5 5 LX3V-4LTC needs to connect with LX3V series PLC 6 6 ... ... @@ -12,19 +12,28 @@ 12 12 = **2 Dimensions** = 13 13 14 14 (% style="text-align:center" %) 15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]] 16 16 17 -1. Extension cable and connector 18 -1. Com LED: Light when communicating 19 -1. Power LED: Light when connect to 24V 20 -1. State LED: Light when normal condition 21 -1. Module name 22 -1. Analog signal terminal 23 -1. Extension module interface 24 -1. DIN rail mounting slot 25 -1. DIN rail hook 26 -1. Mounting holes (φ4.5) 17 +①Extension cable and connector 27 27 19 +②Com LED: Light when communicating 20 + 21 +③Power LED: Light when connect to 24V 22 + 23 +④State LED: Light when normal condition 24 + 25 +⑤Module name 26 + 27 +⑥Analog signal terminal 28 + 29 +⑦Extension module interface 30 + 31 +⑧DIN rail mounting slot 32 + 33 +⑨DIN rail hook 34 + 35 +⑩Mounting holes (φ4.5) 36 + 28 28 **Using crimp terminations** 29 29 30 30 ((( ... ... @@ -33,25 +33,32 @@ 33 33 * Other terminals should be empty but only wiring terminals mention in this manual. 34 34 35 35 (% style="text-align:center" %) 36 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]45 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]] 37 37 ))) 38 38 39 39 = **3 Wiring** = 40 40 41 41 ((( 42 -The compensating cables that connect with thermocouples could be as follows: 51 +1. The compensating cables that connect with thermocouples could be as follows: 43 43 44 -* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 45 -* Type J: JX-G, JX-H 46 -* Type K: SC-G, SC-H 47 -* Type N: NC-G, NC-H 48 -* Type E: EX-G, EX-H 49 -* Type T: TX-G, TX-H 50 -* Type B: BC-G, BC-H 51 -* Type R: RC-G, RC-H 53 +Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 52 52 55 +Type J: JX-G, JX-H 56 + 57 +Type K: SC-G, SC-H 58 + 59 +Type N: NC-G, NC-H 60 + 61 +Type E: EX-G, EX-H 62 + 63 +Type T: TX-G, TX-H 64 + 65 +Type B: BC-G, BC-H 66 + 67 +Type R: RC-G, RC-H 68 + 53 53 (% style="text-align:center" %) 54 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]70 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]] 55 55 ))) 56 56 57 57 For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended. ... ... @@ -72,54 +72,56 @@ 72 72 **General specification** 73 73 74 74 (% class="table-bordered" %) 75 -| =(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**76 -| =(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit77 -| =(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)91 +|**Item**|**Specification** 92 +|General specifications|Same as those for the main unit 93 +|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground) 78 78 79 79 **Power supply specification** 80 80 81 81 (% class="table-bordered" %) 82 -| =(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**83 -| =(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA84 -| =(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)98 +|**Item**|**Specification** 99 +|Analog circuits|24V DC ± 10%, 50mA 100 +|Digital circuits|24V DC, 35mA (internal power supply from the main unit) 85 85 86 86 **Performance specification** 87 87 88 -(% class="table-bordered" style="width:1117px" %) 89 -|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)** 90 -|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 91 -|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most. 92 -|(% rowspan="8" style="width:253px" %)((( 93 -Rated temperature range 94 -)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192 95 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112 96 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752 97 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832 98 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372 99 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉ 100 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4 101 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4 102 -|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form 103 -|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920 104 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120 105 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520 106 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320 107 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720 108 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720 109 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144 110 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144 111 -|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F 112 -|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F 113 -|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F 114 -|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F 115 -|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F 116 -|(% style="width:130px" %)Type B|(% style="width:248px" %)((( 104 +(% class="table-bordered" %) 105 +|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)** 106 +|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 107 +|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most. 108 +|(% rowspan="8" %)((( 109 +Rated temperature 110 + 111 +range 112 +)))|Type K|-100 to +1,200|Type K|-148 to +2,192 113 +|Type J|-100 to +600|Type J|-148 to +1,112 114 +|Type T|-100 to +400|Type T|-148 to +752 115 +|Type E|-100 to +1,000|Type E|-148 to +1,832 116 +|Type N|-100 to +1,300|Type N|-148 to +2,372 117 +|Type B|+250 to +1,800|Type B|-482 to +3,272℉ 118 +|Type R|-50 to +1,768|Type R|-58 to +3,214.4 119 +|Type S|-50 to +1,768|Type S|-58 to +3,214.4 120 +|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form 121 +|Type K|-1,000 to +12,000|Type K|-1480 to +21,920 122 +|Type J|-1,000 to +6,000|Type J|-1480 to +11,120 123 +|Type T|-1,000 to +4,000|Type T|-1480 to +7,520 124 +|Type E|-1,000 to +10,000|Type E|-1480 to +18,320 125 +|Type N|-1,000 to +13,000|Type N|-1480 to +23,720 126 +|Type B|+2,500 to +18,000|Type B|-4820 to +32,720 127 +|Type R|-500 to +17,680|Type R|-580 to +32,144 128 +|Type S|-500 to +17,680|Type S|-580 to +32,144 129 +|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F 130 +|Type J|0.3°C|Type J|0.54°F 131 +|Type T|0.4°C|Type T|0.72°F 132 +|Type E|0.25°C|Type E|0.45°F 133 +|Type N|0.52°C|Type N|0.936°F 134 +|Type B|((( 117 117 2.09°C 118 118 119 119 2.97°C (less than 1,000°C) 120 120 121 121 1.64°C (more than 1,000°C) 122 -)))| (% style="width:147px" %)Type B|(% style="width:298px" %)(((140 +)))|Type B|((( 123 123 3.762°F 124 124 125 125 5.346°F (less than 1,832°F) ... ... @@ -126,13 +126,13 @@ 126 126 127 127 2.952°F (more than 1,832°F) 128 128 ))) 129 -| (% style="width:130px" %)Type R|(% style="width:248px" %)(((147 +|Type R|((( 130 130 1.53°C 131 131 132 132 1.87°C (less than 800°C) 133 133 134 134 1.32°C (more than 800°C) 135 -)))| (% style="width:147px" %)Type R|(% style="width:298px" %)(((153 +)))|Type R|((( 136 136 2.754°F 137 137 138 138 3.366°F (less than 1,472°F) ... ... @@ -139,13 +139,13 @@ 139 139 140 140 2.376°F (more than 1,472°F) 141 141 ))) 142 -| (% style="width:130px" %)Type S|(% style="width:248px" %)(((160 +|Type S|((( 143 143 1.72°C 144 144 145 145 2.01°C (less than 800°C) 146 146 147 147 1.53°C (more than 800°C) 148 -)))| (% style="width:147px" %)Type S|(% style="width:298px" %)(((166 +)))|Type S|((( 149 149 3.096°F 150 150 151 151 3.618°F (less than 1,472°F) ... ... @@ -152,30 +152,27 @@ 152 152 153 153 2.754°F (more than 1,472°F) 154 154 ))) 155 -|(% style="width:253px" %)((( 156 -Overall accuracy calibration point 157 -)))|(% colspan="4" style="width:823px" %)((( 173 +|((( 174 +Overall accuracy 175 + 176 +Calibration point 177 +)))|(% colspan="4" %)((( 158 158 ± (0.5% full scale +1°C) 159 159 160 160 Freezing point of pure water 0°C / 32°F 161 161 ))) 162 162 163 -(% class="box infomessage" %) 164 -((( 165 -**✎Note: ** 183 +**✎Note: **Earth-tipped thermocouples are not suitable for this unit. 166 166 167 -* Earth-tipped thermocouples are not suitable for this unit. 168 -* Earth-tipped thermocouples are not suitable for this unit. 169 -))) 185 +Earth-tipped thermocouples are not suitable for this unit. 170 170 171 - 172 172 **Analog Input** 173 173 174 174 (% class="table-bordered" %) 175 -| =(% colspan="2" %)(((190 +|(% colspan="2" %)((( 176 176 **Conversion Characteristics** 177 177 178 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. ( Subject to the overall accuracy)193 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy) 179 179 ))) 180 180 |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]] 181 181 ... ... @@ -182,8 +182,8 @@ 182 182 **Miscellaneous** 183 183 184 184 (% class="table-bordered" %) 185 -| =(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**186 -| =(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.200 +|**Item**|**Specification** 201 +|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel. 187 187 188 188 = **5 Buffer Memory (BFM)** = 189 189 ... ... @@ -195,10 +195,13 @@ 195 195 |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)((( 196 196 Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1. 197 197 198 -* 0: Type K 199 -* 1: Type J 200 -* 2: Type T 213 +0: Type K 201 201 215 +1: Type J 216 + 217 +2: Type T 218 + 219 + 202 202 ((( 203 203 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]] 204 204 ... ... @@ -223,55 +223,88 @@ 223 223 |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)- 224 224 |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch 225 225 |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)((( 226 -* B0: A/D conversion would be stopped when b2 or b3 is ON. 227 -* B1: Not used; 228 -* B2: power failed; 229 -* B3: Hardware failed; 230 -* B4~~B7: Not used; 231 -* B8: Values backup error; 232 -* B10: Digital output/analog input value is out of the specified range; 233 -* B11: Averaged value is out of the available range; 234 -* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 235 -* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 236 -* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 244 +B0: A/D conversion would be stopped when b2 or b3 is ON. 245 + 246 +B1: Not used; 247 + 248 +B2: power failed; 249 + 250 +B3: Hardware failed; 251 + 252 +B4~~B7: Not used; 253 + 254 +B8: Values backup error; 255 + 256 +B10: Digital output/analog input value is out of the specified range; 257 + 258 +B11: Averaged value is out of the available range; 259 + 260 +B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 261 + 262 +B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 263 + 264 +B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 237 237 ))) 238 238 |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130 239 239 |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version 240 240 |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 241 241 |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 242 -* 0: Performs nothing 243 -* 1: Initializes all data 244 -* 2: Initializes BFM #19 to BFM #174 245 -* 3: Initializes error 246 -* Others: No action 270 +0: Performs nothing 271 + 272 +1: Initializes all data 273 + 274 +2: Initializes BFM #19 to BFM #174 275 + 276 +3: Initializes error 277 + 278 +Others: No action 247 247 ))) 248 248 |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 249 -* 0: Performs nothing 250 -* Other: Performs backups 281 +0: Performs nothing 282 + 283 +Other: Performs backups 251 251 ))) 252 252 |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 253 -* b0: Reserved; 254 -* b1: value range setting error; 255 -* b2: PID self-tuning error; 256 -* b3: The difference of setting value and offset value of PID self-tuning is too small; 257 -* b4~~b5: Reserved; 258 -* b6: Channel mode Error/ This channel is not enabled; 259 -* b7: PV exceeded; 260 -* b8: PID self-tuning parameters are changed in process; 286 +b0: Reserved; 287 + 288 +b1: value range setting error; 289 + 290 +b2: PID self-tuning error; 291 + 292 +b3: The difference of setting value and offset value of PID self-tuning is too small; 293 + 294 +b4~~b5: Reserved; 295 + 296 +b6: Channel mode Error/ This channel is not enabled; 297 + 298 +b7: PV exceeded; 299 + 300 +b8: PID self-tuning parameters are changed in process; 261 261 ))) 262 262 |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)((( 263 -* b0 & b15: Reserved; 264 -* b4: Alarm 1 - When alarm 1 occurs, it is set ON; 265 -* b5: Alarm 2 - When alarm 2 occurs, it is set ON; 266 -* b6: Alarm 3 - When alarm 3 occurs, it is set ON; 267 -* b7: Alarm 4 - When alarm 4 occurs, it is set ON; 268 -* b8: Heating control; 269 -* b9: Cooling control; 270 -* b10: PID terminals output; 271 -* b11: PID control flag; 272 -* b12: Manual flag; 273 -* b13: Self-tuning; 274 -* b14: ON / OFF control; 303 +b0 & b15: Reserved; 304 + 305 +b4: Alarm 1 - When alarm 1 occurs, it is set ON; 306 + 307 +b5: Alarm 2 - When alarm 2 occurs, it is set ON; 308 + 309 +b6: Alarm 3 - When alarm 3 occurs, it is set ON; 310 + 311 +b7: Alarm 4 - When alarm 4 occurs, it is set ON; 312 + 313 +b8: Heating control; 314 + 315 +b9: Cooling control; 316 + 317 +b10: PID terminals output; 318 + 319 +b11: PID control flag; 320 + 321 +b12: Manual flag; 322 + 323 +b13: Self-tuning; 324 + 325 +b14: ON / OFF control; 275 275 ))) 276 276 |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 277 277 Unit: 0.1 °C ... ... @@ -280,21 +280,25 @@ 280 280 ))) 281 281 |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control. 282 282 |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 283 -* 0: Stops control; 284 -* Other: Starts control; 334 +0: Stops control; 335 + 336 +Other: Starts control; 285 285 ))) 286 286 |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 287 -* 0: AUTO; 288 -* Other: MAN; 339 +0: AUTO; 340 + 341 +Other: MAN; 289 289 ))) 290 290 |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode. 291 291 |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 292 -* 0: Stops self-tuning; 293 -* Other : starts self-tuning; 345 +0: Stops self-tuning; 346 + 347 +Other : starts self-tuning; 294 294 ))) 295 295 |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 296 -* 0: Heating control; 297 -* 1: Cooling control; 350 +0: Heating control; 351 + 352 +1: Cooling control; 298 298 ))) 299 299 |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 300 300 Unit: 0.1 °C ... ... @@ -304,17 +304,14 @@ 304 304 |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)((( 305 305 KP = 0, ON / OFF control is executed. 306 306 307 -Range: 0 ~~32767.362 +Range: 0-32767. 308 308 309 -(% class="box infomessage" %) 310 -((( 311 -**✎Note: ** This value is magnified 256 times; the actual value is KP / 256. 364 +Note: This value is magnified 256 times; the actual value is KP / 256. 312 312 ))) 313 -))) 314 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767 315 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767 316 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms) 317 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023 366 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767 367 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767 368 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms) 369 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023 318 318 |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 319 319 The maximum rate of rise: 0-320; 320 320 ... ... @@ -321,9 +321,9 @@ 321 321 Range: 0-32000 (0-320); 322 322 ))) 323 323 |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)((( 324 -1 ~~100 (*500ms);376 +1-100 (*500ms); 325 325 326 -Range: 0.5s ~~50s;378 +Range: 0.5s-50s; 327 327 ))) 328 328 |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C) 329 329 |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved ... ... @@ -330,7 +330,7 @@ 330 330 |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 331 331 Dead zone is used for ON/OFF control mode 332 332 333 -Range: 0 ~~100 (Unit: 0.1%)385 +Range: 0-100 (Unit: 0.1%) 334 334 ))) 335 335 |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)((( 336 336 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -339,8 +339,9 @@ 339 339 340 340 Range: 341 341 342 -* K type: -100°C ~~1200°C 343 -* J type: -100°C ~~ 600°C 394 +K type: -100°C - 1200°C 395 + 396 +J type: -100°C - 600°C 344 344 ))) 345 345 |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)((( 346 346 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -349,18 +349,19 @@ 349 349 350 350 Range: 351 351 352 -* K type: -100°C~~1200°C 353 -* J type: -100°C~~600°C 405 +K type: -100°C - 1200°C 406 + 407 +J type: -100°C - 600°C 354 354 ))) 355 355 |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 356 356 This BFM is used for setting the upper threshold of output. 357 357 358 -Range: 0 ~~2000412 +Range: 0-2000 359 359 ))) 360 360 |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 361 361 This BFM is used for setting the lower threshold of output. 362 362 363 -Range: 0 ~~2000417 +Range: 0-2000 364 364 ))) 365 365 |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 366 366 |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( ... ... @@ -379,108 +379,113 @@ 379 379 |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 380 380 Calculation of dead zone 381 381 382 -* Bias: (SV+ bias)* dead zone 383 -* Upper & lower threshold mode: Alarm setting value* dead zone 436 +Bias: (SV+ bias)* dead zone 437 + 438 +Upper & lower threshold mode: Alarm setting value* dead zone 384 384 ))) 385 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0 ~~255440 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255 386 386 |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 387 -* 0: Normal; 388 -* Others: Error in setting address 442 +0: Normal; 443 + 444 +Others: Error in setting address 389 389 ))) 390 390 |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 391 391 392 -(% class="box infomessage" %) 393 -((( 394 394 **✎Note: ** 395 395 396 -* 0: Retentive; 397 -* X: Non-retentive; 398 -* R: Only read is enabled; 399 -* R/W: Both read and write are enabled; 400 -))) 450 +0: Retentive; 401 401 452 +X: Non-retentive; 453 + 454 +R: Only read is enabled; 455 + 456 +R/W: Both read and write are enabled; 457 + 402 402 **Details of buffer memories** 403 403 404 -**Buffer Memory BFM #0: Thermocouple Type K or J selection mode** 460 +* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode** 405 405 406 406 BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1. 407 407 408 408 (% style="text-align:center" %) 409 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]465 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]] 410 410 411 411 The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows: 412 412 413 413 240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time) 414 414 415 -**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged** 471 +* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged** 416 416 417 417 When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8. 418 418 419 -**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature** 475 +* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature** 420 420 421 421 These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J. 422 422 423 -**Buffer Memory BFM #28: Digital range error latch** 479 +* **Buffer Memory BFM #28: Digital range error latch** 424 424 425 -* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 426 -* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 481 +BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 427 427 483 +BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 484 + 428 428 ((( 429 429 (% class="table-bordered" %) 430 -| =(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**487 +|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0** 431 431 |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low 432 432 |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1 433 433 ))) 434 434 435 -* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 436 -* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 492 +**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 437 437 494 +**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 495 + 438 438 When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28)) 439 439 440 440 An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power. 441 441 442 -**Buffer Memory BFM #29: Error status** 500 +* **Buffer Memory BFM #29: Error status** 443 443 444 444 ((( 445 445 (% class="table-bordered" %) 446 -| =(% scope="row" %)**Bit devices of BFM #29**|=**Error information**447 -| =b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.448 -| =b1, b4~~b7|Not used;449 -| =b2|24V DC power supply failed;450 -| =b3|Hardware failed;451 -| =b8|Backup error of set value.452 -| =b10|Digital output/analog input value is out of the specified range;453 -| =b11|The value of averaged results is out of the available range;454 -| =b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;455 -| =b14|It is in backup status, this bit sets to ON;456 -| =b15|Initialization completion flag;504 +|**Bit devices of BFM #29**|**Error information** 505 +|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped. 506 +|b1, b4~~b7|Not used; 507 +|b2|24V DC power supply failed; 508 +|b3|Hardware failed; 509 +|b8|Backup error of set value. 510 +|b10|Digital output/analog input value is out of the specified range; 511 +|b11|The value of averaged results is out of the available range; 512 +|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON; 513 +|b14|It is in backup status, this bit sets to ON; 514 +|b15|Initialization completion flag; 457 457 ))) 458 458 459 -**ID Code Buffer Memory BFM #30** 517 +* **ID Code Buffer Memory BFM #30** 460 460 461 461 The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block. 462 462 463 -**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)** 521 +* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)** 464 464 465 465 ((( 466 466 (% class="table-bordered" %) 467 -| =(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**468 -| =(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-469 -| =(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189470 -| =(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON471 -| =(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON472 -| =(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.473 -| =(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.474 -| =(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.525 +|**Error flag**|**Content**|**Remark** 526 +|b0, b4, b5|Not used;|- 527 +|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189 528 +|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON 529 +|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON 530 +|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON. 531 +|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON. 532 +|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON. 475 475 ))) 476 476 477 -**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover** 535 +* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover** 478 478 479 479 BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4. 480 480 481 -* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 482 -* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 539 +When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 483 483 541 +When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 542 + 484 484 **Auto mode:** 485 485 486 486 The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV). ... ... @@ -495,8 +495,10 @@ 495 495 496 496 The temperature alarm function is effective even in the manual mode. 497 497 498 -**Self-tuning function** 557 +1. **Self-tuning function** 499 499 559 +**Self-tuning** 560 + 500 500 The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature. 501 501 502 502 When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.) ... ... @@ -518,7 +518,7 @@ 518 518 Self-tuning would be canceled with one of the following conditions: 519 519 520 520 (% style="text-align:center" %) 521 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]582 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]] 522 522 523 523 * SV value has been changed. 524 524 * The control has been stopped, the operation mode is "0: Stops control". ... ... @@ -533,7 +533,7 @@ 533 533 If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set. 534 534 535 535 (% style="text-align:center" %) 536 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]597 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]] 537 537 538 538 **Dead zone (adjustment sensitivity) setting** 539 539 ... ... @@ -547,32 +547,37 @@ 547 547 548 548 **Example** 549 549 550 -Conditions: 611 +* Conditions: 551 551 552 -* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C 553 -* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 554 -* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 613 +When BFM #41/#60 is set to "10.0%" in the range span of 400°C 555 555 615 +400°C x 10.0% / 100 = 40°C 616 + 617 +When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 618 + 619 +When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 620 + 556 556 (% style="text-align:center" %) 557 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]622 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]] 558 558 559 -**Output(MV) upper threshold: BFM #65/#103/#141/#179** 624 +* **Output(MV) upper threshold: BFM #65/#103/#141/#179** 560 560 561 561 **Output(MV) lower threshold: BFM #66/#104/#142/#180** 562 562 563 -* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 564 -* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 628 +BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 565 565 630 +BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 631 + 566 566 These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter. 567 567 568 568 (% style="text-align:center" %) 569 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]635 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]] 570 570 571 571 1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active. 572 572 1. The output limiter would not be active when two-position control is active,. 573 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control 639 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control. 574 574 575 -**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182** 641 +* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182** 576 576 577 577 LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode. 578 578 ... ... @@ -579,7 +579,7 @@ 579 579 Each channel could have four alarm modes. 580 580 581 581 (% style="text-align:center" %) 582 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]648 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]] 583 583 584 584 Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm. 585 585 ... ... @@ -587,23 +587,21 @@ 587 587 588 588 ((( 589 589 (% class="table-bordered" %) 590 -| (% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**591 -| (% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--592 -| (% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range593 -| (% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range594 -| (% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width595 -| (% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width596 -| (% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width597 -| (% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width598 -| (% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range599 -| (% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range600 -| (% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width601 -| (% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width602 -| (% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width656 +|**Alarm No.**|**Alarm mode**|**Description**|**Set range** 657 +|0|Alarm is disabled|Alarm function is disabled.|~-~-- 658 +|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range 659 +|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range 660 +|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width 661 +|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width 662 +|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 663 +|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 664 +|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range 665 +|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range 666 +|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width 667 +|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width 668 +|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width 603 603 ))) 604 604 605 -(% class="box infomessage" %) 606 -((( 607 607 **✎Note: ** 608 608 609 609 * Input range: it is from the lower threshold to the upper threshold of input value ... ... @@ -610,9 +610,8 @@ 610 610 * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value). 611 611 * ±Input width: it could be positive and negative. 612 612 * + Input width: it could be positive only. 613 -))) 614 614 615 -**Alarm dead zone setting** 678 +1. **Alarm dead zone setting** 616 616 617 617 BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status. 618 618 ... ... @@ -624,22 +624,22 @@ 624 624 625 625 In upper/lower threshold mode: dead zone=alarm setting value*dead zone 626 626 627 - *Upper threshold input alarm and upper threshold deviation alarm690 +1. Upper threshold input alarm and upper threshold deviation alarm 628 628 629 629 (% style="text-align:center" %) 630 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]693 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]] 631 631 632 - *Lower threshold input alarm and lower threshold deviation alarm695 +1. Lower threshold input alarm and lower threshold deviation alarm 633 633 634 634 (% style="text-align:center" %) 635 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]698 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]] 636 636 637 - *Upper/lower threshold deviation alarm700 +1. Upper/lower threshold deviation alarm 638 638 639 639 (% style="text-align:center" %) 640 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]703 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]] 641 641 642 -**Number of times of alarm delay** 705 +* **Number of times of alarm delay** 643 643 644 644 BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4. 645 645 ... ... @@ -648,9 +648,9 @@ 648 648 Example: the number of alarm delay sets to 5 times 649 649 650 650 (% style="text-align:center" %) 651 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]714 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]] 652 652 653 -**Address of value range error** 716 +* **Address of value range error** 654 654 655 655 When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address, 656 656 ... ... @@ -658,7 +658,7 @@ 658 658 659 659 When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41). 660 660 661 -**Output cycle control** 724 +* **Output cycle control** 662 662 663 663 BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle. 664 664 ... ... @@ -667,27 +667,27 @@ 667 667 The allowable range of this value is from 1 to 100 sec. 668 668 669 669 (% style="text-align:center" %) 670 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]733 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]] 671 671 672 672 = **6 Program Example** = 673 673 674 -* *Keep doing nothing while the power is supplied.**737 +* Keep doing nothing while the power is supplied. 675 675 676 676 If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction. 677 677 678 -* *Make sure the power be OFF before cleaning the unit or tightening the terminals.**741 +* Make sure the power be OFF before cleaning the unit or tightening the terminals. 679 679 680 680 If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock. 681 681 682 -* *To run temperature control module in safe, please read this manual carefully firstly.**745 +* To run temperature control module in safe, please read this manual carefully firstly. 683 683 684 684 Damages or accidents would happen if the operations is not right. 685 685 686 -Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire. 749 +* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire. 687 687 688 688 ~* For repair, contact WECON Technology Co., Ltd. 689 689 690 -* *Make sure power is off before wiring.**753 +* Make sure power is off before wiring. 691 691 692 692 Failure or malfunction maybe happen because of wiring during power is on. 693 693 ... ... @@ -696,32 +696,42 @@ 696 696 In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3. 697 697 698 698 (% style="text-align:center" %) 699 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]762 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]] 700 700 701 701 Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30). 702 702 703 703 **Program example** 704 704 705 -* Input range: K type ~-~- 100.0 to 400.0 °C 706 -* PID values: it is determined by auto-tuning 707 -* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 708 -* Heater/cooling control: Heater (Initialization) 768 +Input range: K type ~-~- 100.0 to 400.0 °C 709 709 710 -D eviceassignment:770 +PID values: it is determined by auto-tuning 711 711 712 -* X000: initialization 713 -* X001: Reset the flag of error bit. 714 -* X002: Control starts (ON)/stop (OFF); 715 -* X003: self-tuning beginning when it changes from 0 to 1. 716 -* M0~~M15: Flags of error 717 -* M20~~M35: Flags of events 718 -* D0~~D199: Read value from BFM 719 -* D200~~D399: Write set value(SV) into BFM 772 +Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 720 720 721 - Project:774 +Heater/cooling control: Heater (Initialization) 722 722 776 +* Device assignment: 777 + 778 +X000: initialization 779 + 780 +X001: Reset the flag of error bit. 781 + 782 +X002: Control starts (ON)/stop (OFF); 783 + 784 +X003: self-tuning beginning when it changes from 0 to 1. 785 + 786 +M0~~M15: Flags of error 787 + 788 +M20~~M35: Flags of events 789 + 790 +D0~~D199: Read value from BFM 791 + 792 +D200~~D399: Write set value(SV) into BFM 793 + 794 +* Project: 795 + 723 723 (% style="text-align:center" %) 724 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]797 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]] 725 725 726 726 = **7 Diagnostic** = 727 727