Changes for page LX3V-4LTC
Last modified by Devin Chen on 2024/11/22 09:42
From version 7.1
edited by Devin Chen
on 2024/10/09 11:36
on 2024/10/09 11:36
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - Expansions.1 Module.Temperature.WebHome1 +1 Module.Temperature.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. DevinChen1 +XWiki.admin - Content
-
... ... @@ -1,6 +1,6 @@ 1 1 = **1 Introduction** = 2 2 3 -LX3V-4LTC is temperature control module .It has four temperature input ports and four transistor output ports (the collector is open).It reads data from thermocouple, and then output value with PID control.3 +LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control. 4 4 5 5 LX3V-4LTC needs to connect with LX3V series PLC 6 6 ... ... @@ -12,19 +12,28 @@ 12 12 = **2 Dimensions** = 13 13 14 14 (% style="text-align:center" %) 15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]] 16 16 17 -1. Extension cable and connector 18 -1. Com LED: Light when communicating 19 -1. Power LED: Light when connect to 24V 20 -1. State LED: Light when normal condition 21 -1. Module name 22 -1. Analog signal terminal 23 -1. Extension module interface 24 -1. DIN rail mounting slot 25 -1. DIN rail hook 26 -1. Mounting holes (φ4.5) 17 +①Extension cable and connector 27 27 19 +②Com LED: Light when communicating 20 + 21 +③Power LED: Light when connect to 24V 22 + 23 +④State LED: Light when normal condition 24 + 25 +⑤Module name 26 + 27 +⑥Analog signal terminal 28 + 29 +⑦Extension module interface 30 + 31 +⑧DIN rail mounting slot 32 + 33 +⑨DIN rail hook 34 + 35 +⑩Mounting holes (φ4.5) 36 + 28 28 **Using crimp terminations** 29 29 30 30 ((( ... ... @@ -33,25 +33,32 @@ 33 33 * Other terminals should be empty but only wiring terminals mention in this manual. 34 34 35 35 (% style="text-align:center" %) 36 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]45 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]] 37 37 ))) 38 38 39 39 = **3 Wiring** = 40 40 41 41 ((( 42 -The compensating cables that connect with thermocouples could be as follows: 51 +1. The compensating cables that connect with thermocouples could be as follows: 43 43 44 -* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 45 -* Type J: JX-G, JX-H 46 -* Type K: SC-G, SC-H 47 -* Type N: NC-G, NC-H 48 -* Type E: EX-G, EX-H 49 -* Type T: TX-G, TX-H 50 -* Type B: BC-G, BC-H 51 -* Type R: RC-G, RC-H 53 +Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G 52 52 55 +Type J: JX-G, JX-H 56 + 57 +Type K: SC-G, SC-H 58 + 59 +Type N: NC-G, NC-H 60 + 61 +Type E: EX-G, EX-H 62 + 63 +Type T: TX-G, TX-H 64 + 65 +Type B: BC-G, BC-H 66 + 67 +Type R: RC-G, RC-H 68 + 53 53 (% style="text-align:center" %) 54 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]70 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]] 55 55 ))) 56 56 57 57 For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended. ... ... @@ -72,54 +72,56 @@ 72 72 **General specification** 73 73 74 74 (% class="table-bordered" %) 75 -| =(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**76 -| =(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit77 -| =(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)91 +|**Item**|**Specification** 92 +|General specifications|Same as those for the main unit 93 +|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground) 78 78 79 79 **Power supply specification** 80 80 81 81 (% class="table-bordered" %) 82 -| =(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**83 -| =(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA84 -| =(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)98 +|**Item**|**Specification** 99 +|Analog circuits|24V DC ± 10%, 50mA 100 +|Digital circuits|24V DC, 35mA (internal power supply from the main unit) 85 85 86 86 **Performance specification** 87 87 88 -(% class="table-bordered" style="width:1117px" %) 89 -|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)** 90 -|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 91 -|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most. 92 -|(% rowspan="8" style="width:253px" %)((( 93 -Rated temperature range 94 -)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192 95 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112 96 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752 97 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832 98 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372 99 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉ 100 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4 101 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4 102 -|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form 103 -|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920 104 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120 105 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520 106 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320 107 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720 108 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720 109 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144 110 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144 111 -|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F 112 -|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F 113 -|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F 114 -|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F 115 -|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F 116 -|(% style="width:130px" %)Type B|(% style="width:248px" %)((( 104 +(% class="table-bordered" %) 105 +|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)** 106 +|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM). 107 +|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most. 108 +|(% rowspan="8" %)((( 109 +Rated temperature 110 + 111 +range 112 +)))|Type K|-100 to +1,200|Type K|-148 to +2,192 113 +|Type J|-100 to +600|Type J|-148 to +1,112 114 +|Type T|-100 to +400|Type T|-148 to +752 115 +|Type E|-100 to +1,000|Type E|-148 to +1,832 116 +|Type N|-100 to +1,300|Type N|-148 to +2,372 117 +|Type B|+250 to +1,800|Type B|-482 to +3,272℉ 118 +|Type R|-50 to +1,768|Type R|-58 to +3,214.4 119 +|Type S|-50 to +1,768|Type S|-58 to +3,214.4 120 +|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form 121 +|Type K|-1,000 to +12,000|Type K|-1480 to +21,920 122 +|Type J|-1,000 to +6,000|Type J|-1480 to +11,120 123 +|Type T|-1,000 to +4,000|Type T|-1480 to +7,520 124 +|Type E|-1,000 to +10,000|Type E|-1480 to +18,320 125 +|Type N|-1,000 to +13,000|Type N|-1480 to +23,720 126 +|Type B|+2,500 to +18,000|Type B|-4820 to +32,720 127 +|Type R|-500 to +17,680|Type R|-580 to +32,144 128 +|Type S|-500 to +17,680|Type S|-580 to +32,144 129 +|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F 130 +|Type J|0.3°C|Type J|0.54°F 131 +|Type T|0.4°C|Type T|0.72°F 132 +|Type E|0.25°C|Type E|0.45°F 133 +|Type N|0.52°C|Type N|0.936°F 134 +|Type B|((( 117 117 2.09°C 118 118 119 119 2.97°C (less than 1,000°C) 120 120 121 121 1.64°C (more than 1,000°C) 122 -)))| (% style="width:147px" %)Type B|(% style="width:298px" %)(((140 +)))|Type B|((( 123 123 3.762°F 124 124 125 125 5.346°F (less than 1,832°F) ... ... @@ -126,13 +126,13 @@ 126 126 127 127 2.952°F (more than 1,832°F) 128 128 ))) 129 -| (% style="width:130px" %)Type R|(% style="width:248px" %)(((147 +|Type R|((( 130 130 1.53°C 131 131 132 132 1.87°C (less than 800°C) 133 133 134 134 1.32°C (more than 800°C) 135 -)))| (% style="width:147px" %)Type R|(% style="width:298px" %)(((153 +)))|Type R|((( 136 136 2.754°F 137 137 138 138 3.366°F (less than 1,472°F) ... ... @@ -139,13 +139,13 @@ 139 139 140 140 2.376°F (more than 1,472°F) 141 141 ))) 142 -| (% style="width:130px" %)Type S|(% style="width:248px" %)(((160 +|Type S|((( 143 143 1.72°C 144 144 145 145 2.01°C (less than 800°C) 146 146 147 147 1.53°C (more than 800°C) 148 -)))| (% style="width:147px" %)Type S|(% style="width:298px" %)(((166 +)))|Type S|((( 149 149 3.096°F 150 150 151 151 3.618°F (less than 1,472°F) ... ... @@ -152,30 +152,27 @@ 152 152 153 153 2.754°F (more than 1,472°F) 154 154 ))) 155 -|(% style="width:253px" %)((( 156 -Overall accuracy calibration point 157 -)))|(% colspan="4" style="width:823px" %)((( 173 +|((( 174 +Overall accuracy 175 + 176 +Calibration point 177 +)))|(% colspan="4" %)((( 158 158 ± (0.5% full scale +1°C) 159 159 160 160 Freezing point of pure water 0°C / 32°F 161 161 ))) 162 162 163 -(% class="box infomessage" %) 164 -((( 165 -**✎Note: ** 183 +**✎Note: **Earth-tipped thermocouples are not suitable for this unit. 166 166 167 -* Earth-tipped thermocouples are not suitable for this unit. 168 -* Earth-tipped thermocouples are not suitable for this unit. 169 -))) 185 +Earth-tipped thermocouples are not suitable for this unit. 170 170 171 - 172 172 **Analog Input** 173 173 174 174 (% class="table-bordered" %) 175 -| =(% colspan="2" %)(((190 +|(% colspan="2" %)((( 176 176 **Conversion Characteristics** 177 177 178 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. ( Subject to the overall accuracy)193 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy) 179 179 ))) 180 180 |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]] 181 181 ... ... @@ -182,8 +182,8 @@ 182 182 **Miscellaneous** 183 183 184 184 (% class="table-bordered" %) 185 -| =(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**186 -| =(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.200 +|**Item**|**Specification** 201 +|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel. 187 187 188 188 = **5 Buffer Memory (BFM)** = 189 189 ... ... @@ -195,10 +195,13 @@ 195 195 |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)((( 196 196 Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1. 197 197 198 -* 0: Type K 199 -* 1: Type J 200 -* 2: Type T 213 +0: Type K 201 201 215 +1: Type J 216 + 217 +2: Type T 218 + 219 + 202 202 ((( 203 203 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]] 204 204 ... ... @@ -223,55 +223,88 @@ 223 223 |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)- 224 224 |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch 225 225 |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)((( 226 -* B0: A/D conversion would be stopped when b2 or b3 is ON. 227 -* B1: Not used; 228 -* B2: power failed; 229 -* B3: Hardware failed; 230 -* B4~~B7: Not used; 231 -* B8: Values backup error; 232 -* B10: Digital output/analog input value is out of the specified range; 233 -* B11: Averaged value is out of the available range; 234 -* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 235 -* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 236 -* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 244 +B0: A/D conversion would be stopped when b2 or b3 is ON. 245 + 246 +B1: Not used; 247 + 248 +B2: power failed; 249 + 250 +B3: Hardware failed; 251 + 252 +B4~~B7: Not used; 253 + 254 +B8: Values backup error; 255 + 256 +B10: Digital output/analog input value is out of the specified range; 257 + 258 +B11: Averaged value is out of the available range; 259 + 260 +B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 261 + 262 +B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.) 263 + 264 +B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.) 237 237 ))) 238 238 |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130 239 239 |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version 240 240 |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 241 241 |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 242 -* 0: Performs nothing 243 -* 1: Initializes all data 244 -* 2: Initializes BFM #19 to BFM #174 245 -* 3: Initializes error 246 -* Others: No action 270 +0: Performs nothing 271 + 272 +1: Initializes all data 273 + 274 +2: Initializes BFM #19 to BFM #174 275 + 276 +3: Initializes error 277 + 278 +Others: No action 247 247 ))) 248 248 |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 249 -* 0: Performs nothing 250 -* Other: Performs backups 281 +0: Performs nothing 282 + 283 +Other: Performs backups 251 251 ))) 252 252 |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 253 -* b0: Reserved; 254 -* b1: value range setting error; 255 -* b2: PID self-tuning error; 256 -* b3: The difference of setting value and offset value of PID self-tuning is too small; 257 -* b4~~b5: Reserved; 258 -* b6: Channel mode Error/ This channel is not enabled; 259 -* b7: PV exceeded; 260 -* b8: PID self-tuning parameters are changed in process; 286 +b0: Reserved; 287 + 288 +b1: value range setting error; 289 + 290 +b2: PID self-tuning error; 291 + 292 +b3: The difference of setting value and offset value of PID self-tuning is too small; 293 + 294 +b4~~b5: Reserved; 295 + 296 +b6: Channel mode Error/ This channel is not enabled; 297 + 298 +b7: PV exceeded; 299 + 300 +b8: PID self-tuning parameters are changed in process; 261 261 ))) 262 262 |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)((( 263 -* b0 & b15: Reserved; 264 -* b4: Alarm 1 - When alarm 1 occurs, it is set ON; 265 -* b5: Alarm 2 - When alarm 2 occurs, it is set ON; 266 -* b6: Alarm 3 - When alarm 3 occurs, it is set ON; 267 -* b7: Alarm 4 - When alarm 4 occurs, it is set ON; 268 -* b8: Heating control; 269 -* b9: Cooling control; 270 -* b10: PID terminals output; 271 -* b11: PID control flag; 272 -* b12: Manual flag; 273 -* b13: Self-tuning; 274 -* b14: ON / OFF control; 303 +b0 & b15: Reserved; 304 + 305 +b4: Alarm 1 - When alarm 1 occurs, it is set ON; 306 + 307 +b5: Alarm 2 - When alarm 2 occurs, it is set ON; 308 + 309 +b6: Alarm 3 - When alarm 3 occurs, it is set ON; 310 + 311 +b7: Alarm 4 - When alarm 4 occurs, it is set ON; 312 + 313 +b8: Heating control; 314 + 315 +b9: Cooling control; 316 + 317 +b10: PID terminals output; 318 + 319 +b11: PID control flag; 320 + 321 +b12: Manual flag; 322 + 323 +b13: Self-tuning; 324 + 325 +b14: ON / OFF control; 275 275 ))) 276 276 |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 277 277 Unit: 0.1 °C ... ... @@ -280,21 +280,25 @@ 280 280 ))) 281 281 |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control. 282 282 |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 283 -* 0: Stops control; 284 -* Other: Starts control; 334 +0: Stops control; 335 + 336 +Other: Starts control; 285 285 ))) 286 286 |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 287 -* 0: AUTO; 288 -* Other: MAN; 339 +0: AUTO; 340 + 341 +Other: MAN; 289 289 ))) 290 290 |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode. 291 291 |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 292 -* 0: Stops self-tuning; 293 -* Other : starts self-tuning; 345 +0: Stops self-tuning; 346 + 347 +Other : starts self-tuning; 294 294 ))) 295 295 |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 296 -* 0: Heating control; 297 -* 1: Cooling control; 350 +0: Heating control; 351 + 352 +1: Cooling control; 298 298 ))) 299 299 |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 300 300 Unit: 0.1 °C ... ... @@ -304,17 +304,14 @@ 304 304 |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)((( 305 305 KP = 0, ON / OFF control is executed. 306 306 307 -Range: 0 ~~32767.362 +Range: 0-32767. 308 308 309 -(% class="box infomessage" %) 310 -((( 311 -**✎Note: ** This value is magnified 256 times; the actual value is KP / 256. 364 +Note: This value is magnified 256 times; the actual value is KP / 256. 312 312 ))) 313 -))) 314 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767 315 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767 316 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms) 317 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023 366 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767 367 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767 368 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms) 369 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023 318 318 |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 319 319 The maximum rate of rise: 0-320; 320 320 ... ... @@ -321,9 +321,9 @@ 321 321 Range: 0-32000 (0-320); 322 322 ))) 323 323 |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)((( 324 -1 ~~100 (*500ms);376 +1-100 (*500ms); 325 325 326 -Range: 0.5s ~~50s;378 +Range: 0.5s-50s; 327 327 ))) 328 328 |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C) 329 329 |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved ... ... @@ -330,7 +330,7 @@ 330 330 |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 331 331 Dead zone is used for ON/OFF control mode 332 332 333 -Range: 0 ~~100 (Unit: 0.1%)385 +Range: 0-100 (Unit: 0.1%) 334 334 ))) 335 335 |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)((( 336 336 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -339,8 +339,9 @@ 339 339 340 340 Range: 341 341 342 -* K type: -100°C ~~1200°C 343 -* J type: -100°C ~~ 600°C 394 +K type: -100°C - 1200°C 395 + 396 +J type: -100°C - 600°C 344 344 ))) 345 345 |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)((( 346 346 Lower & upper threshold of input (Unit: 0.1 °C) ... ... @@ -349,18 +349,19 @@ 349 349 350 350 Range: 351 351 352 -* K type: -100°C~~1200°C 353 -* J type: -100°C~~600°C 405 +K type: -100°C - 1200°C 406 + 407 +J type: -100°C - 600°C 354 354 ))) 355 355 |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)((( 356 356 This BFM is used for setting the upper threshold of output. 357 357 358 -Range: 0 ~~2000412 +Range: 0-2000 359 359 ))) 360 360 |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 361 361 This BFM is used for setting the lower threshold of output. 362 362 363 -Range: 0 ~~2000417 +Range: 0-2000 364 364 ))) 365 365 |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 366 366 |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( ... ... @@ -379,119 +379,113 @@ 379 379 |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)((( 380 380 Calculation of dead zone 381 381 382 -* Bias: (SV+ bias)* dead zone 383 -* Upper & lower threshold mode: Alarm setting value* dead zone 436 +Bias: (SV+ bias)* dead zone 437 + 438 +Upper & lower threshold mode: Alarm setting value* dead zone 384 384 ))) 385 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0 ~~255440 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255 386 386 |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)((( 387 -* 0: Normal; 388 -* Others: Error in setting address 442 +0: Normal; 443 + 444 +Others: Error in setting address 389 389 ))) 390 390 |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved 391 391 392 -(% class="box infomessage" %) 393 -((( 394 394 **✎Note: ** 395 395 396 -* 0: Retentive; 397 -* X: Non-retentive; 398 -* R: Only read is enabled; 399 -* R/W: Both read and write are enabled; 400 -))) 450 +0: Retentive; 401 401 452 +X: Non-retentive; 453 + 454 +R: Only read is enabled; 455 + 456 +R/W: Both read and write are enabled; 457 + 402 402 **Details of buffer memories** 403 403 404 -**Buffer Memory BFM #0: Thermocouple Type K or J selection mode** 460 +* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode** 405 405 406 406 BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1. 407 407 408 408 (% style="text-align:center" %) 409 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]465 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]] 410 410 411 411 The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows: 412 412 413 413 240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time) 414 414 415 -**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged** 471 +* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged** 416 416 417 417 When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8. 418 418 419 -**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature** 475 +* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature** 420 420 421 421 These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J. 422 422 423 -**Buffer Memory BFM #28: Digital range error latch** 479 +* **Buffer Memory BFM #28: Digital range error latch** 424 424 425 -* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 426 -* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 481 +BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit. 427 427 483 +BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection. 484 + 428 428 ((( 429 429 (% class="table-bordered" %) 430 -| =(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**487 +|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0** 431 431 |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low 432 432 |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1 433 433 ))) 434 434 435 -* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 436 -* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 492 +**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold. 437 437 494 +**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected. 495 + 438 438 When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28)) 439 439 440 440 An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power. 441 441 442 -**Buffer Memory BFM #29: Error status** 500 +* **Buffer Memory BFM #29: Error status** 443 443 444 444 ((( 445 445 (% class="table-bordered" %) 446 -| =(% scope="row" %)**Bit devices of BFM #29**|=**Error information**447 -| =b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.448 -| =b1, b4~~b7|Not used;449 -| =b2|24V DC power supply failed;450 -| =b3|Hardware failed;451 -| =b8|Backup error of set value.452 -| =b10|Digital output/analog input value is out of the specified range;453 -| =b11|The value of averaged results is out of the available range;454 -| =b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;455 -| =b14|It is in backup status, this bit sets to ON;456 -| =b15|Initialization completion flag;504 +|**Bit devices of BFM #29**|**Error information** 505 +|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped. 506 +|b1, b4~~b7|Not used; 507 +|b2|24V DC power supply failed; 508 +|b3|Hardware failed; 509 +|b8|Backup error of set value. 510 +|b10|Digital output/analog input value is out of the specified range; 511 +|b11|The value of averaged results is out of the available range; 512 +|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON; 513 +|b14|It is in backup status, this bit sets to ON; 514 +|b15|Initialization completion flag; 457 457 ))) 458 458 459 -**ID Code Buffer Memory BFM #30** 517 +* **ID Code Buffer Memory BFM #30** 460 460 461 461 The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block. 462 462 463 -** Power-downretentionflag BFM#42**521 +* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)** 464 464 465 -First, configure the parameters to be saved, and then set the power-down retention flag BFM#42 to 1. This enables power-down retention for the configured parameters. 466 - 467 -The operation steps are illustrated as follows: 468 - 469 -1. Set the power-down retention register to a value of 100 (e.g., BFM#52 is set to 100). 470 -1. Set the power-down retention flag BFM#42 to 1 (data is saved at this point, and BFM#42 will automatically reset to zero upon completion). 471 -1. Change the data of the power-down retention register to 1000 (e.g., BFM#52 is set to 1000). 472 -1. Power off and then power on again. At this point, check the value of the power-down retention register, which should be 100 (e.g., BFM#52 shows a value of 100)." 473 - 474 -**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)** 475 - 476 476 ((( 477 477 (% class="table-bordered" %) 478 -| =(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**479 -| =(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-480 -| =(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189481 -| =(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON482 -| =(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON483 -| =(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.484 -| =(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.485 -| =(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.525 +|**Error flag**|**Content**|**Remark** 526 +|b0, b4, b5|Not used;|- 527 +|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189 528 +|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON 529 +|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON 530 +|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON. 531 +|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON. 532 +|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON. 486 486 ))) 487 487 488 -**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover** 535 +* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover** 489 489 490 490 BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4. 491 491 492 -* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 493 -* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 539 +When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected. 494 494 541 +When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected. 542 + 495 495 **Auto mode:** 496 496 497 497 The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV). ... ... @@ -506,8 +506,10 @@ 506 506 507 507 The temperature alarm function is effective even in the manual mode. 508 508 509 -**Self-tuning function** 557 +1. **Self-tuning function** 510 510 559 +**Self-tuning** 560 + 511 511 The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature. 512 512 513 513 When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.) ... ... @@ -529,7 +529,7 @@ 529 529 Self-tuning would be canceled with one of the following conditions: 530 530 531 531 (% style="text-align:center" %) 532 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]582 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]] 533 533 534 534 * SV value has been changed. 535 535 * The control has been stopped, the operation mode is "0: Stops control". ... ... @@ -544,7 +544,7 @@ 544 544 If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set. 545 545 546 546 (% style="text-align:center" %) 547 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]597 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]] 548 548 549 549 **Dead zone (adjustment sensitivity) setting** 550 550 ... ... @@ -558,32 +558,37 @@ 558 558 559 559 **Example** 560 560 561 -Conditions: 611 +* Conditions: 562 562 563 -* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C 564 -* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 565 -* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 613 +When BFM #41/#60 is set to "10.0%" in the range span of 400°C 566 566 615 +400°C x 10.0% / 100 = 40°C 616 + 617 +When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone. 618 + 619 +When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration. 620 + 567 567 (% style="text-align:center" %) 568 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]622 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]] 569 569 570 -**Output(MV) upper threshold: BFM #65/#103/#141/#179** 624 +* **Output(MV) upper threshold: BFM #65/#103/#141/#179** 571 571 572 572 **Output(MV) lower threshold: BFM #66/#104/#142/#180** 573 573 574 -* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 575 -* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 628 +BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4. 576 576 630 +BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4. 631 + 577 577 These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter. 578 578 579 579 (% style="text-align:center" %) 580 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]635 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]] 581 581 582 582 1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active. 583 583 1. The output limiter would not be active when two-position control is active,. 584 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control 639 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control. 585 585 586 -**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182** 641 +* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182** 587 587 588 588 LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode. 589 589 ... ... @@ -590,7 +590,7 @@ 590 590 Each channel could have four alarm modes. 591 591 592 592 (% style="text-align:center" %) 593 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]648 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]] 594 594 595 595 Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm. 596 596 ... ... @@ -598,23 +598,21 @@ 598 598 599 599 ((( 600 600 (% class="table-bordered" %) 601 -| (% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**602 -| (% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--603 -| (% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range604 -| (% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range605 -| (% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width606 -| (% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width607 -| (% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width608 -| (% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width609 -| (% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range610 -| (% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range611 -| (% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width612 -| (% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width613 -| (% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width656 +|**Alarm No.**|**Alarm mode**|**Description**|**Set range** 657 +|0|Alarm is disabled|Alarm function is disabled.|~-~-- 658 +|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range 659 +|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range 660 +|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width 661 +|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width 662 +|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 663 +|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width 664 +|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range 665 +|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range 666 +|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width 667 +|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width 668 +|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width 614 614 ))) 615 615 616 -(% class="box infomessage" %) 617 -((( 618 618 **✎Note: ** 619 619 620 620 * Input range: it is from the lower threshold to the upper threshold of input value ... ... @@ -621,9 +621,8 @@ 621 621 * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value). 622 622 * ±Input width: it could be positive and negative. 623 623 * + Input width: it could be positive only. 624 -))) 625 625 626 -**Alarm dead zone setting** 678 +1. **Alarm dead zone setting** 627 627 628 628 BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status. 629 629 ... ... @@ -635,22 +635,22 @@ 635 635 636 636 In upper/lower threshold mode: dead zone=alarm setting value*dead zone 637 637 638 - *Upper threshold input alarm and upper threshold deviation alarm690 +1. Upper threshold input alarm and upper threshold deviation alarm 639 639 640 640 (% style="text-align:center" %) 641 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]693 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]] 642 642 643 - *Lower threshold input alarm and lower threshold deviation alarm695 +1. Lower threshold input alarm and lower threshold deviation alarm 644 644 645 645 (% style="text-align:center" %) 646 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]698 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]] 647 647 648 - *Upper/lower threshold deviation alarm700 +1. Upper/lower threshold deviation alarm 649 649 650 650 (% style="text-align:center" %) 651 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]703 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]] 652 652 653 -**Number of times of alarm delay** 705 +* **Number of times of alarm delay** 654 654 655 655 BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4. 656 656 ... ... @@ -659,9 +659,9 @@ 659 659 Example: the number of alarm delay sets to 5 times 660 660 661 661 (% style="text-align:center" %) 662 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]714 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]] 663 663 664 -**Address of value range error** 716 +* **Address of value range error** 665 665 666 666 When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address, 667 667 ... ... @@ -669,7 +669,7 @@ 669 669 670 670 When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41). 671 671 672 -**Output cycle control** 724 +* **Output cycle control** 673 673 674 674 BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle. 675 675 ... ... @@ -678,27 +678,27 @@ 678 678 The allowable range of this value is from 1 to 100 sec. 679 679 680 680 (% style="text-align:center" %) 681 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]733 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]] 682 682 683 683 = **6 Program Example** = 684 684 685 -* *Keep doing nothing while the power is supplied.**737 +* Keep doing nothing while the power is supplied. 686 686 687 687 If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction. 688 688 689 -* *Make sure the power be OFF before cleaning the unit or tightening the terminals.**741 +* Make sure the power be OFF before cleaning the unit or tightening the terminals. 690 690 691 691 If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock. 692 692 693 -* *To run temperature control module in safe, please read this manual carefully firstly.**745 +* To run temperature control module in safe, please read this manual carefully firstly. 694 694 695 695 Damages or accidents would happen if the operations is not right. 696 696 697 -Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire. 749 +* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire. 698 698 699 699 ~* For repair, contact WECON Technology Co., Ltd. 700 700 701 -* *Make sure power is off before wiring.**753 +* Make sure power is off before wiring. 702 702 703 703 Failure or malfunction maybe happen because of wiring during power is on. 704 704 ... ... @@ -707,32 +707,42 @@ 707 707 In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3. 708 708 709 709 (% style="text-align:center" %) 710 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]762 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]] 711 711 712 712 Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30). 713 713 714 714 **Program example** 715 715 716 -* Input range: K type ~-~- 100.0 to 400.0 °C 717 -* PID values: it is determined by auto-tuning 718 -* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 719 -* Heater/cooling control: Heater (Initialization) 768 +Input range: K type ~-~- 100.0 to 400.0 °C 720 720 721 -D eviceassignment:770 +PID values: it is determined by auto-tuning 722 722 723 -* X000: initialization 724 -* X001: Reset the flag of error bit. 725 -* X002: Control starts (ON)/stop (OFF); 726 -* X003: self-tuning beginning when it changes from 0 to 1. 727 -* M0~~M15: Flags of error 728 -* M20~~M35: Flags of events 729 -* D0~~D199: Read value from BFM 730 -* D200~~D399: Write set value(SV) into BFM 772 +Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780 731 731 732 - Project:774 +Heater/cooling control: Heater (Initialization) 733 733 776 +* Device assignment: 777 + 778 +X000: initialization 779 + 780 +X001: Reset the flag of error bit. 781 + 782 +X002: Control starts (ON)/stop (OFF); 783 + 784 +X003: self-tuning beginning when it changes from 0 to 1. 785 + 786 +M0~~M15: Flags of error 787 + 788 +M20~~M35: Flags of events 789 + 790 +D0~~D199: Read value from BFM 791 + 792 +D200~~D399: Write set value(SV) into BFM 793 + 794 +* Project: 795 + 734 734 (% style="text-align:center" %) 735 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]797 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]] 736 736 737 737 = **7 Diagnostic** = 738 738