Changes for page LX3V-4LTC

Last modified by Devin Chen on 2024/11/22 09:42

From version 7.1
edited by Devin Chen
on 2024/10/09 11:36
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 14:42
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Expansions.1 Module.Temperature.WebHome
1 +1 Module.Temperature.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.DevinChen
1 +XWiki.admin
Content
... ... @@ -1,6 +1,6 @@
1 1  = **1 Introduction** =
2 2  
3 -LX3V-4LTC is temperature control module. It has four temperature input ports and four transistor output ports (the collector is open). It reads data from thermocouple, and then output value with PID control.
3 +LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control.
4 4  
5 5  LX3V-4LTC needs to connect with LX3V series PLC
6 6  
... ... @@ -12,19 +12,28 @@
12 12  = **2 Dimensions** =
13 13  
14 14  (% style="text-align:center" %)
15 -[[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]
15 +[[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]]
16 16  
17 -1. Extension cable and connector
18 -1. Com LED: Light when communicating
19 -1. Power LED: Light when connect to 24V
20 -1. State LED: Light when normal condition
21 -1. Module name
22 -1. Analog signal terminal
23 -1. Extension module interface
24 -1. DIN rail mounting slot
25 -1. DIN rail hook
26 -1. Mounting holes (φ4.5)
17 +①Extension cable and connector
27 27  
19 +②Com LED: Light when communicating
20 +
21 +③Power LED: Light when connect to 24V
22 +
23 +④State LED: Light when normal condition
24 +
25 +⑤Module name
26 +
27 +⑥Analog signal terminal
28 +
29 +⑦Extension module interface
30 +
31 +⑧DIN rail mounting slot
32 +
33 +⑨DIN rail hook
34 +
35 +⑩Mounting holes (φ4.5)
36 +
28 28  **Using crimp terminations**
29 29  
30 30  (((
... ... @@ -33,25 +33,32 @@
33 33  * Other terminals should be empty but only wiring terminals mention in this manual.
34 34  
35 35  (% style="text-align:center" %)
36 -[[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]
45 +[[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]]
37 37  )))
38 38  
39 39  = **3 Wiring** =
40 40  
41 41  (((
42 -The compensating cables that connect with thermocouples could be as follows:
51 +1. The compensating cables that connect with thermocouples could be as follows:
43 43  
44 -* Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
45 -* Type J: JX-G, JX-H
46 -* Type K: SC-G, SC-H
47 -* Type N: NC-G, NC-H
48 -* Type E: EX-G, EX-H
49 -* Type T: TX-G, TX-H
50 -* Type B: BC-G, BC-H
51 -* Type R: RC-G, RC-H
53 +Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
52 52  
55 +Type J: JX-G, JX-H
56 +
57 +Type K: SC-G, SC-H
58 +
59 +Type N: NC-G, NC-H
60 +
61 +Type E: EX-G, EX-H
62 +
63 +Type T: TX-G, TX-H
64 +
65 +Type B: BC-G, BC-H
66 +
67 +Type R: RC-G, RC-H
68 +
53 53  (% style="text-align:center" %)
54 -[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]
70 +[[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]]
55 55  )))
56 56  
57 57  For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
... ... @@ -72,54 +72,56 @@
72 72  **General specification**
73 73  
74 74  (% class="table-bordered" %)
75 -|=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**
76 -|=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit
77 -|=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)
91 +|**Item**|**Specification**
92 +|General specifications|Same as those for the main unit
93 +|Dielectric withstand voltage|500V AC, 1min (between all terminals and ground)
78 78  
79 79  **Power supply specification**
80 80  
81 81  (% class="table-bordered" %)
82 -|=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**
83 -|=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA
84 -|=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)
98 +|**Item**|**Specification**
99 +|Analog circuits|24V DC ± 10%, 50mA
100 +|Digital circuits|24V DC, 35mA (internal power supply from the main unit)
85 85  
86 86  **Performance specification**
87 87  
88 -(% class="table-bordered" style="width:1117px" %)
89 -|=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)**
90 -|(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
91 -|(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most.
92 -|(% rowspan="8" style="width:253px" %)(((
93 -Rated temperature range
94 -)))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192
95 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112
96 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752
97 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832
98 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372
99 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉
100 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4
101 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4
102 -|(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form
103 -|(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920
104 -|(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120
105 -|(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520
106 -|(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320
107 -|(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720
108 -|(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720
109 -|(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144
110 -|(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144
111 -|(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F
112 -|(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F
113 -|(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F
114 -|(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F
115 -|(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F
116 -|(% style="width:130px" %)Type B|(% style="width:248px" %)(((
104 +(% class="table-bordered" %)
105 +|(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)**
106 +|(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
107 +|Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
108 +|(% rowspan="8" %)(((
109 +Rated temperature
110 +
111 +range
112 +)))|Type K|-100 to +1,200|Type K|-148 to +2,192
113 +|Type J|-100 to +600|Type J|-148 to +1,112
114 +|Type T|-100 to +400|Type T|-148 to +752
115 +|Type E|-100 to +1,000|Type E|-148 to +1,832
116 +|Type N|-100 to +1,300|Type N|-148 to +2,372
117 +|Type B|+250 to +1,800|Type B|-482 to +3,272℉
118 +|Type R|-50 to +1,768|Type R|-58 to +3,214.4
119 +|Type S|-50 to +1,768|Type S|-58 to +3,214.4
120 +|(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form
121 +|Type K|-1,000 to +12,000|Type K|-1480 to +21,920
122 +|Type J|-1,000 to +6,000|Type J|-1480 to +11,120
123 +|Type T|-1,000 to +4,000|Type T|-1480 to +7,520
124 +|Type E|-1,000 to +10,000|Type E|-1480 to +18,320
125 +|Type N|-1,000 to +13,000|Type N|-1480 to +23,720
126 +|Type B|+2,500 to +18,000|Type B|-4820 to +32,720
127 +|Type R|-500 to +17,680|Type R|-580 to +32,144
128 +|Type S|-500 to +17,680|Type S|-580 to +32,144
129 +|(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F
130 +|Type J|0.3°C|Type J|0.54°F
131 +|Type T|0.4°C|Type T|0.72°F
132 +|Type E|0.25°C|Type E|0.45°F
133 +|Type N|0.52°C|Type N|0.936°F
134 +|Type B|(((
117 117  2.09°C
118 118  
119 119  2.97°C (less than 1,000°C)
120 120  
121 121  1.64°C (more than 1,000°C)
122 -)))|(% style="width:147px" %)Type B|(% style="width:298px" %)(((
140 +)))|Type B|(((
123 123  3.762°F
124 124  
125 125  5.346°F (less than 1,832°F)
... ... @@ -126,13 +126,13 @@
126 126  
127 127  2.952°F (more than 1,832°F)
128 128  )))
129 -|(% style="width:130px" %)Type R|(% style="width:248px" %)(((
147 +|Type R|(((
130 130  1.53°C
131 131  
132 132  1.87°C (less than 800°C)
133 133  
134 134  1.32°C (more than 800°C)
135 -)))|(% style="width:147px" %)Type R|(% style="width:298px" %)(((
153 +)))|Type R|(((
136 136  2.754°F
137 137  
138 138  3.366°F (less than 1,472°F)
... ... @@ -139,13 +139,13 @@
139 139  
140 140  2.376°F (more than 1,472°F)
141 141  )))
142 -|(% style="width:130px" %)Type S|(% style="width:248px" %)(((
160 +|Type S|(((
143 143  1.72°C
144 144  
145 145  2.01°C (less than 800°C)
146 146  
147 147  1.53°C (more than 800°C)
148 -)))|(% style="width:147px" %)Type S|(% style="width:298px" %)(((
166 +)))|Type S|(((
149 149  3.096°F
150 150  
151 151  3.618°F (less than 1,472°F)
... ... @@ -152,30 +152,27 @@
152 152  
153 153  2.754°F (more than 1,472°F)
154 154  )))
155 -|(% style="width:253px" %)(((
156 -Overall accuracy calibration point
157 -)))|(% colspan="4" style="width:823px" %)(((
173 +|(((
174 +Overall accuracy
175 +
176 +Calibration point
177 +)))|(% colspan="4" %)(((
158 158  ± (0.5% full scale +1°C)
159 159  
160 160  Freezing point of pure water 0°C / 32°F
161 161  )))
162 162  
163 -(% class="box infomessage" %)
164 -(((
165 -**✎Note: **
183 +**✎Note: **Earth-tipped thermocouples are not suitable for this unit.
166 166  
167 -* Earth-tipped thermocouples are not suitable for this unit.
168 -* Earth-tipped thermocouples are not suitable for this unit.
169 -)))
185 +Earth-tipped thermocouples are not suitable for this unit.
170 170  
171 -
172 172  **Analog Input**
173 173  
174 174  (% class="table-bordered" %)
175 -|=(% colspan="2" %)(((
190 +|(% colspan="2" %)(((
176 176  **Conversion Characteristics**
177 177  
178 -Readings given at calibration reference point 0°C/32°F (0/320) respectively. (Subject to the overall accuracy)
193 +Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy)
179 179  )))
180 180  |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]]
181 181  
... ... @@ -182,8 +182,8 @@
182 182  **Miscellaneous**
183 183  
184 184  (% class="table-bordered" %)
185 -|=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**
186 -|=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
200 +|**Item**|**Specification**
201 +|Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
187 187  
188 188  = **5 Buffer Memory (BFM)** =
189 189  
... ... @@ -195,10 +195,13 @@
195 195  |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
196 196  Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
197 197  
198 -* 0: Type K
199 -* 1: Type J
200 -* 2: Type T
213 +0: Type K
201 201  
215 +1: Type J
216 +
217 +2: Type T
218 +
219 +
202 202  (((
203 203  [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
204 204  
... ... @@ -223,55 +223,88 @@
223 223  |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
224 224  |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
225 225  |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
226 -* B0: A/D conversion would be stopped when b2 or b3 is ON.
227 -* B1: Not used;
228 -* B2: power failed;
229 -* B3: Hardware failed;
230 -* B4~~B7: Not used;
231 -* B8: Values backup error;
232 -* B10: Digital output/analog input value is out of the specified range;
233 -* B11: Averaged value is out of the available range;
234 -* B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
235 -* B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
236 -* B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
244 +B0: A/D conversion would be stopped when b2 or b3 is ON.
245 +
246 +B1: Not used;
247 +
248 +B2: power failed;
249 +
250 +B3: Hardware failed;
251 +
252 +B4~~B7: Not used;
253 +
254 +B8: Values backup error;
255 +
256 +B10: Digital output/analog input value is out of the specified range;
257 +
258 +B11: Averaged value is out of the available range;
259 +
260 +B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
261 +
262 +B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
263 +
264 +B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
237 237  )))
238 238  |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
239 239  |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
240 240  |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
241 241  |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
242 -* 0: Performs nothing
243 -* 1: Initializes all data
244 -* 2: Initializes BFM #19 to BFM #174
245 -* 3: Initializes error
246 -* Others: No action
270 +0: Performs nothing
271 +
272 +1: Initializes all data
273 +
274 +2: Initializes BFM #19 to BFM #174
275 +
276 +3: Initializes error
277 +
278 +Others: No action
247 247  )))
248 248  |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
249 -* 0: Performs nothing
250 -* Other: Performs backups
281 +0: Performs nothing
282 +
283 +Other: Performs backups
251 251  )))
252 252  |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
253 -* b0: Reserved;
254 -* b1: value range setting error;
255 -* b2: PID self-tuning error;
256 -* b3: The difference of setting value and offset value of PID self-tuning is too small;
257 -* b4~~b5: Reserved;
258 -* b6: Channel mode Error/ This channel is not enabled;
259 -* b7: PV exceeded;
260 -* b8: PID self-tuning parameters are changed in process;
286 +b0: Reserved;
287 +
288 +b1: value range setting error;
289 +
290 +b2: PID self-tuning error;
291 +
292 +b3: The difference of setting value and offset value of PID self-tuning is too small;
293 +
294 +b4~~b5: Reserved;
295 +
296 +b6: Channel mode Error/ This channel is not enabled;
297 +
298 +b7: PV exceeded;
299 +
300 +b8: PID self-tuning parameters are changed in process;
261 261  )))
262 262  |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
263 -* b0 & b15: Reserved;
264 -* b4: Alarm 1 - When alarm 1 occurs, it is set ON;
265 -* b5: Alarm 2 - When alarm 2 occurs, it is set ON;
266 -* b6: Alarm 3 - When alarm 3 occurs, it is set ON;
267 -* b7: Alarm 4 - When alarm 4 occurs, it is set ON;
268 -* b8: Heating control;
269 -* b9: Cooling control;
270 -* b10: PID terminals output;
271 -* b11: PID control flag;
272 -* b12: Manual flag;
273 -* b13: Self-tuning;
274 -* b14: ON / OFF control;
303 +b0 & b15: Reserved;
304 +
305 +b4: Alarm 1 - When alarm 1 occurs, it is set ON;
306 +
307 +b5: Alarm 2 - When alarm 2 occurs, it is set ON;
308 +
309 +b6: Alarm 3 - When alarm 3 occurs, it is set ON;
310 +
311 +b7: Alarm 4 - When alarm 4 occurs, it is set ON;
312 +
313 +b8: Heating control;
314 +
315 +b9: Cooling control;
316 +
317 +b10: PID terminals output;
318 +
319 +b11: PID control flag;
320 +
321 +b12: Manual flag;
322 +
323 +b13: Self-tuning;
324 +
325 +b14: ON / OFF control;
275 275  )))
276 276  |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
277 277  Unit: 0.1 °C
... ... @@ -280,21 +280,25 @@
280 280  )))
281 281  |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
282 282  |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
283 -* 0: Stops control;
284 -* Other: Starts control;
334 +0: Stops control;
335 +
336 +Other: Starts control;
285 285  )))
286 286  |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
287 -* 0: AUTO;
288 -* Other: MAN;
339 +0: AUTO;
340 +
341 +Other: MAN;
289 289  )))
290 290  |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
291 291  |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
292 -* 0: Stops self-tuning;
293 -* Other : starts self-tuning;
345 +0: Stops self-tuning;
346 +
347 +Other : starts self-tuning;
294 294  )))
295 295  |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
296 -* 0: Heating control;
297 -* 1: Cooling control;
350 +0: Heating control;
351 +
352 +1: Cooling control;
298 298  )))
299 299  |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
300 300  Unit: 0.1 °C
... ... @@ -304,17 +304,14 @@
304 304  |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
305 305  KP = 0, ON / OFF control is executed.
306 306  
307 -Range: 0 ~~ 32767.
362 +Range: 0-32767.
308 308  
309 -(% class="box infomessage" %)
310 -(((
311 -**✎Note: ** This value is magnified 256 times; the actual value is KP / 256.
364 +Note: This value is magnified 256 times; the actual value is KP / 256.
312 312  )))
313 -)))
314 -|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767
315 -|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767
316 -|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms)
317 -|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023
366 +|(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767
367 +|(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767
368 +|(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms)
369 +|(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023
318 318  |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
319 319  The maximum rate of rise: 0-320;
320 320  
... ... @@ -321,9 +321,9 @@
321 321  Range: 0-32000 (0-320);
322 322  )))
323 323  |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
324 -1~~100 (*500ms);
376 +1-100 (*500ms);
325 325  
326 -Range: 0.5s~~50s;
378 +Range: 0.5s-50s;
327 327  )))
328 328  |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
329 329  |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
... ... @@ -330,7 +330,7 @@
330 330  |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
331 331  Dead zone is used for ON/OFF control mode
332 332  
333 -Range: 0~~100 (Unit: 0.1%)
385 +Range: 0-100 (Unit: 0.1%)
334 334  )))
335 335  |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
336 336  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -339,8 +339,9 @@
339 339  
340 340  Range:
341 341  
342 -* K type: -100°C ~~1200°C
343 -* J type: -100°C ~~ 600°C
394 +K type: -100°C - 1200°C
395 +
396 +J type: -100°C - 600°C
344 344  )))
345 345  |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
346 346  Lower & upper threshold of input (Unit: 0.1 °C)
... ... @@ -349,18 +349,19 @@
349 349  
350 350  Range:
351 351  
352 -* K type: -100°C~~1200°C
353 -* J type: -100°C~~600°C
405 +K type: -100°C - 1200°C
406 +
407 +J type: -100°C - 600°C
354 354  )))
355 355  |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
356 356  This BFM is used for setting the upper threshold of output.
357 357  
358 -Range: 0~~2000
412 +Range: 0-2000
359 359  )))
360 360  |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
361 361  This BFM is used for setting the lower threshold of output.
362 362  
363 -Range: 0~~2000
417 +Range: 0-2000
364 364  )))
365 365  |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
366 366  |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
... ... @@ -379,119 +379,113 @@
379 379  |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
380 380  Calculation of dead zone
381 381  
382 -* Bias: (SV+ bias)* dead zone
383 -* Upper & lower threshold mode: Alarm setting value* dead zone
436 +Bias: (SV+ bias)* dead zone
437 +
438 +Upper & lower threshold mode: Alarm setting value* dead zone
384 384  )))
385 -|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255
440 +|(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255
386 386  |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
387 -* 0: Normal;
388 -* Others: Error in setting address
442 +0: Normal;
443 +
444 +Others: Error in setting address
389 389  )))
390 390  |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
391 391  
392 -(% class="box infomessage" %)
393 -(((
394 394  **✎Note: **
395 395  
396 -* 0: Retentive;
397 -* X: Non-retentive;
398 -* R: Only read is enabled;
399 -* R/W: Both read and write are enabled;
400 -)))
450 +0: Retentive;
401 401  
452 +X: Non-retentive;
453 +
454 +R: Only read is enabled;
455 +
456 +R/W: Both read and write are enabled;
457 +
402 402  **Details of buffer memories**
403 403  
404 -**Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
460 +* **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
405 405  
406 406  BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
407 407  
408 408  (% style="text-align:center" %)
409 -[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]
465 +[[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]]
410 410  
411 411  The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
412 412  
413 413  240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
414 414  
415 -**Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
471 +* **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
416 416  
417 417  When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
418 418  
419 -**Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
475 +* **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
420 420  
421 421  These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
422 422  
423 -**Buffer Memory BFM #28: Digital range error latch**
479 +* **Buffer Memory BFM #28: Digital range error latch**
424 424  
425 -* BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
426 -* BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
481 +BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
427 427  
483 +BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
484 +
428 428  (((
429 429  (% class="table-bordered" %)
430 -|=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**
487 +|**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0**
431 431  |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
432 432  |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
433 433  )))
434 434  
435 -* **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
436 -* **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
492 +**Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
437 437  
494 +**High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
495 +
438 438  When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
439 439  
440 440  An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
441 441  
442 -**Buffer Memory BFM #29: Error status**
500 +* **Buffer Memory BFM #29: Error status**
443 443  
444 444  (((
445 445  (% class="table-bordered" %)
446 -|=(% scope="row" %)**Bit devices of BFM #29**|=**Error information**
447 -|=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
448 -|=b1, b4~~b7|Not used;
449 -|=b2|24V DC power supply failed;
450 -|=b3|Hardware failed;
451 -|=b8|Backup error of set value.
452 -|=b10|Digital output/analog input value is out of the specified range;
453 -|=b11|The value of averaged results is out of the available range;
454 -|=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
455 -|=b14|It is in backup status, this bit sets to ON;
456 -|=b15|Initialization completion flag;
504 +|**Bit devices of BFM #29**|**Error information**
505 +|b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
506 +|b1, b4~~b7|Not used;
507 +|b2|24V DC power supply failed;
508 +|b3|Hardware failed;
509 +|b8|Backup error of set value.
510 +|b10|Digital output/analog input value is out of the specified range;
511 +|b11|The value of averaged results is out of the available range;
512 +|b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
513 +|b14|It is in backup status, this bit sets to ON;
514 +|b15|Initialization completion flag;
457 457  )))
458 458  
459 -**ID Code Buffer Memory BFM #30**
517 +* **ID Code Buffer Memory BFM #30**
460 460  
461 461  The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
462 462  
463 -**Power-down retention flag BFM#42**
521 +* **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
464 464  
465 -First, configure the parameters to be saved, and then set the power-down retention flag BFM#42 to 1. This enables power-down retention for the configured parameters.
466 -
467 -The operation steps are illustrated as follows:
468 -
469 -1. Set the power-down retention register to a value of 100 (e.g., BFM#52 is set to 100).
470 -1. Set the power-down retention flag BFM#42 to 1 (data is saved at this point, and BFM#42 will automatically reset to zero upon completion).
471 -1. Change the data of the power-down retention register to 1000 (e.g., BFM#52 is set to 1000).
472 -1. Power off and then power on again. At this point, check the value of the power-down retention register, which should be 100 (e.g., BFM#52 shows a value of 100)."
473 -
474 -**Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
475 -
476 476  (((
477 477  (% class="table-bordered" %)
478 -|=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**
479 -|=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-
480 -|=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
481 -|=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON
482 -|=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
483 -|=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.
484 -|=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.
485 -|=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
525 +|**Error flag**|**Content**|**Remark**
526 +|b0, b4, b5|Not used;|-
527 +|b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
528 +|b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON
529 +|b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
530 +|b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON.
531 +|b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON.
532 +|b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
486 486  )))
487 487  
488 -**BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
535 +* **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
489 489  
490 490  BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
491 491  
492 -* When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
493 -* When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
539 +When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
494 494  
541 +When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
542 +
495 495  **Auto mode:**
496 496  
497 497  The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
... ... @@ -506,8 +506,10 @@
506 506  
507 507  The temperature alarm function is effective even in the manual mode.
508 508  
509 -**Self-tuning function**
557 +1. **Self-tuning function**
510 510  
559 +**Self-tuning**
560 +
511 511  The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
512 512  
513 513  When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
... ... @@ -529,7 +529,7 @@
529 529  Self-tuning would be canceled with one of the following conditions:
530 530  
531 531  (% style="text-align:center" %)
532 -[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]
582 +[[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]]
533 533  
534 534  * SV value has been changed.
535 535  * The control has been stopped, the operation mode is "0: Stops control".
... ... @@ -544,7 +544,7 @@
544 544  If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
545 545  
546 546  (% style="text-align:center" %)
547 -[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]
597 +[[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]]
548 548  
549 549  **Dead zone (adjustment sensitivity) setting**
550 550  
... ... @@ -558,32 +558,37 @@
558 558  
559 559  **Example**
560 560  
561 -Conditions:
611 +* Conditions:
562 562  
563 -* When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C
564 -* When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
565 -* When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
613 +When BFM #41/#60 is set to "10.0%" in the range span of 400°C
566 566  
615 +400°C x 10.0% / 100 = 40°C
616 +
617 +When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
618 +
619 +When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
620 +
567 567  (% style="text-align:center" %)
568 -[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]
622 +[[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]]
569 569  
570 -**Output(MV) upper threshold: BFM #65/#103/#141/#179**
624 +* **Output(MV) upper threshold: BFM #65/#103/#141/#179**
571 571  
572 572  **Output(MV) lower threshold: BFM #66/#104/#142/#180**
573 573  
574 -* BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
575 -* BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
628 +BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
576 576  
630 +BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
631 +
577 577  These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
578 578  
579 579  (% style="text-align:center" %)
580 -[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]
635 +[[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]]
581 581  
582 582  1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
583 583  1. The output limiter would not be active when two-position control is active,.
584 -1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control
639 +1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control.
585 585  
586 -**Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
641 +* **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
587 587  
588 588  LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
589 589  
... ... @@ -590,7 +590,7 @@
590 590  Each channel could have four alarm modes.
591 591  
592 592  (% style="text-align:center" %)
593 -[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]
648 +[[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]]
594 594  
595 595  Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
596 596  
... ... @@ -598,23 +598,21 @@
598 598  
599 599  (((
600 600  (% class="table-bordered" %)
601 -|(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**
602 -|(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--
603 -|(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range
604 -|(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range
605 -|(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width
606 -|(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width
607 -|(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
608 -|(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
609 -|(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range
610 -|(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range
611 -|(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
612 -|(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
613 -|(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width
656 +|**Alarm No.**|**Alarm mode**|**Description**|**Set range**
657 +|0|Alarm is disabled|Alarm function is disabled.|~-~--
658 +|1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range
659 +|2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range
660 +|3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width
661 +|4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width
662 +|5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
663 +|6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
664 +|7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range
665 +|8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range
666 +|9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width
667 +|10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width
668 +|11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width
614 614  )))
615 615  
616 -(% class="box infomessage" %)
617 -(((
618 618  **✎Note: **
619 619  
620 620  * Input range: it is from the lower threshold to the upper threshold of input value
... ... @@ -621,9 +621,8 @@
621 621  * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value).
622 622  * ±Input width: it could be positive and negative.
623 623  * + Input width: it could be positive only.
624 -)))
625 625  
626 -**Alarm dead zone setting**
678 +1. **Alarm dead zone setting**
627 627  
628 628  BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
629 629  
... ... @@ -635,22 +635,22 @@
635 635  
636 636  In upper/lower threshold mode: dead zone=alarm setting value*dead zone
637 637  
638 -* Upper threshold input alarm and upper threshold deviation alarm
690 +1. Upper threshold input alarm and upper threshold deviation alarm
639 639  
640 640  (% style="text-align:center" %)
641 -[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]
693 +[[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]]
642 642  
643 -* Lower threshold input alarm and lower threshold deviation alarm
695 +1. Lower threshold input alarm and lower threshold deviation alarm
644 644  
645 645  (% style="text-align:center" %)
646 -[[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]
698 +[[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]]
647 647  
648 -* Upper/lower threshold deviation alarm
700 +1. Upper/lower threshold deviation alarm
649 649  
650 650  (% style="text-align:center" %)
651 -[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]
703 +[[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]]
652 652  
653 -**Number of times of alarm delay**
705 +* **Number of times of alarm delay**
654 654  
655 655  BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
656 656  
... ... @@ -659,9 +659,9 @@
659 659  Example: the number of alarm delay sets to 5 times
660 660  
661 661  (% style="text-align:center" %)
662 -[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]
714 +[[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]]
663 663  
664 -**Address of value range error**
716 +* **Address of value range error**
665 665  
666 666  When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
667 667  
... ... @@ -669,7 +669,7 @@
669 669  
670 670  When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
671 671  
672 -**Output cycle control**
724 +* **Output cycle control**
673 673  
674 674  BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
675 675  
... ... @@ -678,27 +678,27 @@
678 678  The allowable range of this value is from 1 to 100 sec.
679 679  
680 680  (% style="text-align:center" %)
681 -[[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]
733 +[[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]]
682 682  
683 683  = **6 Program Example** =
684 684  
685 -**Keep doing nothing while the power is supplied.**
737 +* Keep doing nothing while the power is supplied.
686 686  
687 687  If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
688 688  
689 -**Make sure the power be OFF before cleaning the unit or tightening the terminals.**
741 +* Make sure the power be OFF before cleaning the unit or tightening the terminals.
690 690  
691 691  If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
692 692  
693 -**To run temperature control module in safe, please read this manual carefully firstly.**
745 +* To run temperature control module in safe, please read this manual carefully firstly.
694 694  
695 695  Damages or accidents would happen if the operations is not right.
696 696  
697 -Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
749 +* Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
698 698  
699 699  ~* For repair, contact WECON Technology Co., Ltd.
700 700  
701 -**Make sure power is off before wiring.**
753 +* Make sure power is off before wiring.
702 702  
703 703  Failure or malfunction maybe happen because of wiring during power is on.
704 704  
... ... @@ -707,32 +707,42 @@
707 707  In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
708 708  
709 709  (% style="text-align:center" %)
710 -[[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]
762 +[[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]]
711 711  
712 712  Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
713 713  
714 714  **Program example**
715 715  
716 -* Input range: K type ~-~- 100.0 to 400.0 °C
717 -* PID values: it is determined by auto-tuning
718 -* Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
719 -* Heater/cooling control: Heater (Initialization)
768 +Input range: K type ~-~- 100.0 to 400.0 °C
720 720  
721 -Device assignment:
770 +PID values: it is determined by auto-tuning
722 722  
723 -* X000: initialization
724 -* X001: Reset the flag of error bit.
725 -* X002: Control starts (ON)/stop (OFF);
726 -* X003: self-tuning beginning when it changes from 0 to 1.
727 -* M0~~M15: Flags of error
728 -* M20~~M35: Flags of events
729 -* D0~~D199: Read value from BFM
730 -* D200~~D399: Write set value(SV) into BFM
772 +Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
731 731  
732 -Project:
774 +Heater/cooling control: Heater (Initialization)
733 733  
776 +* Device assignment:
777 +
778 +X000: initialization
779 +
780 +X001: Reset the flag of error bit.
781 +
782 +X002: Control starts (ON)/stop (OFF);
783 +
784 +X003: self-tuning beginning when it changes from 0 to 1.
785 +
786 +M0~~M15: Flags of error
787 +
788 +M20~~M35: Flags of events
789 +
790 +D0~~D199: Read value from BFM
791 +
792 +D200~~D399: Write set value(SV) into BFM
793 +
794 +* Project:
795 +
734 734  (% style="text-align:center" %)
735 -[[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]
797 +[[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]]
736 736  
737 737  = **7 Diagnostic** =
738 738