Wiki source code of LX3V-4LTC

Version 1.1 by Leo Wei on 2022/06/08 14:42

Show last authors
1 = **1 Introduction** =
2
3 LX3V-4LTC is temperature control module, it has four temperature input ports and four transistor output ports (the collector is open), it reads data from thermocouple, and then output value with PID control.
4
5 LX3V-4LTC needs to connect with LX3V series PLC
6
7 1. Four input ports could support type K, type J, type T, type E, type N, type B, type R and type S thermocouple.
8 1. When it connects with LX3V PLC, PLC could read/write data by “FROM/TO” instruction. (LX3V-4LTC could execute PID control and output control, it does not need user to write PID ladder.)
9 1. Proportion coefficient, integral time, differential time of LX3V-4LTC can be self-tuning/
10 1. Each channel is isolation each other.
11
12 = **2 Dimensions** =
13
14 (% style="text-align:center" %)
15 [[image:LX3V-4LTC_html_d0eefd90086ce676.png||class="img-thumbnail" height="394" width="1000"]]
16
17 ①Extension cable and connector
18
19 ②Com LED: Light when communicating
20
21 ③Power LED: Light when connect to 24V
22
23 ④State LED: Light when normal condition
24
25 ⑤Module name
26
27 ⑥Analog signal terminal
28
29 ⑦Extension module interface
30
31 ⑧DIN rail mounting slot
32
33 ⑨DIN rail hook
34
35 ⑩Mounting holes (φ4.5)
36
37 **Using crimp terminations**
38
39 (((
40 * Be sure to use the crimp-style terminals that satisfy the dimensional requirements shows in the left figure.
41 * Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals to prevent abnormal operation.
42 * Other terminals should be empty but only wiring terminals mention in this manual.
43
44 (% style="text-align:center" %)
45 [[image:LX3V-4LTC_html_67891e8f02a25438.png||class="img-thumbnail" height="199" width="300"]]
46 )))
47
48 = **3 Wiring** =
49
50 (((
51 1. The compensating cables that connect with thermocouples could be as follows:
52
53 Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
54
55 Type J: JX-G, JX-H
56
57 Type K: SC-G, SC-H
58
59 Type N: NC-G, NC-H
60
61 Type E: EX-G, EX-H
62
63 Type T: TX-G, TX-H
64
65 Type B: BC-G, BC-H
66
67 Type R: RC-G, RC-H
68
69 (% style="text-align:center" %)
70 [[image:LX3V-4LTC_html_1a21799ac3e4e881.png||class="img-thumbnail" height="360" width="400"]]
71 )))
72
73 For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
74
75 1. Connect the ground terminals of the LX3V-4LTC unit with the main unit. And the main unit should be 3 grade grounding.
76 1. The built-in 24V DC output of PLC main unit could be used as the power supply of LX3V-4LTC.
77 1. FG1-FG4:GND connection of each channel.(generally it is not necessary to connect unless sensor signal is not stable)
78
79 **Cautions**
80
81 * Make sure all power be shut down before installation or wiring. Otherwise, it maybe cause electrical shock or components damaged.
82 * It would be dangerous if system and loads outside starts simultaneously, please make sure both of them are interlocked each other by PLC ladder or other ways.
83 * Please connect the PLC main unit and LX3V-4LTC with power supply properly; the main unit or LX3V-4LTC would be damaged if AC supply connects with DC I/O or DC power terminal.
84 * Do not connect the empty terminals with outside wire, which could damage your devices.
85
86 = **4 Specifications** =
87
88 **General specification**
89
90 (% class="table-bordered" %)
91 |**Item**|**Specification**
92 |General specifications|Same as those for the main unit
93 |Dielectric withstand voltage|500V AC, 1min (between all terminals and ground)
94
95 **Power supply specification**
96
97 (% class="table-bordered" %)
98 |**Item**|**Specification**
99 |Analog circuits|24V DC ± 10%, 50mA
100 |Digital circuits|24V DC, 35mA (internal power supply from the main unit)
101
102 **Performance specification**
103
104 (% class="table-bordered" %)
105 |(% rowspan="2" %)**Item**|(% colspan="2" %)**Centigrade (°C)**|(% colspan="2" %)**Fahrenheit (°F)**
106 |(% colspan="4" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
107 |Input signal|(% colspan="4" %)Thermocouple: Type K, J, T, E, N, B, R, S (each type can be used for each channel), 4 channels most.
108 |(% rowspan="8" %)(((
109 Rated temperature
110
111 range
112 )))|Type K|-100 to +1,200|Type K|-148 to +2,192
113 |Type J|-100 to +600|Type J|-148 to +1,112
114 |Type T|-100 to +400|Type T|-148 to +752
115 |Type E|-100 to +1,000|Type E|-148 to +1,832
116 |Type N|-100 to +1,300|Type N|-148 to +2,372
117 |Type B|+250 to +1,800|Type B|-482 to +3,272℉
118 |Type R|-50 to +1,768|Type R|-58 to +3,214.4
119 |Type S|-50 to +1,768|Type S|-58 to +3,214.4
120 |(% rowspan="9" %)Digital output|(% colspan="4" %)12-bit conversion, saved in 16-bit binary complement form
121 |Type K|-1,000 to +12,000|Type K|-1480 to +21,920
122 |Type J|-1,000 to +6,000|Type J|-1480 to +11,120
123 |Type T|-1,000 to +4,000|Type T|-1480 to +7,520
124 |Type E|-1,000 to +10,000|Type E|-1480 to +18,320
125 |Type N|-1,000 to +13,000|Type N|-1480 to +23,720
126 |Type B|+2,500 to +18,000|Type B|-4820 to +32,720
127 |Type R|-500 to +17,680|Type R|-580 to +32,144
128 |Type S|-500 to +17,680|Type S|-580 to +32,144
129 |(% rowspan="8" %)Resolution|Type K|0.4°C|Type K|0.72°F
130 |Type J|0.3°C|Type J|0.54°F
131 |Type T|0.4°C|Type T|0.72°F
132 |Type E|0.25°C|Type E|0.45°F
133 |Type N|0.52°C|Type N|0.936°F
134 |Type B|(((
135 2.09°C
136
137 2.97°C (less than 1,000°C)
138
139 1.64°C (more than 1,000°C)
140 )))|Type B|(((
141 3.762°F
142
143 5.346°F (less than 1,832°F)
144
145 2.952°F (more than 1,832°F)
146 )))
147 |Type R|(((
148 1.53°C
149
150 1.87°C (less than 800°C)
151
152 1.32°C (more than 800°C)
153 )))|Type R|(((
154 2.754°F
155
156 3.366°F (less than 1,472°F)
157
158 2.376°F (more than 1,472°F)
159 )))
160 |Type S|(((
161 1.72°C
162
163 2.01°C (less than 800°C)
164
165 1.53°C (more than 800°C)
166 )))|Type S|(((
167 3.096°F
168
169 3.618°F (less than 1,472°F)
170
171 2.754°F (more than 1,472°F)
172 )))
173 |(((
174 Overall accuracy
175
176 Calibration point
177 )))|(% colspan="4" %)(((
178 ± (0.5% full scale +1°C)
179
180 Freezing point of pure water 0°C / 32°F
181 )))
182
183 **✎Note: **Earth-tipped thermocouples are not suitable for this unit.
184
185 Earth-tipped thermocouples are not suitable for this unit.
186
187 **Analog Input**
188
189 (% class="table-bordered" %)
190 |(% colspan="2" %)(((
191 **Conversion Characteristics**
192
193 Readings given at calibration reference point 0°C/32°F (0/320) respectively. (subject to the overall accuracy)
194 )))
195 |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]]
196
197 **Miscellaneous**
198
199 (% class="table-bordered" %)
200 |**Item**|**Specification**
201 |Isolation|It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
202
203 = **5 Buffer Memory (BFM)** =
204
205 **Buffer memory list**
206
207 (% class="table-bordered" %)
208 |(% colspan="4" style="width:310px" %)**BFM No.**|(% rowspan="2" style="width:143px" %)**Name**|(% rowspan="2" style="width:68px" %)**Latched**|(% rowspan="2" style="width:77px" %)**Operation**|(% rowspan="2" style="width:104px" %)**Default value**|(% rowspan="2" style="width:348px" %)**Contents**
209 |(% style="width:55px" %)CH1|(% style="width:12px" %)CH2|(% style="width:52px" %)CH3|(% style="width:65px" %)CH4
210 |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
211 Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
212
213 0: Type K
214
215 1: Type J
216
217 2: Type T
218
219
220 (((
221 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
222
223 3: Type E
224 )))
225
226 4: Type N
227
228 5: Type B
229
230 6: Type R
231
232 7: Type S
233
234 Others: not used.
235 )))
236 |(% style="width:55px" %)#1|(% style="width:12px" %)#2|(% style="width:52px" %)#3|(% style="width:65px" %)#4|(% style="width:143px" %)Averaged constant of filter|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)8|(% style="width:348px" %)Count of temperature sampling for averaging. Please set 1 for High-speed sampling. Only the range 1 to 256 is valid for the number of temperature readings to be averaged. If a value outside of this range is entered, a default value of 8 is used.
237 |(% style="width:55px" %)#5|(% style="width:12px" %)#6|(% style="width:52px" %)#7|(% style="width:65px" %)#8|(% style="width:143px" %)Averaged temp.°C|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Averaged temperature (unit is 0.1°C)
238 |(% style="width:55px" %)#9|(% style="width:12px" %)#10|(% style="width:52px" %)#11|(% style="width:65px" %)#12|(% style="width:143px" %)Present temp.°C|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Current temperature (unit is 0.1°C)
239 |(% style="width:55px" %)#13|(% style="width:12px" %)#14|(% style="width:52px" %)#15|(% style="width:65px" %)#16|(% style="width:143px" %)Averaged temp.°F|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Averaged temperature (unit is 0.1°C)
240 |(% style="width:55px" %)#17|(% style="width:12px" %)#18|(% style="width:52px" %)#19|(% style="width:65px" %)#20|(% style="width:143px" %)Present temp.°F|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Current temperature in (unit is 0.1°C)
241 |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
242 |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
243 |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
244 B0: A/D conversion would be stopped when b2 or b3 is ON.
245
246 B1: Not used;
247
248 B2: power failed;
249
250 B3: Hardware failed;
251
252 B4~~B7: Not used;
253
254 B8: Values backup error;
255
256 B10: Digital output/analog input value is out of the specified range;
257
258 B11: Averaged value is out of the available range;
259
260 B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
261
262 B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
263
264 B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
265 )))
266 |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
267 |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
268 |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
269 |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
270 0: Performs nothing
271
272 1: Initializes all data
273
274 2: Initializes BFM #19 to BFM #174
275
276 3: Initializes error
277
278 Others: No action
279 )))
280 |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
281 0: Performs nothing
282
283 Other: Performs backups
284 )))
285 |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
286 b0: Reserved;
287
288 b1: value range setting error;
289
290 b2: PID self-tuning error;
291
292 b3: The difference of setting value and offset value of PID self-tuning is too small;
293
294 b4~~b5: Reserved;
295
296 b6: Channel mode Error/ This channel is not enabled;
297
298 b7: PV exceeded;
299
300 b8: PID self-tuning parameters are changed in process;
301 )))
302 |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
303 b0 & b15: Reserved;
304
305 b4: Alarm 1 - When alarm 1 occurs, it is set ON;
306
307 b5: Alarm 2 - When alarm 2 occurs, it is set ON;
308
309 b6: Alarm 3 - When alarm 3 occurs, it is set ON;
310
311 b7: Alarm 4 - When alarm 4 occurs, it is set ON;
312
313 b8: Heating control;
314
315 b9: Cooling control;
316
317 b10: PID terminals output;
318
319 b11: PID control flag;
320
321 b12: Manual flag;
322
323 b13: Self-tuning;
324
325 b14: ON / OFF control;
326 )))
327 |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
328 Unit: 0.1 °C
329
330 Sampling temperature (from averaged value) during executing.
331 )))
332 |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
333 |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
334 0: Stops control;
335
336 Other: Starts control;
337 )))
338 |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
339 0: AUTO;
340
341 Other: MAN;
342 )))
343 |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
344 |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
345 0: Stops self-tuning;
346
347 Other : starts self-tuning;
348 )))
349 |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
350 0: Heating control;
351
352 1: Cooling control;
353 )))
354 |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
355 Unit: 0.1 °C
356
357 The target temperature of PID control
358 )))
359 |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
360 KP = 0, ON / OFF control is executed.
361
362 Range: 0-32767.
363
364 Note: This value is magnified 256 times; the actual value is KP / 256.
365 )))
366 |(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0-32767
367 |(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0-32767
368 |(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1-100 (*500ms)
369 |(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0-1023
370 |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
371 The maximum rate of rise: 0-320;
372
373 Range: 0-32000 (0-320);
374 )))
375 |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
376 1-100 (*500ms);
377
378 Range: 0.5s-50s;
379 )))
380 |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
381 |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
382 |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
383 Dead zone is used for ON/OFF control mode
384
385 Range: 0-100 (Unit: 0.1%)
386 )))
387 |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
388 Lower & upper threshold of input (Unit: 0.1 °C)
389
390 Remark: This BFM is used for the upper threshold of input value.
391
392 Range:
393
394 K type: -100°C - 1200°C
395
396 J type: -100°C - 600°C
397 )))
398 |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
399 Lower & upper threshold of input (Unit: 0.1 °C)
400
401 Remark: This BFM is used for setting lower threshold of input.
402
403 Range:
404
405 K type: -100°C - 1200°C
406
407 J type: -100°C - 600°C
408 )))
409 |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
410 This BFM is used for setting the upper threshold of output.
411
412 Range: 0-2000
413 )))
414 |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
415 This BFM is used for setting the lower threshold of output.
416
417 Range: 0-2000
418 )))
419 |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
420 |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
421 It is used for alarm mode of four channels;
422
423 [[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif]]
424 )))
425 |(% style="width:55px" %)#69|(% style="width:12px" %)#107|(% style="width:52px" %)#145|(% style="width:65px" %)#183|(% style="width:143px" %)Alarm 1 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% rowspan="4" style="width:348px" %)(((
426 Unit: °C
427
428 The alarm range, it depends on alarm mode.
429 )))
430 |(% style="width:55px" %)#70|(% style="width:12px" %)#108|(% style="width:52px" %)#146|(% style="width:65px" %)#184|(% style="width:143px" %)Alarm 2 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
431 |(% style="width:55px" %)#71|(% style="width:12px" %)#109|(% style="width:52px" %)#147|(% style="width:65px" %)#185|(% style="width:143px" %)Alarm 3 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
432 |(% style="width:55px" %)#72|(% style="width:12px" %)#110|(% style="width:52px" %)#148|(% style="width:65px" %)#186|(% style="width:143px" %)Alarm 4 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
433 |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
434 Calculation of dead zone
435
436 Bias: (SV+ bias)* dead zone
437
438 Upper & lower threshold mode: Alarm setting value* dead zone
439 )))
440 |(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0-255
441 |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
442 0: Normal;
443
444 Others: Error in setting address
445 )))
446 |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
447
448 **✎Note: **
449
450 0: Retentive;
451
452 X: Non-retentive;
453
454 R: Only read is enabled;
455
456 R/W: Both read and write are enabled;
457
458 **Details of buffer memories**
459
460 * **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
461
462 BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
463
464 (% style="text-align:center" %)
465 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif||class="img-thumbnail" height="173" width="300"]]
466
467 The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
468
469 240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
470
471 * **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
472
473 When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
474
475 * **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
476
477 These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
478
479 * **Buffer Memory BFM #28: Digital range error latch**
480
481 BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
482
483 BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
484
485 (((
486 (% class="table-bordered" %)
487 |**b15 ~~ b8**|**b7**|**b6**|**b5**|**b4**|**b3**|**b2**|**b1**|**b0**
488 |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
489 |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
490 )))
491
492 **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
493
494 **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
495
496 When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
497
498 An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
499
500 * **Buffer Memory BFM #29: Error status**
501
502 (((
503 (% class="table-bordered" %)
504 |**Bit devices of BFM #29**|**Error information**
505 |b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
506 |b1, b4~~b7|Not used;
507 |b2|24V DC power supply failed;
508 |b3|Hardware failed;
509 |b8|Backup error of set value.
510 |b10|Digital output/analog input value is out of the specified range;
511 |b11|The value of averaged results is out of the available range;
512 |b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
513 |b14|It is in backup status, this bit sets to ON;
514 |b15|Initialization completion flag;
515 )))
516
517 * **ID Code Buffer Memory BFM #30**
518
519 The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
520
521 * **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
522
523 (((
524 (% class="table-bordered" %)
525 |**Error flag**|**Content**|**Remark**
526 |b0, b4, b5|Not used;|-
527 |b1|Error in setting value range.|When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
528 |b2|PID self-tuning error;|When either b3 or b8 is ON, this bit set ON
529 |b3|The difference of set value and offset are too small.|The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
530 |b6|Channel mode Error/ This channel is disable;|When the channel is disabled by BFM#0, this bit sets to ON.
531 |b7|PV exceeded;|When measured temperature exceeded PV’s range, this bit sets to ON.
532 |b8|PID self-tuning parameters are changed in process;|When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
533 )))
534
535 * **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
536
537 BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
538
539 When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
540
541 When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
542
543 **Auto mode:**
544
545 The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
546
547 In the auto mode, the manual output set value (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162) is always equival with the control output value.
548
549 **Manual mode:**
550
551 The control output (MV) value is fixed to the manual output set value (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162).
552
553 The manual output set value can be changed while b13 of the event (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162) is ON even if operation is performed in the manual mode.
554
555 The temperature alarm function is effective even in the manual mode.
556
557 1. **Self-tuning function**
558
559 **Self-tuning**
560
561 The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
562
563 When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
564
565 When self-tuning starts, two-position control is performed using the set value (SV). By two-position control, the output is forcedly hunted and its amplitude and oscillation cycle are measured. PID constants are calculated based on the measured values, and stored in each parameter. When self-tuning normally finishes, control continues with new calculated PID constants.
566
567 While self-tuning is performed, b14 of the event (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1".
568
569 (In order to calculate proper PID constants by self-tuning, set the upper limit of the output limiter to 2000, the lower limit of the output limiter to 0.)
570
571 Self-tuning can be started with the following conditions:
572
573 * The control start/stop changeover set to "1: Starts control".
574 * The operation mode sets to "2: Monitor + Temperature alarm + Control".
575 * The auto/manual mode is "0: AUTO".
576 * The measured value PV is normal.
577 * The upper threshold and lower threshold for output should be different.
578
579 Self-tuning would be canceled with one of the following conditions:
580
581 (% style="text-align:center" %)
582 [[image:LX3V-4LTC_html_98e0b421b7f760bb.png||class="img-thumbnail" height="217" width="500"]]
583
584 * SV value has been changed.
585 * The control has been stopped, the operation mode is "0: Stops control".
586 * The auto/manual mode is set to "1: MAN".
587 * The PV bias has been changed.
588 * The upper and lower threshold for output has been changed.
589 * The self-tuning executed command is set to "0: Stops auto tuning".
590 * Power failed
591
592 **Self-tuning bias**
593
594 If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
595
596 (% style="text-align:center" %)
597 [[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||class="img-thumbnail" height="197" width="500"]]
598
599 **Dead zone (adjustment sensitivity) setting**
600
601 BFM #62 is used for dead zone of CH1. BFM #100 is used for the dead zone of CH2. BFM #138 is used for the dead zone of CH3.BFM #176 is used for the dead zone of CH4.
602
603 When system has been turning ON/OFF operations, if the adjustment sensitivity has been configured, it could avoid temperature value (SV) show ON/OFF changes nearby.
604
605 The value set to BFM #62/#100/#138/#176 is equally to the value of the upper and the lower area of the temperature set value (BFM #52/#90/#128/#166).
606
607 For example, if the sensitive value sets to "10%", 5% above and 5% below of the set value would be treated as the dead zone (width of 10% in total).
608
609 **Example**
610
611 * Conditions:
612
613 When BFM #41/#60 is set to "10.0%" in the range span of 400°C
614
615 400°C x 10.0% / 100 = 40°C
616
617 When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
618
619 When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
620
621 (% style="text-align:center" %)
622 [[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||class="img-thumbnail" height="226" width="600"]]
623
624 * **Output(MV) upper threshold: BFM #65/#103/#141/#179**
625
626 **Output(MV) lower threshold: BFM #66/#104/#142/#180**
627
628 BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
629
630 BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
631
632 These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
633
634 (% style="text-align:center" %)
635 [[image:LX3V-4LTC_html_39b35ec1eae61e45.png||class="img-thumbnail" height="222" width="400"]]
636
637 1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
638 1. The output limiter would not be active when two-position control is active,.
639 1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control.
640
641 * **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
642
643 LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
644
645 Each channel could have four alarm modes.
646
647 (% style="text-align:center" %)
648 [[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||class="img-thumbnail" height="166" width="500"]]
649
650 Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
651
652 For detailed please refer to the following table
653
654 (((
655 (% class="table-bordered" %)
656 |**Alarm No.**|**Alarm mode**|**Description**|**Set range**
657 |0|Alarm is disabled|Alarm function is disabled.|~-~--
658 |1|Alarm for Upper threshold of input value|Alarms if measured value (PV) is more than value of alarm.|Input range
659 |2|Alarm for lower threshold of input value|Alarms if measured value (PV) is less than value of alarm.|Input range
660 |3|Alarm for upper threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|±Input width
661 |4|Alarm for lower threshold deviation|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|±Input width
662 |5|Alarm for Upper/lower limit deviation|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
663 |6|Range alarm|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|+Input width
664 |7|Alarm for upper threshold input value alarm with wait|Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|Input range
665 |8|Alarm for lower threshold input value alarm with wait|Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|Input range
666 |9|Alarm for upper threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|±Input width
667 |10|Alarm for lower threshold deviation with wait|Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|±Input width
668 |11|Alarm for Upper/lower limit deviation with wait|Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|+Input width
669 )))
670
671 **✎Note: **
672
673 * Input range: it is from the lower threshold to the upper threshold of input value
674 * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value).
675 * ±Input width: it could be positive and negative.
676 * + Input width: it could be positive only.
677
678 1. **Alarm dead zone setting**
679
680 BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
681
682 The allowable set range is the input range (from 0.0 to 10.0 %.)
683
684 **Calculation of dead zone**
685
686 In deviation mode: dead zone =(SV+ deviation)*dead zone
687
688 In upper/lower threshold mode: dead zone=alarm setting value*dead zone
689
690 1. Upper threshold input alarm and upper threshold deviation alarm
691
692 (% style="text-align:center" %)
693 [[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||class="img-thumbnail" height="198" width="600"]]
694
695 1. Lower threshold input alarm and lower threshold deviation alarm
696
697 (% style="text-align:center" %)
698 [[image:LX3V-4LTC_html_89ce396354c991f8.png||class="img-thumbnail" height="190" width="600"]]
699
700 1. Upper/lower threshold deviation alarm
701
702 (% style="text-align:center" %)
703 [[image:LX3V-4LTC_html_6f9dd5f8d717395.png||class="img-thumbnail" height="241" width="600"]]
704
705 * **Number of times of alarm delay**
706
707 BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
708
709 The alarm delay function keeps non-alarm status until the number of input samples exceeds the number of alarm delays, after the deviation between the measured value (PV) and the set value (SV) reaches the alarm set value. If the deviation is in the alarm range, the Alarm happens when the deviation remains in the alarm range until the number of input samples exceeds the number of alarm delays
710
711 Example: the number of alarm delay sets to 5 times
712
713 (% style="text-align:center" %)
714 [[image:LX3V-4LTC_html_1094d322a8c61ac3.png||class="img-thumbnail" height="346" width="600"]]
715
716 * **Address of value range error**
717
718 When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
719
720 BFM #75/#113/#151/#189 sets to "0" when no error happens.
721
722 When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
723
724 * **Output cycle control**
725
726 BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
727
728 This value multiplies by the control output value and divided by 2000 is treated as the ON time. This value multiplies by "2000 - Control cycle value ~(%)/2000" is the OFF time.
729
730 The allowable range of this value is from 1 to 100 sec.
731
732 (% style="text-align:center" %)
733 [[image:LX3V-4LTC_html_79f827d969cd03f8.png||class="img-thumbnail" height="102" width="500"]]
734
735 = **6 Program Example** =
736
737 * Keep doing nothing while the power is supplied.
738
739 If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
740
741 * Make sure the power be OFF before cleaning the unit or tightening the terminals.
742
743 If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
744
745 * To run temperature control module in safe, please read this manual carefully firstly.
746
747 Damages or accidents would happen if the operations is not right.
748
749 * Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
750
751 ~* For repair, contact WECON Technology Co., Ltd.
752
753 * Make sure power is off before wiring.
754
755 Failure or malfunction maybe happen because of wiring during power is on.
756
757 **Simple example**
758
759 In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
760
761 (% style="text-align:center" %)
762 [[image:LX3V-4LTC_html_aebb33707de8c24a.png||class="img-thumbnail" height="116" width="600"]]
763
764 Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
765
766 **Program example**
767
768 Input range: K type ~-~- 100.0 to 400.0 °C
769
770 PID values: it is determined by auto-tuning
771
772 Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
773
774 Heater/cooling control: Heater (Initialization)
775
776 * Device assignment:
777
778 X000: initialization
779
780 X001: Reset the flag of error bit.
781
782 X002: Control starts (ON)/stop (OFF);
783
784 X003: self-tuning beginning when it changes from 0 to 1.
785
786 M0~~M15: Flags of error
787
788 M20~~M35: Flags of events
789
790 D0~~D199: Read value from BFM
791
792 D200~~D399: Write set value(SV) into BFM
793
794 * Project:
795
796 (% style="text-align:center" %)
797 [[image:LX3V-4LTC_html_c23b907303de1a1d.png||class="img-thumbnail" height="770" width="700"]]
798
799 = **7 Diagnostic** =
800
801 **Basic check**
802
803 * Check whether the input/output wiring and/or extension cables are properly connected with LX3V-4LTC analog special function block
804 * All configurations should follow the rule of LX3V configuration. The number of special function blocks does not exceed 16 and the total number of PLC system should exceed 256.
805 * Ensure that all operating ranges is normal.
806 * Ensure there is no power overload in either the 5V or 24V power supplies, Warning: the load for LX3V MPU or other powered extension unit is variable with the number of modules or special modules .
807 * The main processing unit (MPU) is in RUN status.
808
809 **Error checking**
810
811 If LX3V-4LTC cannot run properly, please check the following items.
812
813 * Check the status of the POWER LED.
814
815 Lit: The extension cable is connected properly.
816
817 Otherwise: Check the connection of the extension cable.
818
819 * Check the external wiring.
820 * Check the status of the “24V” LED (top right corner of the LX3V-4LTC).
821
822 Lit:LX3V-4LTC is ON, 24V DC power source is ON.
823
824 Otherwise: Possible 24VDC power failure, if ON possible LX3V-4LTC failure.
825
826 * Check the status of the “A/D” LED (top right corner of the LX3V-4LTC).
827
828 Lit: A/D conversion is proceeding normally.
829
830 Otherwise :Check buffer memory #29 (error status). If any bits (b0, b2, b3) are ON, then this is why the A/D LED is OFF.