Wiki source code of LX3V-4LTC

Version 5.1 by Mora Zhou on 2023/11/22 10:33

Hide last authors
Leo Wei 1.1 1 = **1 Introduction** =
2
Mora Zhou 4.1 3 LX3V-4LTC is temperature control module. It has four temperature input ports and four transistor output ports (the collector is open). It reads data from thermocouple, and then output value with PID control.
Leo Wei 1.1 4
5 LX3V-4LTC needs to connect with LX3V series PLC
6
7 1. Four input ports could support type K, type J, type T, type E, type N, type B, type R and type S thermocouple.
8 1. When it connects with LX3V PLC, PLC could read/write data by “FROM/TO” instruction. (LX3V-4LTC could execute PID control and output control, it does not need user to write PID ladder.)
9 1. Proportion coefficient, integral time, differential time of LX3V-4LTC can be self-tuning/
10 1. Each channel is isolation each other.
11
12 = **2 Dimensions** =
13
14 (% style="text-align:center" %)
Stone Wu 3.1 15 [[image:LX3V-4LTC_html_d0eefd90086ce676.png||height="394" width="1000" class="img-thumbnail"]]
Leo Wei 1.1 16
Stone Wu 3.1 17 1. Extension cable and connector
18 1. Com LED: Light when communicating
19 1. Power LED: Light when connect to 24V
20 1. State LED: Light when normal condition
21 1. Module name
22 1. Analog signal terminal
23 1. Extension module interface
24 1. DIN rail mounting slot
25 1. DIN rail hook
26 1. Mounting holes (φ4.5)
Leo Wei 1.1 27
28 **Using crimp terminations**
29
30 (((
31 * Be sure to use the crimp-style terminals that satisfy the dimensional requirements shows in the left figure.
32 * Apply 0.5 to 0.8 N.m (5 to 8 kgf.cm) torque to tighten the terminals to prevent abnormal operation.
33 * Other terminals should be empty but only wiring terminals mention in this manual.
34
35 (% style="text-align:center" %)
Stone Wu 3.1 36 [[image:LX3V-4LTC_html_67891e8f02a25438.png||height="199" width="300" class="img-thumbnail"]]
Leo Wei 1.1 37 )))
38
39 = **3 Wiring** =
40
41 (((
Stone Wu 3.1 42 The compensating cables that connect with thermocouples could be as follows:
Leo Wei 1.1 43
Stone Wu 3.1 44 * Type K: KX-G, KX-GS, KX-H, KX-HS, WX-G, WX-H, VX-G
45 * Type J: JX-G, JX-H
46 * Type K: SC-G, SC-H
47 * Type N: NC-G, NC-H
48 * Type E: EX-G, EX-H
49 * Type T: TX-G, TX-H
50 * Type B: BC-G, BC-H
51 * Type R: RC-G, RC-H
Leo Wei 1.1 52
53 (% style="text-align:center" %)
Stone Wu 3.1 54 [[image:LX3V-4LTC_html_1a21799ac3e4e881.png||height="360" width="400" class="img-thumbnail"]]
Leo Wei 1.1 55 )))
56
57 For every 10Ω of line resistance, the compensating cable will indicate a temperature 0.12°C higher than actual. Please check the line resistance before installation. Long compensating cables are more prone to noise interference, shorter (less than 100m) compensating cable is recommended.
58
59 1. Connect the ground terminals of the LX3V-4LTC unit with the main unit. And the main unit should be 3 grade grounding.
60 1. The built-in 24V DC output of PLC main unit could be used as the power supply of LX3V-4LTC.
61 1. FG1-FG4:GND connection of each channel.(generally it is not necessary to connect unless sensor signal is not stable)
62
63 **Cautions**
64
65 * Make sure all power be shut down before installation or wiring. Otherwise, it maybe cause electrical shock or components damaged.
66 * It would be dangerous if system and loads outside starts simultaneously, please make sure both of them are interlocked each other by PLC ladder or other ways.
67 * Please connect the PLC main unit and LX3V-4LTC with power supply properly; the main unit or LX3V-4LTC would be damaged if AC supply connects with DC I/O or DC power terminal.
68 * Do not connect the empty terminals with outside wire, which could damage your devices.
69
70 = **4 Specifications** =
71
72 **General specification**
73
74 (% class="table-bordered" %)
Stone Wu 3.1 75 |=(% scope="row" style="width: 326px;" %)**Item**|=(% style="width: 749px;" %)**Specification**
76 |=(% style="width: 326px;" %)General specifications|(% style="width:749px" %)Same as those for the main unit
77 |=(% style="width: 326px;" %)Dielectric withstand voltage|(% style="width:749px" %)500V AC, 1min (between all terminals and ground)
Leo Wei 1.1 78
79 **Power supply specification**
80
81 (% class="table-bordered" %)
Stone Wu 3.1 82 |=(% scope="row" style="width: 323px;" %)**Item**|=(% style="width: 752px;" %)**Specification**
83 |=(% style="width: 323px;" %)Analog circuits|(% style="width:752px" %)24V DC ± 10%, 50mA
84 |=(% style="width: 323px;" %)Digital circuits|(% style="width:752px" %)24V DC, 35mA (internal power supply from the main unit)
Leo Wei 1.1 85
86 **Performance specification**
87
Stone Wu 3.1 88 (% class="table-bordered" style="width:1117px" %)
89 |=(% rowspan="2" scope="row" style="width: 253px;" %)**Item**|=(% colspan="2" style="width: 378px;" %)**Centigrade (°C)**|=(% colspan="2" style="width: 445px;" %)**Fahrenheit (°F)**
90 |(% colspan="4" style="width:715px" %)Both °C and °F are available by reading the appropriate buffer memory (BFM).
Mora Zhou 5.1 91 |(% style="width:253px" %)Input signal|(% colspan="4" style="width:823px" %)Thermocouple: Type K, J, T, E, N, B, R, S (Each type can be used for each channel), 4 channels most.
Stone Wu 3.1 92 |(% rowspan="8" style="width:253px" %)(((
93 Rated temperature range
94 )))|(% style="width:130px" %)Type K|(% style="width:248px" %)-100 to +1,200|(% style="width:147px" %)Type K|(% style="width:298px" %)-148 to +2,192
95 |(% style="width:130px" %)Type J|(% style="width:248px" %)-100 to +600|(% style="width:147px" %)Type J|(% style="width:298px" %)-148 to +1,112
96 |(% style="width:130px" %)Type T|(% style="width:248px" %)-100 to +400|(% style="width:147px" %)Type T|(% style="width:298px" %)-148 to +752
97 |(% style="width:130px" %)Type E|(% style="width:248px" %)-100 to +1,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-148 to +1,832
98 |(% style="width:130px" %)Type N|(% style="width:248px" %)-100 to +1,300|(% style="width:147px" %)Type N|(% style="width:298px" %)-148 to +2,372
99 |(% style="width:130px" %)Type B|(% style="width:248px" %)+250 to +1,800|(% style="width:147px" %)Type B|(% style="width:298px" %)-482 to +3,272℉
100 |(% style="width:130px" %)Type R|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type R|(% style="width:298px" %)-58 to +3,214.4
101 |(% style="width:130px" %)Type S|(% style="width:248px" %)-50 to +1,768|(% style="width:147px" %)Type S|(% style="width:298px" %)-58 to +3,214.4
102 |(% rowspan="9" style="width:253px" %)Digital output|(% colspan="4" style="width:823px" %)12-bit conversion, saved in 16-bit binary complement form
103 |(% style="width:130px" %)Type K|(% style="width:248px" %)-1,000 to +12,000|(% style="width:147px" %)Type K|(% style="width:298px" %)-1480 to +21,920
104 |(% style="width:130px" %)Type J|(% style="width:248px" %)-1,000 to +6,000|(% style="width:147px" %)Type J|(% style="width:298px" %)-1480 to +11,120
105 |(% style="width:130px" %)Type T|(% style="width:248px" %)-1,000 to +4,000|(% style="width:147px" %)Type T|(% style="width:298px" %)-1480 to +7,520
106 |(% style="width:130px" %)Type E|(% style="width:248px" %)-1,000 to +10,000|(% style="width:147px" %)Type E|(% style="width:298px" %)-1480 to +18,320
107 |(% style="width:130px" %)Type N|(% style="width:248px" %)-1,000 to +13,000|(% style="width:147px" %)Type N|(% style="width:298px" %)-1480 to +23,720
108 |(% style="width:130px" %)Type B|(% style="width:248px" %)+2,500 to +18,000|(% style="width:147px" %)Type B|(% style="width:298px" %)-4820 to +32,720
109 |(% style="width:130px" %)Type R|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type R|(% style="width:298px" %)-580 to +32,144
110 |(% style="width:130px" %)Type S|(% style="width:248px" %)-500 to +17,680|(% style="width:147px" %)Type S|(% style="width:298px" %)-580 to +32,144
111 |(% rowspan="8" style="width:253px" %)Resolution|(% style="width:130px" %)Type K|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type K|(% style="width:298px" %)0.72°F
112 |(% style="width:130px" %)Type J|(% style="width:248px" %)0.3°C|(% style="width:147px" %)Type J|(% style="width:298px" %)0.54°F
113 |(% style="width:130px" %)Type T|(% style="width:248px" %)0.4°C|(% style="width:147px" %)Type T|(% style="width:298px" %)0.72°F
114 |(% style="width:130px" %)Type E|(% style="width:248px" %)0.25°C|(% style="width:147px" %)Type E|(% style="width:298px" %)0.45°F
115 |(% style="width:130px" %)Type N|(% style="width:248px" %)0.52°C|(% style="width:147px" %)Type N|(% style="width:298px" %)0.936°F
116 |(% style="width:130px" %)Type B|(% style="width:248px" %)(((
Leo Wei 1.1 117 2.09°C
118
119 2.97°C (less than 1,000°C)
120
121 1.64°C (more than 1,000°C)
Stone Wu 3.1 122 )))|(% style="width:147px" %)Type B|(% style="width:298px" %)(((
Leo Wei 1.1 123 3.762°F
124
125 5.346°F (less than 1,832°F)
126
127 2.952°F (more than 1,832°F)
128 )))
Stone Wu 3.1 129 |(% style="width:130px" %)Type R|(% style="width:248px" %)(((
Leo Wei 1.1 130 1.53°C
131
132 1.87°C (less than 800°C)
133
134 1.32°C (more than 800°C)
Stone Wu 3.1 135 )))|(% style="width:147px" %)Type R|(% style="width:298px" %)(((
Leo Wei 1.1 136 2.754°F
137
138 3.366°F (less than 1,472°F)
139
140 2.376°F (more than 1,472°F)
141 )))
Stone Wu 3.1 142 |(% style="width:130px" %)Type S|(% style="width:248px" %)(((
Leo Wei 1.1 143 1.72°C
144
145 2.01°C (less than 800°C)
146
147 1.53°C (more than 800°C)
Stone Wu 3.1 148 )))|(% style="width:147px" %)Type S|(% style="width:298px" %)(((
Leo Wei 1.1 149 3.096°F
150
151 3.618°F (less than 1,472°F)
152
153 2.754°F (more than 1,472°F)
154 )))
Stone Wu 3.1 155 |(% style="width:253px" %)(((
156 Overall accuracy calibration point
157 )))|(% colspan="4" style="width:823px" %)(((
Leo Wei 1.1 158 ± (0.5% full scale +1°C)
159
160 Freezing point of pure water 0°C / 32°F
161 )))
162
Stone Wu 3.1 163 (% class="box infomessage" %)
164 (((
165 **✎Note: **
Leo Wei 1.1 166
Stone Wu 3.1 167 * Earth-tipped thermocouples are not suitable for this unit.
168 * Earth-tipped thermocouples are not suitable for this unit.
169 )))
Leo Wei 1.1 170
Stone Wu 3.1 171
Leo Wei 1.1 172 **Analog Input**
173
174 (% class="table-bordered" %)
Stone Wu 3.1 175 |=(% colspan="2" %)(((
Leo Wei 1.1 176 **Conversion Characteristics**
177
Mora Zhou 5.1 178 Readings given at calibration reference point 0°C/32°F (0/320) respectively. (Subject to the overall accuracy)
Leo Wei 1.1 179 )))
180 |[[image:LX3V-4LTC_html_92edc788ec28d1cf.gif||class="img-thumbnail"]]|[[image:LX3V-4LTC_html_304483742690ee7c.gif||class="img-thumbnail"]]
181
182 **Miscellaneous**
183
184 (% class="table-bordered" %)
Stone Wu 3.1 185 |=(% scope="row" style="width: 155px;" %)**Item**|=(% style="width: 920px;" %)**Specification**
186 |=(% style="width: 155px;" %)Isolation|(% style="width:920px" %)It has optical isolation between analog and digital circuits. DC/DC converter is applied to isolate between this device and MPU. It has signal isolation between each analog channel.
Leo Wei 1.1 187
188 = **5 Buffer Memory (BFM)** =
189
190 **Buffer memory list**
191
192 (% class="table-bordered" %)
193 |(% colspan="4" style="width:310px" %)**BFM No.**|(% rowspan="2" style="width:143px" %)**Name**|(% rowspan="2" style="width:68px" %)**Latched**|(% rowspan="2" style="width:77px" %)**Operation**|(% rowspan="2" style="width:104px" %)**Default value**|(% rowspan="2" style="width:348px" %)**Contents**
194 |(% style="width:55px" %)CH1|(% style="width:12px" %)CH2|(% style="width:52px" %)CH3|(% style="width:65px" %)CH4
195 |(% colspan="4" style="width:310px" %)#0|(% style="width:143px" %)Thermocouple types|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)H0000|(% style="width:348px" %)(((
196 Each number of 4 HEX corresponds to one channel, the highest bit is CH4, the lowest is CH1.
197
Stone Wu 3.1 198 * 0: Type K
199 * 1: Type J
200 * 2: Type T
Leo Wei 1.1 201
202 (((
203 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif]]
204
205 3: Type E
206 )))
207
208 4: Type N
209
210 5: Type B
211
212 6: Type R
213
214 7: Type S
215
216 Others: not used.
217 )))
218 |(% style="width:55px" %)#1|(% style="width:12px" %)#2|(% style="width:52px" %)#3|(% style="width:65px" %)#4|(% style="width:143px" %)Averaged constant of filter|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)8|(% style="width:348px" %)Count of temperature sampling for averaging. Please set 1 for High-speed sampling. Only the range 1 to 256 is valid for the number of temperature readings to be averaged. If a value outside of this range is entered, a default value of 8 is used.
219 |(% style="width:55px" %)#5|(% style="width:12px" %)#6|(% style="width:52px" %)#7|(% style="width:65px" %)#8|(% style="width:143px" %)Averaged temp.°C|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Averaged temperature (unit is 0.1°C)
220 |(% style="width:55px" %)#9|(% style="width:12px" %)#10|(% style="width:52px" %)#11|(% style="width:65px" %)#12|(% style="width:143px" %)Present temp.°C|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Current temperature (unit is 0.1°C)
221 |(% style="width:55px" %)#13|(% style="width:12px" %)#14|(% style="width:52px" %)#15|(% style="width:65px" %)#16|(% style="width:143px" %)Averaged temp.°F|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Averaged temperature (unit is 0.1°C)
222 |(% style="width:55px" %)#17|(% style="width:12px" %)#18|(% style="width:52px" %)#19|(% style="width:65px" %)#20|(% style="width:143px" %)Present temp.°F|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)CH1 to CH4 Current temperature in (unit is 0.1°C)
223 |(% colspan="4" style="width:310px" %)#21~~#27|(% style="width:143px" %)Reserved|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)-
224 |(% colspan="4" style="width:310px" %)*#28|(% style="width:143px" %)Error latch|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Digital range error latch
225 |(% colspan="4" style="width:310px" %)#29|(% style="width:143px" %)Error status|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)(((
Stone Wu 3.1 226 * B0: A/D conversion would be stopped when b2 or b3 is ON.
227 * B1: Not used;
228 * B2: power failed;
229 * B3: Hardware failed;
230 * B4~~B7: Not used;
231 * B8: Values backup error;
232 * B10: Digital output/analog input value is out of the specified range;
233 * B11: Averaged value is out of the available range;
234 * B13: backup error(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
235 * B14: It is in backup status(during executing value backup(BFM42 is non-zero),and backup failed, this bit is ON.)
236 * B15: Initialization completion flag;(during initializing, (BFM42 is 1 or 2), when it finished, this bit is ON.)
Leo Wei 1.1 237 )))
238 |(% colspan="4" style="width:310px" %)#30|(% style="width:143px" %)Identification|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Identification code: K2130
239 |(% colspan="4" style="width:310px" %)#31|(% style="width:143px" %)Software version|(% style="width:68px" %)-|(% style="width:77px" %)R|(% style="width:104px" %)-|(% style="width:348px" %)Software version
240 |(% colspan="4" style="width:310px" %)#32~~#40|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
241 |(% colspan="4" style="width:310px" %)#41|(% style="width:143px" %)Initialization command|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 242 * 0: Performs nothing
243 * 1: Initializes all data
244 * 2: Initializes BFM #19 to BFM #174
245 * 3: Initializes error
246 * Others: No action
Leo Wei 1.1 247 )))
248 |(% colspan="4" style="width:310px" %)#42|(% style="width:143px" %)Backing up data to EEPROM|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 249 * 0: Performs nothing
250 * Other: Performs backups
Leo Wei 1.1 251 )))
252 |(% style="width:55px" %)#43|(% style="width:12px" %)#81|(% style="width:52px" %)#119|(% style="width:65px" %)#157|(% style="width:143px" %)Error flag (Temperature control is stopped)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 253 * b0: Reserved;
254 * b1: value range setting error;
255 * b2: PID self-tuning error;
256 * b3: The difference of setting value and offset value of PID self-tuning is too small;
257 * b4~~b5: Reserved;
258 * b6: Channel mode Error/ This channel is not enabled;
259 * b7: PV exceeded;
260 * b8: PID self-tuning parameters are changed in process;
Leo Wei 1.1 261 )))
262 |(% style="width:55px" %)#44|(% style="width:12px" %)#82|(% style="width:52px" %)#120|(% style="width:65px" %)#158|(% style="width:143px" %)Event (PID continue)|(% style="width:68px" %)X|(% style="width:77px" %)-|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 263 * b0 & b15: Reserved;
264 * b4: Alarm 1 - When alarm 1 occurs, it is set ON;
265 * b5: Alarm 2 - When alarm 2 occurs, it is set ON;
266 * b6: Alarm 3 - When alarm 3 occurs, it is set ON;
267 * b7: Alarm 4 - When alarm 4 occurs, it is set ON;
268 * b8: Heating control;
269 * b9: Cooling control;
270 * b10: PID terminals output;
271 * b11: PID control flag;
272 * b12: Manual flag;
273 * b13: Self-tuning;
274 * b14: ON / OFF control;
Leo Wei 1.1 275 )))
276 |(% style="width:55px" %)#45|(% style="width:12px" %)#83|(% style="width:52px" %)#121|(% style="width:65px" %)#159|(% style="width:143px" %)Current target temp. (PV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
277 Unit: 0.1 °C
278
279 Sampling temperature (from averaged value) during executing.
280 )))
281 |(% style="width:55px" %)#46|(% style="width:12px" %)#84|(% style="width:52px" %)#122|(% style="width:65px" %)#160|(% style="width:143px" %)Control output value (MV)|(% style="width:68px" %)X|(% style="width:77px" %)R|(% style="width:104px" %) |(% style="width:348px" %)The output value of PID calculation, This value is equal with output value (BFM49) during manual control.
282 |(% style="width:55px" %)#47|(% style="width:12px" %)#85|(% style="width:52px" %)#123|(% style="width:65px" %)#161|(% style="width:143px" %)Control start/stop changeover|(% style="width:68px" %)X|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 283 * 0: Stops control;
284 * Other: Starts control;
Leo Wei 1.1 285 )))
286 |(% style="width:55px" %)#48|(% style="width:12px" %)#86|(% style="width:52px" %)#124|(% style="width:65px" %)#162|(% style="width:143px" %)Auto/manual mode changeover|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 287 * 0: AUTO;
288 * Other: MAN;
Leo Wei 1.1 289 )))
290 |(% style="width:55px" %)#49|(% style="width:12px" %)#87|(% style="width:52px" %)#125|(% style="width:65px" %)#163|(% style="width:143px" %)Manual output set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)The value is equal to the value of control output in manual mode.
291 |(% style="width:55px" %)#50|(% style="width:12px" %)#88|(% style="width:52px" %)#126|(% style="width:65px" %)#164|(% style="width:143px" %)Self-tuning execution command|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 292 * 0: Stops self-tuning;
293 * Other : starts self-tuning;
Leo Wei 1.1 294 )))
295 |(% style="width:55px" %)#51|(% style="width:12px" %)#89|(% style="width:52px" %)#127|(% style="width:65px" %)#165|(% style="width:143px" %)Heating / cooling control|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 296 * 0: Heating control;
297 * 1: Cooling control;
Leo Wei 1.1 298 )))
299 |(% style="width:55px" %)#52|(% style="width:12px" %)#90|(% style="width:52px" %)#128|(% style="width:65px" %)#166|(% style="width:143px" %)Setting value (SV)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
300 Unit: 0.1 °C
301
302 The target temperature of PID control
303 )))
304 |(% style="width:55px" %)#53|(% style="width:12px" %)#91|(% style="width:52px" %)#129|(% style="width:65px" %)#167|(% style="width:143px" %)KP (Scaling coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)3|(% style="width:348px" %)(((
305 KP = 0, ON / OFF control is executed.
306
Stone Wu 3.1 307 Range: 0 ~~ 32767.
Leo Wei 1.1 308
Stone Wu 3.1 309 (% class="box infomessage" %)
310 (((
311 **✎Note: ** This value is magnified 256 times; the actual value is KP / 256.
Leo Wei 1.1 312 )))
Stone Wu 3.1 313 )))
314 |(% style="width:55px" %)#54|(% style="width:12px" %)#92|(% style="width:52px" %)#130|(% style="width:65px" %)#168|(% style="width:143px" %)TI (Integral coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)2400|(% style="width:348px" %)0 ~~ 32767
315 |(% style="width:55px" %)#55|(% style="width:12px" %)#93|(% style="width:52px" %)#131|(% style="width:65px" %)#169|(% style="width:143px" %)TD (Differential coefficient)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)600|(% style="width:348px" %)0 ~~ 32767
316 |(% style="width:55px" %)#56|(% style="width:12px" %)#94|(% style="width:52px" %)#132|(% style="width:65px" %)#170|(% style="width:143px" %)TS (Sampling cycle)|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)5|(% style="width:348px" %)1~~100 (*500ms)
317 |(% style="width:55px" %)#57|(% style="width:12px" %)#95|(% style="width:52px" %)#133|(% style="width:65px" %)#171|(% style="width:143px" %)Filter coefficients|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)0~~1023
Leo Wei 1.1 318 |(% style="width:55px" %)#58|(% style="width:12px" %)#96|(% style="width:52px" %)#134|(% style="width:65px" %)#172|(% style="width:143px" %)DetaT|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
319 The maximum rate of rise: 0-320;
320
321 Range: 0-32000 (0-320);
322 )))
323 |(% style="width:55px" %)#59|(% style="width:12px" %)#97|(% style="width:52px" %)#135|(% style="width:65px" %)#173|(% style="width:143px" %)Control cycle|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)20|(% style="width:348px" %)(((
Stone Wu 3.1 324 1~~100 (*500ms);
Leo Wei 1.1 325
Stone Wu 3.1 326 Range: 0.5s~~50s;
Leo Wei 1.1 327 )))
328 |(% style="width:55px" %)#60|(% style="width:12px" %)#98|(% style="width:52px" %)#136|(% style="width:65px" %)#174|(% style="width:143px" %)Self-tuning bias|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)± Input range (Unit: 0.1 °C)
329 |(% style="width:55px" %)#61|(% style="width:12px" %)#99|(% style="width:52px" %)#137|(% style="width:65px" %)#175|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
330 |(% style="width:55px" %)#62|(% style="width:12px" %)#100|(% style="width:52px" %)#138|(% style="width:65px" %)#176|(% style="width:143px" %)Dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
331 Dead zone is used for ON/OFF control mode
332
Stone Wu 3.1 333 Range: 0~~100 (Unit: 0.1%)
Leo Wei 1.1 334 )))
335 |(% style="width:55px" %)#63|(% style="width:12px" %)#101|(% style="width:52px" %)#139|(% style="width:65px" %)#177|(% style="width:143px" %)PV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)12000|(% style="width:348px" %)(((
336 Lower & upper threshold of input (Unit: 0.1 °C)
337
338 Remark: This BFM is used for the upper threshold of input value.
339
340 Range:
341
Stone Wu 3.1 342 * K type: -100°C ~~1200°C
343 * J type: -100°C ~~ 600°C
Leo Wei 1.1 344 )))
345 |(% style="width:55px" %)#64|(% style="width:12px" %)#102|(% style="width:52px" %)#140|(% style="width:65px" %)#178|(% style="width:143px" %)PV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)-1000|(% style="width:348px" %)(((
346 Lower & upper threshold of input (Unit: 0.1 °C)
347
348 Remark: This BFM is used for setting lower threshold of input.
349
350 Range:
351
Stone Wu 3.1 352 * K type: -100°C~~1200°C
353 * J type: -100°C~~600°C
Leo Wei 1.1 354 )))
355 |(% style="width:55px" %)#65|(% style="width:12px" %)#103|(% style="width:52px" %)#141|(% style="width:65px" %)#179|(% style="width:143px" %)MV upper limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)100|(% style="width:348px" %)(((
356 This BFM is used for setting the upper threshold of output.
357
Stone Wu 3.1 358 Range: 0~~2000
Leo Wei 1.1 359 )))
360 |(% style="width:55px" %)#66|(% style="width:12px" %)#104|(% style="width:52px" %)#142|(% style="width:65px" %)#180|(% style="width:143px" %)MV lower limit|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
361 This BFM is used for setting the lower threshold of output.
362
Stone Wu 3.1 363 Range: 0~~2000
Leo Wei 1.1 364 )))
365 |(% style="width:55px" %)#67|(% style="width:12px" %)#105|(% style="width:52px" %)#143|(% style="width:65px" %)#181|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
366 |(% style="width:55px" %)#68|(% style="width:12px" %)#106|(% style="width:52px" %)#144|(% style="width:65px" %)#182|(% style="width:143px" %)Alarm mode setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
367 It is used for alarm mode of four channels;
368
369 [[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif]]
370 )))
371 |(% style="width:55px" %)#69|(% style="width:12px" %)#107|(% style="width:52px" %)#145|(% style="width:65px" %)#183|(% style="width:143px" %)Alarm 1 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% rowspan="4" style="width:348px" %)(((
372 Unit: °C
373
374 The alarm range, it depends on alarm mode.
375 )))
376 |(% style="width:55px" %)#70|(% style="width:12px" %)#108|(% style="width:52px" %)#146|(% style="width:65px" %)#184|(% style="width:143px" %)Alarm 2 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
377 |(% style="width:55px" %)#71|(% style="width:12px" %)#109|(% style="width:52px" %)#147|(% style="width:65px" %)#185|(% style="width:143px" %)Alarm 3 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
378 |(% style="width:55px" %)#72|(% style="width:12px" %)#110|(% style="width:52px" %)#148|(% style="width:65px" %)#186|(% style="width:143px" %)Alarm 4 set value|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0
379 |(% style="width:55px" %)#73|(% style="width:12px" %)#111|(% style="width:52px" %)#149|(% style="width:65px" %)#187|(% style="width:143px" %)Alarm dead zone setting|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)(((
380 Calculation of dead zone
381
Stone Wu 3.1 382 * Bias: (SV+ bias)* dead zone
383 * Upper & lower threshold mode: Alarm setting value* dead zone
Leo Wei 1.1 384 )))
Stone Wu 3.1 385 |(% style="width:55px" %)#74|(% style="width:12px" %)#112|(% style="width:52px" %)#150|(% style="width:65px" %)#188|(% style="width:143px" %)Alarm delay times|(% style="width:68px" %)0|(% style="width:77px" %)W/R|(% style="width:104px" %)0|(% style="width:348px" %)Range: 0~~255
Leo Wei 1.1 386 |(% style="width:55px" %)#75|(% style="width:12px" %)#113|(% style="width:52px" %)#151|(% style="width:65px" %)#189|(% style="width:143px" %)Setting the wrong address|(% style="width:68px" %)0|(% style="width:77px" %)R|(% style="width:104px" %)0|(% style="width:348px" %)(((
Stone Wu 3.1 387 * 0: Normal;
388 * Others: Error in setting address
Leo Wei 1.1 389 )))
390 |(% style="width:55px" %)#76~~#80|(% style="width:12px" %)#114~~#118|(% style="width:52px" %)#152~~#156|(% style="width:65px" %)#190~~#193|(% style="width:143px" %)Reserved|(% style="width:68px" %)-|(% style="width:77px" %)-|(% style="width:104px" %)-|(% style="width:348px" %)Reserved
391
392 **✎Note: **
393
Stone Wu 3.1 394 * 0: Retentive;
395 * X: Non-retentive;
396 * R: Only read is enabled;
397 * R/W: Both read and write are enabled;
Leo Wei 1.1 398
399 **Details of buffer memories**
400
Stone Wu 3.1 401 **Buffer Memory BFM #0: Thermocouple Type K or J selection mode**
Leo Wei 1.1 402
403 BFM #0 is used for selecting type K or J thermocouples for each channel. Each bit of a 4 digit hexadecimal number corresponds to one channel, the last digit is channel 1.
404
405 (% style="text-align:center" %)
Stone Wu 3.1 406 [[image:LX3V-4LTC_html_9936e798cd945c5e.gif||height="173" width="300" class="img-thumbnail"]]
Leo Wei 1.1 407
408 The time of A/D conversion is 240ms for each channel. When “3" (unused) is set for a channel, this channel would not have A/D conversion, therefore, the total time for conversion decreases. In the above example, the conversion time is as follows:
409
410 240ms (conversion time per channel) × 2channels (number of channels used) = 480ms (total conversion time)
411
Stone Wu 3.1 412 **Buffer Memory BFMs #1 to #4: Number of temperature readings to be averaged**
Leo Wei 1.1 413
414 When the value of averaged temperature is assigned to BFMs #1 to #4, the averaged data is stored in BFMs #5 to #8 (°C) and #13 to #16 (°F). Only the range 1 to 256 is valid for the number of averaged temperature. If a value out of this range, the default value is 8.
415
Stone Wu 3.1 416 **Buffer Memory BFMs #9 to #12 and #17 to #20: Current temperature**
Leo Wei 1.1 417
418 These BFMs store the current input value. This value is stored in units of 0.1°C or 0.1°F, but the resolution is only 0.4°C or 0.72°F for Type K and 0.3°C or 0.54°F for Type J.
419
Stone Wu 3.1 420 **Buffer Memory BFM #28: Digital range error latch**
Leo Wei 1.1 421
Stone Wu 3.1 422 * BFM #29 b10(digital range error) is used for confirm if the measured temperature is in the range of this unit.
423 * BFM #28 latches the error status of each channel and can be used to check for thermocouple disconnection.
Leo Wei 1.1 424
425 (((
426 (% class="table-bordered" %)
Stone Wu 3.1 427 |=(% scope="row" %)**b15 ~~ b8**|=**b7**|=**b6**|=**b5**|=**b4**|=**b3**|=**b2**|=**b1**|=**b0**
Leo Wei 1.1 428 |(% rowspan="2" %)Not used|High|Low|High|Low|High|Low|High|Low
429 |(% colspan="2" %)CH4|(% colspan="2" %)CH3|(% colspan="2" %)CH2|(% colspan="2" %)CH1
430 )))
431
Stone Wu 3.1 432 * **Low:** Latches ON when the measured temperature drops down and less than the lowest temperature threshold.
433 * **High: **Turns ON when measured temperature rises up and more than the highest temperature threshold, or the thermocouple was disconnected.
Leo Wei 1.1 434
435 When an error occur the temperature data before the error is latched. If the measured value returns to normal threshold, all data return to run properly again. (Note: The error remains latched in (BFM #28))
436
437 An error can be cleared by writing K0 to BFM #28 using the TO instruction or turning off the power.
438
Stone Wu 3.1 439 **Buffer Memory BFM #29: Error status**
Leo Wei 1.1 440
441 (((
442 (% class="table-bordered" %)
Stone Wu 3.1 443 |=(% scope="row" %)**Bit devices of BFM #29**|=**Error information**
444 |=b0|Error, when either b1~~ b3 is ON, A/D conversion is stopped.
445 |=b1, b4~~b7|Not used;
446 |=b2|24V DC power supply failed;
447 |=b3|Hardware failed;
448 |=b8|Backup error of set value.
449 |=b10|Digital output/analog input value is out of the specified range;
450 |=b11|The value of averaged results is out of the available range;
451 |=b13|Backup error, during executing of backup,(BFM42 is non-zero) , and backup failed, this bit sets to ON;
452 |=b14|It is in backup status, this bit sets to ON;
453 |=b15|Initialization completion flag;
Leo Wei 1.1 454 )))
455
Stone Wu 3.1 456 **ID Code Buffer Memory BFM #30**
Leo Wei 1.1 457
458 The identification code or ID number for this Special Block is read from buffer memory BFM #30 by FROM instruction. This number for the LX3V-4LTC unit is K2130. The PLC can use this ID in program to identify the special block before commencing data transfer to and from the special block.
459
Stone Wu 3.1 460 **Error flag BFM #43, BFM#81, BFM#119, BFM#157 (Temperature control is stopped)**
Leo Wei 1.1 461
462 (((
463 (% class="table-bordered" %)
Stone Wu 3.1 464 |=(% scope="row" style="width: 134px;" %)**Error flag**|=(% style="width: 383px;" %)**Content**|=(% style="width: 559px;" %)**Remark**
465 |=(% style="width: 134px;" %)b0, b4, b5|(% style="width:383px" %)Not used;|(% style="width:559px" %)-
466 |=(% style="width: 134px;" %)b1|(% style="width:383px" %)Error in setting value range.|(% style="width:559px" %)When set value is out of the specified range, this bit sets to ON. The error addresses will be showed in BFM#75, BFM#113, BFM#151, BFM#189
467 |=(% style="width: 134px;" %)b2|(% style="width:383px" %)PID self-tuning error;|(% style="width:559px" %)When either b3 or b8 is ON, this bit set ON
468 |=(% style="width: 134px;" %)b3|(% style="width:383px" %)The difference of set value and offset are too small.|(% style="width:559px" %)The difference between measured temperature (PV) and SV + DIFF less than 100 in self-tuning mode, or SV+DIFF exceeded PV’s range. This bit sets to ON
469 |=(% style="width: 134px;" %)b6|(% style="width:383px" %)Channel mode Error/ This channel is disable;|(% style="width:559px" %)When the channel is disabled by BFM#0, this bit sets to ON.
470 |=(% style="width: 134px;" %)b7|(% style="width:383px" %)PV exceeded;|(% style="width:559px" %)When measured temperature exceeded PV’s range, this bit sets to ON.
471 |=(% style="width: 134px;" %)b8|(% style="width:383px" %)PID self-tuning parameters are changed in process;|(% style="width:559px" %)When one of upper & lower threshold, set value, bias changes, this bit sets to ON.
Leo Wei 1.1 472 )))
473
Stone Wu 3.1 474 **BFM #48 (CH1), BFM #86 (CH2), BFM#124(CH3), BFM#162(CH4) : Auto/manual mode changeover**
Leo Wei 1.1 475
476 BFM #48 is used for changing the mode of CH1. BFM #86 is used for changing the mode of CH2. BFM #124 is used for changing the mode of CH3. BFM #162 is used for the mode of CH4.
477
Stone Wu 3.1 478 * When BFM #48/#86/#124/#162 is set to "K0 (initialized value)", the auto mode is selected.
479 * When BFM #48/#86/#124/#162 is set to "K1", the manual mode is selected.
Leo Wei 1.1 480
481 **Auto mode:**
482
483 The measured value (PV) is compared with the set value (SV), PID arithmetic operation is performed, then output the control value (MV).
484
485 In the auto mode, the manual output set value (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162) is always equival with the control output value.
486
487 **Manual mode:**
488
489 The control output (MV) value is fixed to the manual output set value (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162).
490
491 The manual output set value can be changed while b13 of the event (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4:BFM#162) is ON even if operation is performed in the manual mode.
492
493 The temperature alarm function is effective even in the manual mode.
494
Stone Wu 3.1 495 **Self-tuning function**
Leo Wei 1.1 496
497 The self-tuning function automatically measures, calculates and sets the most optimal PID constants in accordance with the set temperature.
498
499 When the self-tuning execution command (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1", self-tuning is performed. (Self-tuning can start from an arbitrary status at any time immediately after the power is turned ON, while the temperature is rising or while control is stable.)
500
501 When self-tuning starts, two-position control is performed using the set value (SV). By two-position control, the output is forcedly hunted and its amplitude and oscillation cycle are measured. PID constants are calculated based on the measured values, and stored in each parameter. When self-tuning normally finishes, control continues with new calculated PID constants.
502
503 While self-tuning is performed, b14 of the event (CH1: BFM #48, CH2: BFM #86, CH3: BFM#124, CH4: BFM#162) is set to "1".
504
505 (In order to calculate proper PID constants by self-tuning, set the upper limit of the output limiter to 2000, the lower limit of the output limiter to 0.)
506
507 Self-tuning can be started with the following conditions:
508
509 * The control start/stop changeover set to "1: Starts control".
510 * The operation mode sets to "2: Monitor + Temperature alarm + Control".
511 * The auto/manual mode is "0: AUTO".
512 * The measured value PV is normal.
513 * The upper threshold and lower threshold for output should be different.
514
515 Self-tuning would be canceled with one of the following conditions:
516
517 (% style="text-align:center" %)
Stone Wu 3.1 518 [[image:LX3V-4LTC_html_98e0b421b7f760bb.png||height="217" width="500" class="img-thumbnail"]]
Leo Wei 1.1 519
520 * SV value has been changed.
521 * The control has been stopped, the operation mode is "0: Stops control".
522 * The auto/manual mode is set to "1: MAN".
523 * The PV bias has been changed.
524 * The upper and lower threshold for output has been changed.
525 * The self-tuning executed command is set to "0: Stops auto tuning".
526 * Power failed
527
528 **Self-tuning bias**
529
530 If the self-tuning bias has been used for auto-tuning, The measured value (PV) should not exceed the set value (SV). The self-tuning makes the measured value vibrating and SV switching ON/OFF, then calculates and sets each PID constant. However, for some control targets, overshoot by vibration is not permitted, Set the self-tuning bias is necessary for this case. The set value(SV) could be changed when self-tuning bias is set.
531
532 (% style="text-align:center" %)
Stone Wu 3.1 533 [[image:LX3V-4LTC_html_797cdf2f2cae01b5.png||height="197" width="500" class="img-thumbnail"]]
Leo Wei 1.1 534
535 **Dead zone (adjustment sensitivity) setting**
536
537 BFM #62 is used for dead zone of CH1. BFM #100 is used for the dead zone of CH2. BFM #138 is used for the dead zone of CH3.BFM #176 is used for the dead zone of CH4.
538
539 When system has been turning ON/OFF operations, if the adjustment sensitivity has been configured, it could avoid temperature value (SV) show ON/OFF changes nearby.
540
541 The value set to BFM #62/#100/#138/#176 is equally to the value of the upper and the lower area of the temperature set value (BFM #52/#90/#128/#166).
542
543 For example, if the sensitive value sets to "10%", 5% above and 5% below of the set value would be treated as the dead zone (width of 10% in total).
544
545 **Example**
546
Stone Wu 3.1 547 Conditions:
Leo Wei 1.1 548
Stone Wu 3.1 549 * When BFM #41/#60 is set to "10.0%" in the range span of 400°C; 400°C x 10.0% / 100 = 40°C
550 * When the temperature set value is 200°C, the range from 180 to 220°C is treated as the dead zone.
551 * When the dead zone sets to a large value, vertical fluctuation would be larger. But if dead zone is too small, small oscillations of the measured value may cause vibration.
Leo Wei 1.1 552
553 (% style="text-align:center" %)
Stone Wu 3.1 554 [[image:LX3V-4LTC_html_f8ae0c0b5cfc3817.png||height="226" width="600" class="img-thumbnail"]]
Leo Wei 1.1 555
Stone Wu 3.1 556 **Output(MV) upper threshold: BFM #65/#103/#141/#179**
Leo Wei 1.1 557
558 **Output(MV) lower threshold: BFM #66/#104/#142/#180**
559
Stone Wu 3.1 560 * BFM #65/#103/#141/#179 are used for output upper threshold of CH1/CH2/CH3/CH4.
561 * BFM #66/#104/#142/#180 are used for output lower threshold of CH1/CH2/CH3/CH4.
Leo Wei 1.1 562
563 These BFMs could be used for setting the upper threshold and the lower threshold of the control output value (MV) (BFM #46/#84/#122/#160). The range of the upper threshold is from the lower threshold of the output limiter to 2000. The range of the upper threshold is from 0 to the upper threshold of the output limiter.
564
565 (% style="text-align:center" %)
Stone Wu 3.1 566 [[image:LX3V-4LTC_html_39b35ec1eae61e45.png||height="222" width="400" class="img-thumbnail"]]
Leo Wei 1.1 567
568 1. Proper PID constants could not be obtained during self-tuning while the output limiter is active. So it is not recommended not to use the output limiter when self-tuning is active.
569 1. The output limiter would not be active when two-position control is active,.
Stone Wu 3.1 570 1. If lower threshold and self-tuning is active, please set the upper and lower threshold for PV, otherwise the temperature may continue to rise, and out of system control
Leo Wei 1.1 571
Stone Wu 3.1 572 **Alarm mode setting: BFM#68/ BFM#106/ BFM#144/ BFM#182**
Leo Wei 1.1 573
574 LX3V-4LTC has 12 alarm modes. Four of them most could be used meanwhile. BFM #68 is used for CH1 alarm mode, BFM#106 is used for CH2 alarm mode, BFM#144 is used for CH3 mode, BFM#182 is used for CH4 alarm mode.
575
576 Each channel could have four alarm modes.
577
578 (% style="text-align:center" %)
Stone Wu 3.1 579 [[image:LX3V-4LTC_html_de0e4e05bfd9b167.gif||height="166" width="500" class="img-thumbnail"]]
Leo Wei 1.1 580
581 Example: BFM#68=H0021 means CH1 has the following four type alarm modes: the first is upper threshold alarm, second is lower threshold, third is close alarm, and fourth is close alarm.
582
583 For detailed please refer to the following table
584
585 (((
586 (% class="table-bordered" %)
Stone Wu 3.1 587 |(% style="width:88px" %)**Alarm No.**|(% style="width:238px" %)**Alarm mode**|(% style="width:608px" %)**Description**|(% style="width:141px" %)**Set range**
588 |(% style="width:88px" %)0|(% style="width:238px" %)Alarm is disabled|(% style="width:608px" %)Alarm function is disabled.|(% style="width:141px" %)~-~--
589 |(% style="width:88px" %)1|(% style="width:238px" %)Alarm for Upper threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is more than value of alarm.|(% style="width:141px" %)Input range
590 |(% style="width:88px" %)2|(% style="width:238px" %)Alarm for lower threshold of input value|(% style="width:608px" %)Alarms if measured value (PV) is less than value of alarm.|(% style="width:141px" %)Input range
591 |(% style="width:88px" %)3|(% style="width:238px" %)Alarm for upper threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm.|(% style="width:141px" %)±Input width
592 |(% style="width:88px" %)4|(% style="width:238px" %)Alarm for lower threshold deviation|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)±Input width
593 |(% style="width:88px" %)5|(% style="width:238px" %)Alarm for Upper/lower limit deviation|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
594 |(% style="width:88px" %)6|(% style="width:238px" %)Range alarm|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm.|(% style="width:141px" %)+Input width
595 |(% style="width:88px" %)7|(% style="width:238px" %)Alarm for upper threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is more than set value, However, measured value is ignored at the start of system.|(% style="width:141px" %)Input range
596 |(% style="width:88px" %)8|(% style="width:238px" %)Alarm for lower threshold input value alarm with wait|(% style="width:608px" %)Alarms if measured value (PV) is less than set value, However, measured value are ignored at the start of system.|(% style="width:141px" %)Input range
597 |(% style="width:88px" %)9|(% style="width:238px" %)Alarm for upper threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is more than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
598 |(% style="width:88px" %)10|(% style="width:238px" %)Alarm for lower threshold deviation with wait|(% style="width:608px" %)Alarms if deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)±Input width
599 |(% style="width:88px" %)11|(% style="width:238px" %)Alarm for Upper/lower limit deviation with wait|(% style="width:608px" %)Alarms if absolute deviation (= Measured value (PV) – Set value (SV)) is less than value of alarm. However, measured value is ignored at the start of system.|(% style="width:141px" %)+Input width
Leo Wei 1.1 600 )))
601
602 **✎Note: **
603
604 * Input range: it is from the lower threshold to the upper threshold of input value
605 * Input width: Width from the lower threshold to the upper threshold of input value (Input width = Upper threshold value - Lower threshold value).
606 * ±Input width: it could be positive and negative.
607 * + Input width: it could be positive only.
608
Stone Wu 3.1 609 **Alarm dead zone setting**
Leo Wei 1.1 610
611 BFM #73 is used for the dead zone of alarms 1 to 4 for CH1. BFM #111 is used for the dead zone of alarms 1 to 4 for CH2. BFM #149 is used for the dead zone of alarms 1 to 4 for CH3. BFM #187 is used for the dead zone of alarms 1 to 4 for CH4. When the measured value (PV) is near the alarm set value, the alarm status and the non-alarm status may be repeated by fluctuation in input area. In this case, setting the alarm dead zone could avoid the repeating of the alarm status and the non-alarm status.
612
613 The allowable set range is the input range (from 0.0 to 10.0 %.)
614
615 **Calculation of dead zone**
616
617 In deviation mode: dead zone =(SV+ deviation)*dead zone
618
619 In upper/lower threshold mode: dead zone=alarm setting value*dead zone
620
Stone Wu 3.1 621 * Upper threshold input alarm and upper threshold deviation alarm
Leo Wei 1.1 622
623 (% style="text-align:center" %)
Stone Wu 3.1 624 [[image:LX3V-4LTC_html_5d9062fb0bab5b33.png||height="198" width="600" class="img-thumbnail"]]
Leo Wei 1.1 625
Stone Wu 3.1 626 * Lower threshold input alarm and lower threshold deviation alarm
Leo Wei 1.1 627
628 (% style="text-align:center" %)
Stone Wu 3.1 629 [[image:LX3V-4LTC_html_89ce396354c991f8.png||height="190" width="600" class="img-thumbnail"]]
Leo Wei 1.1 630
Stone Wu 3.1 631 * Upper/lower threshold deviation alarm
Leo Wei 1.1 632
633 (% style="text-align:center" %)
Stone Wu 3.1 634 [[image:LX3V-4LTC_html_6f9dd5f8d717395.png||height="241" width="600" class="img-thumbnail"]]
Leo Wei 1.1 635
Stone Wu 3.1 636 **Number of times of alarm delay**
Leo Wei 1.1 637
638 BFM #74/#112/#150/#188 are used for the number of alarm delays of CH1/CH2/CH3/CH4 respectively. This setting is active for all alarms 1 to 4.
639
640 The alarm delay function keeps non-alarm status until the number of input samples exceeds the number of alarm delays, after the deviation between the measured value (PV) and the set value (SV) reaches the alarm set value. If the deviation is in the alarm range, the Alarm happens when the deviation remains in the alarm range until the number of input samples exceeds the number of alarm delays
641
642 Example: the number of alarm delay sets to 5 times
643
644 (% style="text-align:center" %)
Stone Wu 3.1 645 [[image:LX3V-4LTC_html_1094d322a8c61ac3.png||height="346" width="600" class="img-thumbnail"]]
Leo Wei 1.1 646
Stone Wu 3.1 647 **Address of value range error**
Leo Wei 1.1 648
649 When there has an out-of-range error occurs in the set value, BFM #75/#113/#151/#189 will show the error address,
650
651 BFM #75/#113/#151/#189 sets to "0" when no error happens.
652
653 When an error occurs, the value of BFM #75/#113/#151/#189 is the address of BFM has errors, please check the range, and give a normal value for this BFM, please clear the error after that (BFM#41).
654
Stone Wu 3.1 655 **Output cycle control**
Leo Wei 1.1 656
657 BFM #59 is used for the control output cycle of CH1. BFM #97 is used for the control output cycle of CH2. BFM #135 is used for control output cycle of CH3. BFM #173 is used for the control output cycle of CH4. Control cycle is longer than sampling cycle, the sampling cycle is equal with control output cycle when control cycle is less than sampling cycle.
658
659 This value multiplies by the control output value and divided by 2000 is treated as the ON time. This value multiplies by "2000 - Control cycle value ~(%)/2000" is the OFF time.
660
661 The allowable range of this value is from 1 to 100 sec.
662
663 (% style="text-align:center" %)
Stone Wu 3.1 664 [[image:LX3V-4LTC_html_79f827d969cd03f8.png||height="102" width="500" class="img-thumbnail"]]
Leo Wei 1.1 665
666 = **6 Program Example** =
667
Stone Wu 3.1 668 **Keep doing nothing while the power is supplied.**
Leo Wei 1.1 669
670 If you touch a terminal while the power is supplied, you may get electrical shock or the unit may malfunction.
671
Stone Wu 3.1 672 **Make sure the power be OFF before cleaning the unit or tightening the terminals.**
Leo Wei 1.1 673
674 If you clean the unit or tighten the terminals while the power is supplied, you may get electrical shock.
675
Stone Wu 3.1 676 **To run temperature control module in safe, please read this manual carefully firstly.**
Leo Wei 1.1 677
678 Damages or accidents would happen if the operations is not right.
679
Stone Wu 3.1 680 Never disassemble or modify the unit. Disassembly or modification may cause failure, malfunction amd fire.
Leo Wei 1.1 681
682 ~* For repair, contact WECON Technology Co., Ltd.
683
Stone Wu 3.1 684 **Make sure power is off before wiring.**
Leo Wei 1.1 685
686 Failure or malfunction maybe happen because of wiring during power is on.
687
688 **Simple example**
689
690 In this example, LX3V-4LTC module occupies the position of No.2 special module (This is the 3rd model connects with CPU). CH1 connects with K type thermocouple, CH2 connects with J type thermocouple, CH3 and CH4 connects with E type thermocouple, the average is 4. The value of CH1~~CH4 are written to D0~~D3.
691
692 (% style="text-align:center" %)
Stone Wu 3.1 693 [[image:LX3V-4LTC_html_aebb33707de8c24a.png||height="116" width="600" class="img-thumbnail"]]
Leo Wei 1.1 694
695 Initialization to check if the No.2 special module is LX3V-4LTC. The ID code should be as K2130 (BFM#30).
696
697 **Program example**
698
Stone Wu 3.1 699 * Input range: K type ~-~- 100.0 to 400.0 °C
700 * PID values: it is determined by auto-tuning
701 * Alarm: Upper threshold alarm is 820 and lower threshold alarm is 780
702 * Heater/cooling control: Heater (Initialization)
Leo Wei 1.1 703
Stone Wu 3.1 704 Device assignment:
Leo Wei 1.1 705
Stone Wu 3.1 706 * X000: initialization
707 * X001: Reset the flag of error bit.
708 * X002: Control starts (ON)/stop (OFF);
709 * X003: self-tuning beginning when it changes from 0 to 1.
710 * M0~~M15: Flags of error
711 * M20~~M35: Flags of events
712 * D0~~D199: Read value from BFM
713 * D200~~D399: Write set value(SV) into BFM
Leo Wei 1.1 714
Stone Wu 3.1 715 Project:
Leo Wei 1.1 716
717 (% style="text-align:center" %)
Stone Wu 3.1 718 [[image:LX3V-4LTC_html_c23b907303de1a1d.png||height="770" width="700" class="img-thumbnail"]]
Leo Wei 1.1 719
720 = **7 Diagnostic** =
721
722 **Basic check**
723
724 * Check whether the input/output wiring and/or extension cables are properly connected with LX3V-4LTC analog special function block
725 * All configurations should follow the rule of LX3V configuration. The number of special function blocks does not exceed 16 and the total number of PLC system should exceed 256.
726 * Ensure that all operating ranges is normal.
727 * Ensure there is no power overload in either the 5V or 24V power supplies, Warning: the load for LX3V MPU or other powered extension unit is variable with the number of modules or special modules .
728 * The main processing unit (MPU) is in RUN status.
729
730 **Error checking**
731
732 If LX3V-4LTC cannot run properly, please check the following items.
733
734 * Check the status of the POWER LED.
735
736 Lit: The extension cable is connected properly.
737
738 Otherwise: Check the connection of the extension cable.
739
740 * Check the external wiring.
741 * Check the status of the “24V” LED (top right corner of the LX3V-4LTC).
742
743 Lit:LX3V-4LTC is ON, 24V DC power source is ON.
744
745 Otherwise: Possible 24VDC power failure, if ON possible LX3V-4LTC failure.
746
747 * Check the status of the “A/D” LED (top right corner of the LX3V-4LTC).
748
749 Lit: A/D conversion is proceeding normally.
750
751 Otherwise :Check buffer memory #29 (error status). If any bits (b0, b2, b3) are ON, then this is why the A/D LED is OFF.