Wiki source code of LX3V-2WT

Version 4.1 by Stone Wu on 2022/06/22 14:58

Hide last authors
Stone Wu 3.1 1 = **1 Operating principle** =
Leo Wei 1.1 2
Stone Wu 3.1 3 Electrical resistance of metal material changes in proportion to the forces being applied to deform it. The strain gauge measures the deformation as a change in electrical resistance, which is a measure of the strain and hence the applied forces (load).
Leo Wei 1.1 4
5 = **2 Introduction** =
6
Stone Wu 3.1 7 1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
9 1. The LX3V-2WT weighing module can read and write data through the LX3V host program with the instruction FROM/TO.
Leo Wei 1.1 10
Stone Wu 3.1 11 **✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
Leo Wei 1.1 12
Stone Wu 3.1 13 == **Specification** ==
Leo Wei 1.1 14
Stone Wu 3.1 15 |(% style="width:225px" %)**Item**|(% style="width:850px" %)**Description**
16 |(% style="width:225px" %)Channel|(% style="width:850px" %)Dual channel
17 |(% style="width:225px" %)A/D converter|(% style="width:850px" %)24 bit Δˉ∑ A/D
18 |(% style="width:225px" %)Resolution|(% style="width:850px" %)24 bit (signed)
19 |(% style="width:225px" %)Speed|(% style="width:850px" %)7.5/10/25/50/60/150/300Hz available
20 |(% style="width:225px" %)Polarity|(% style="width:850px" %)Unipolar and bipolar
21 |(% style="width:225px" %)Non-linearity|(% style="width:850px" %)≤0.01% full scale(25^^o^^C)
22 |(% style="width:225px" %)Zero drift|(% style="width:850px" %)≤0.2μV/^^ o^^C
23 |(% style="width:225px" %)Gain drift|(% style="width:850px" %)≤10ppm/^^ o^^C
24 |(% style="width:225px" %)Excitation voltage/ load|(% style="width:850px" %)Dual 5V, single load impedance not less than 200 Ω
25 |(% style="width:225px" %)Sensor sensitivity|(% style="width:850px" %)1mV/V to 15mV/V
26 |(% style="width:225px" %)Isolation|(% style="width:850px" %)Transformer (power supply) and the optical coupler (signal)
27 |(% style="width:225px" %)Indicator light|(% style="width:850px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
28 |(% style="width:225px" %)Power supply|(% style="width:850px" %)24V±20% 2VA
29 |(% style="width:225px" %)Operating temperature|(% style="width:850px" %)0 to 60^^ o^^C
30 |(% style="width:225px" %)Storage temperature|(% style="width:850px" %)-20 to 80^^ o^^C
31 |(% style="width:225px" %)Dimension|(% style="width:850px" %)90(L)x58(W)x80(H) mm
Leo Wei 1.1 32
Stone Wu 3.1 33 == **Valid bits** ==
Leo Wei 1.1 34
Stone Wu 3.1 35 Refer to sampling frequency in BFM description, Chapter 5 of this manual.
36
Leo Wei 1.1 37 = **3 Dimensions** =
38
Stone Wu 3.1 39 == **Dimensions** ==
Leo Wei 1.1 40
Stone Wu 3.1 41 [[image:图片1.jpg||height="358" width="301"]] [[image:图片2.jpg||height="365" width="351"]]
Leo Wei 1.1 42
Stone Wu 3.1 43 (% style="text-align:center" %)
44 [[image:图片3.jpg||height="593" width="684"]]
Leo Wei 1.1 45
Stone Wu 3.1 46 1. Extension cable
47 1. COM light: Module internal data communication indicator
48 1. 24V light: Always on when connected to external 24V power supply
49 1. WT light: Channel input/output indicator
Leo Wei 1.1 50
Stone Wu 3.1 51 * WE light: Channel calibration indicator
Leo Wei 1.1 52
Stone Wu 3.1 53 (% start="5" %)
54 1. LINK: Communication indicator between PLC and module (LINK)
55 1. Expansion module name
56 1. Expansion module interface
57 1. DIN rail mounting clip
58 1. Hook for DIN rail
59 1. Holes for direct mounting: 2 places (φ4.5)
Leo Wei 1.1 60
Stone Wu 4.1 61 |(% style="width:121px" %)**Name**|(% style="width:346px" %)**Description**|(% style="width:126px" %)**Light status**|(% style="width:483px" %)**Event status**
Stone Wu 3.1 62 |(% rowspan="3" style="width:121px" %)(((
63
Leo Wei 1.1 64
Stone Wu 3.1 65 LINK light
Stone Wu 4.1 66 )))|(% rowspan="3" style="width:346px" %)Communication indicator between PLC and module|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
67 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
68 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
Stone Wu 3.1 69 |(% rowspan="3" style="width:121px" %)(((
70
Leo Wei 1.1 71
Stone Wu 3.1 72 COM light
Stone Wu 4.1 73 )))|(% rowspan="3" style="width:346px" %)Module internal data communication indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
74 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
75 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
Stone Wu 3.1 76 |(% rowspan="3" style="width:121px" %)(((
77
Leo Wei 1.1 78
Stone Wu 3.1 79 WT light
Stone Wu 4.1 80 )))|(% rowspan="3" style="width:346px" %)Channel output/input indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Analog input is out of range
81 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Analog input is within the range
82 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Channel closed
83 |(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:346px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|(% style="width:483px" %)Calibration succeeded
84 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Calibration failed or not calibrated
Leo Wei 1.1 85
Stone Wu 3.1 86 == Use of blade terminals ==
Leo Wei 1.1 87
88 (% style="text-align:center" %)
Stone Wu 3.1 89 [[image:image-20220622145005-4.jpeg||height="220" width="366"]]
Leo Wei 1.1 90
Stone Wu 3.1 91 Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
Leo Wei 1.1 92
Stone Wu 3.1 93 == **Terminals** ==
Leo Wei 1.1 94
Stone Wu 3.1 95 |**Terminal**|**Terminal Instructions**
96 |24V+|External DC24 power supply+
97 |24V-|External DC24 power supply-
98 |Ground|Ground
99 |FG1|Sensor housing
100 |E1+|First sensor 5V power +
101 |E1-|First sensor 5V power -
102 |F1+|First sensor power supply feedback +
103 |F1-|First sensor power supply feedback -
104 |S1+|First sensor signal output +
105 |S1-|First sensor signal output -
106 |E2+|Second sensor 5V power +
107 |E2-|Second sensor 5V power -
108 |F2+|Second sensor power supply feedback +
109 |F2-|Second sensor power supply feedback -
110 |S2+|Second sensor signal output +
111 |S2-|Second sensor signal output -
112 |FG2|Second sensor housing
113 |Other empty terminals|Empty pin, not connect any wires
Leo Wei 1.1 114
Stone Wu 3.1 115 = **4 Wiring ** =
116
Leo Wei 1.1 117 (% style="text-align:center" %)
Stone Wu 3.1 118 [[image:image-20220622145005-5.jpeg||height="522" width="706"]]
Leo Wei 1.1 119
Stone Wu 3.1 120 **✎Note:**
Leo Wei 1.1 121
Stone Wu 3.1 122 * Impedance of the weighing sensor is greater than 200 Ω.
123 * Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
Leo Wei 1.1 124
Stone Wu 3.1 125 = **5 Buffer register (BFM)** =
Leo Wei 1.1 126
Stone Wu 3.1 127 == **BFM list** ==
Leo Wei 1.1 128
Stone Wu 3.1 129 |(% colspan="2" %)**BFM number**|(% rowspan="2" %)**Power-off hold**|(% rowspan="2" %)(((
130 **Read/**
Leo Wei 1.1 131
Stone Wu 3.1 132 **write**
133 )))|(% rowspan="2" style="width:189px" %)**Register name**|(% rowspan="2" style="width:74px" %)**Default**|(% rowspan="2" style="width:128px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
134 |**CH1**|**CH2**
135 |(% colspan="2" %)#0|O|R|(% style="width:189px" %)Model type|(% style="width:74px" %)5012|(% style="width:128px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
136 |(% colspan="2" %)#1|O|R|(% style="width:189px" %)Software version|(% style="width:74px" %)15004|(% style="width:128px" %)-|(% style="width:466px" %)Software version number
137 |#2|#42|O|R/W|(% style="width:189px" %)Unipolar/Bipolar|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
138 |#3|#43|O|R/W|(% style="width:189px" %)Sampling frequency|(% style="width:74px" %)1|(% style="width:128px" %)0 to 4800|(% style="width:466px" %)(((
139 0: 7.5HZ
Leo Wei 1.1 140
Stone Wu 3.1 141 1: 10HZ
Leo Wei 1.1 142
Stone Wu 3.1 143 2: 25HZ
Leo Wei 1.1 144
Stone Wu 3.1 145 3: 50HZ
Leo Wei 1.1 146
Stone Wu 3.1 147 4: 60HZ
Leo Wei 1.1 148
Stone Wu 3.1 149 5: 150HZ
Leo Wei 1.1 150
Stone Wu 3.1 151 6: 300HZ
Leo Wei 1.1 152
Stone Wu 3.1 153 7: 600HZ
Leo Wei 1.1 154
Stone Wu 3.1 155 8: 960HZ
Leo Wei 1.1 156
Stone Wu 3.1 157 9: 2400HZ
Leo Wei 1.1 158
Stone Wu 3.1 159 10 to 4800: 10Hz to 4800Hz
Leo Wei 1.1 160 )))
Stone Wu 3.1 161 |#4|#44|X|R|(% style="width:189px" %)Status code|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
162 |#5|#45|X|R|(% style="width:189px" %)Error code|(% style="width:74px" %)0|(% style="width:128px" %)—|(% style="width:466px" %)(((
163 A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
Leo Wei 1.1 164
Stone Wu 3.1 165 #45: Reserved
Leo Wei 1.1 166
Stone Wu 3.1 167 b0: Abnormal power supply
Leo Wei 1.1 168
Stone Wu 3.1 169 b1: Hardware failure
Leo Wei 1.1 170
Stone Wu 3.1 171 b2: CH1 conversion error
Leo Wei 1.1 172
Stone Wu 3.1 173 b3: CH2 conversion error
Leo Wei 1.1 174
Stone Wu 3.1 175 b4: CH1 input calibration parameter error
Leo Wei 1.1 176
Stone Wu 3.1 177 b5: CH2 input calibration parameter error
178
179 Others: Reserved
Leo Wei 1.1 180 )))
Stone Wu 3.1 181 |#6|#46|X|R/W|(% style="width:189px" %)Tare reading|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
182 Read the current average value as the tare weight value.
Leo Wei 1.1 183
Stone Wu 3.1 184 0: Normal (invalid).
Leo Wei 1.1 185
Stone Wu 3.1 186 1: Execute tare setting, then reset to 0.
Leo Wei 1.1 187
Stone Wu 3.1 188 Others: Invalid.
189 )))
190 |#7|#47|O|R/W|(% style="width:189px" %)(((
191 Gross weight/ net weigh
Leo Wei 1.1 192
Stone Wu 3.1 193 display
194 )))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
195 Choose to display the current weight as gross weight (K0) or net weight (K1).
Leo Wei 1.1 196
Stone Wu 3.1 197 0: display gross weight.
Leo Wei 1.1 198
Stone Wu 3.1 199 1: display net weight.
Leo Wei 1.1 200
Stone Wu 3.1 201 0xF: Channel closed
Leo Wei 1.1 202 )))
Stone Wu 3.1 203 |#8|#48|X|R/W|(% style="width:189px" %)Calibration|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
204 The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
Leo Wei 1.1 205
Stone Wu 3.1 206 0x0001: CHI zero instruction.
Leo Wei 1.1 207
Stone Wu 3.1 208 0x0002: CH1 weight base point instruction.
Leo Wei 1.1 209
Stone Wu 3.1 210 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
Leo Wei 1.1 211
Stone Wu 3.1 212 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
Leo Wei 1.1 213
Stone Wu 3.1 214 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
Leo Wei 1.1 215 )))
Stone Wu 3.1 216 |#9|#49|X|R/W|(% style="width:189px" %)Reset|(% style="width:74px" %)0|(% style="width:128px" %)0 to 3|(% style="width:466px" %)(((
217 #49: Reserved
Leo Wei 1.1 218
Stone Wu 3.1 219 1: Reset CH1
Leo Wei 1.1 220
Stone Wu 3.1 221 2: Reset CH2
Leo Wei 1.1 222
Stone Wu 3.1 223 3: Reset all channels
Leo Wei 1.1 224
Stone Wu 3.1 225 Others: no action
226 )))
227 |#10|#50|O|R/W|(% style="width:189px" %)Filtering method|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
228 |#11|#51|O|R/W|(% style="width:189px" %)Filter strength|(% style="width:74px" %)0|(% style="width:128px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
229 |#12|#52|O|R/W|(% style="width:189px" %)Zero tracking intervals|(% style="width:74px" %)0|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
230 |#13|#53|O|R/W|(% style="width:189px" %)Zero tracking range|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
231 0: Disable the zero tracking function
Leo Wei 1.1 232
Stone Wu 3.1 233 Others: Set the zero tracking range (absolute value)
234 )))
235 |#14|#54|O|R/W|(% style="width:189px" %)Automatically reset after boot|(% style="width:74px" %)0|(% style="width:128px" %)0 to 4|(% style="width:466px" %)(((
236 0: Disable automatic reset at startup
Leo Wei 1.1 237
Stone Wu 3.1 238 1: ±2%MAX
Leo Wei 1.1 239
Stone Wu 3.1 240 2: ±5%MAX
Leo Wei 1.1 241
Stone Wu 3.1 242 3: ±10%MAX
Leo Wei 1.1 243
Stone Wu 3.1 244 4: ±20%MAX
245 )))
246 |#15|#55|O|R/W|(% style="width:189px" %)Sensor sensitivity setting (inside the module)|(% style="width:74px" %)4|(% style="width:128px" %)0 to 5|(% style="width:466px" %)(((
247 0:<1V/V
Leo Wei 1.1 248
Stone Wu 3.1 249 1:<125mV/V
Leo Wei 1.1 250
Stone Wu 3.1 251 2:<62.5mV/V
Leo Wei 1.1 252
Stone Wu 3.1 253 3:<31.25V/V
Leo Wei 1.1 254
Stone Wu 3.1 255 4:<15.625mV/V
Leo Wei 1.1 256
Stone Wu 3.1 257 5:<7.812mV/V
Leo Wei 1.1 258
Stone Wu 3.1 259 **✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
Leo Wei 1.1 260 )))
Stone Wu 3.1 261 |#16|#56|(% rowspan="2" %)(((
262
Leo Wei 1.1 263
Stone Wu 3.1 264 X
265 )))|(% rowspan="2" %)(((
266
Leo Wei 1.1 267
Stone Wu 3.1 268 R
269 )))|(% style="width:189px" %)Average weight L|(% style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
270 -2147483648 to
Leo Wei 1.1 271
Stone Wu 3.1 272 2147483647
273 )))|(% style="width:466px" %)(((
274 Average weight display value
Leo Wei 1.1 275
Stone Wu 3.1 276 (low word)
Leo Wei 1.1 277 )))
Stone Wu 3.1 278 |#17|#57|(% style="width:189px" %)Average weight H|(% style="width:74px" %)0|(% style="width:466px" %)(((
279 Average weight display value
Leo Wei 1.1 280
Stone Wu 3.1 281 (high word)
Leo Wei 1.1 282 )))
Stone Wu 3.1 283 |#18|#58|O|R/W|(% style="width:189px" %)Sliding average|(% style="width:74px" %)5|(% style="width:128px" %)1 to 50|(% style="width:466px" %)(((
284 The setting range is K1 to K50, and the default value is K5.
Leo Wei 1.1 285
Stone Wu 3.1 286 When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
Leo Wei 1.1 287 )))
Stone Wu 3.1 288 |#19|#59|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Tare weight value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
289 -2147483648 to
Leo Wei 1.1 290
Stone Wu 3.1 291 2147483647
292 )))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
293 |#20|#60|R/W|(% style="width:189px" %)Tare weight value H
294 |#21|#61|O|R/W|(% style="width:189px" %)CH1 Stability check time|(% style="width:74px" %)200|(% style="width:128px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
295 |#22|#62|O|R/W|(% style="width:189px" %)Stability check range|(% style="width:74px" %)1|(% style="width:128px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
296 |#23|#63|(% rowspan="2" %)O|R/W|(% style="width:189px" %)(((
297 Weight value
Leo Wei 1.1 298
Stone Wu 3.1 299 calibration L
300 )))|(% rowspan="2" style="width:74px" %)1000|(% rowspan="2" style="width:128px" %)(((
301 -2147483648 to
Leo Wei 1.1 302
Stone Wu 3.1 303 2147483647
304 )))|(% rowspan="2" style="width:466px" %)(((
305 Input weight base point weight with calibration weight
Leo Wei 1.1 306
Stone Wu 3.1 307 Input sensor range without calibration weight
Leo Wei 1.1 308 )))
Stone Wu 3.1 309 |#24|#64|R/W|(% style="width:189px" %)(((
310 Weight value
Leo Wei 1.1 311
Stone Wu 3.1 312 calibration H
Leo Wei 1.1 313 )))
Stone Wu 3.1 314 |#25|#65|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Weight upper limit L|(% rowspan="2" style="width:74px" %)32767|(% rowspan="2" style="width:128px" %)(((
315 -2147483648 to
Leo Wei 1.1 316
317 2147483647
Stone Wu 3.1 318 )))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
319 |#26|#66|R/W|(% style="width:189px" %)Weight upper limit H
320 |#27|#67|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment check upper limit L|(% rowspan="2" style="width:74px" %)10|(% rowspan="2" style="width:128px" %)(((
321 -2147483648 to
Leo Wei 1.1 322
323 2147483647
Stone Wu 3.1 324 )))|(% rowspan="4" style="width:466px" %)(((
325 Zero point judgment function:
Leo Wei 1.1 326
Stone Wu 3.1 327 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
Leo Wei 1.1 328 )))
Stone Wu 3.1 329 |#28|#68|R/W|(% style="width:189px" %)Zero judgment check upper limit H
330 |#29|#69|(% rowspan="2" %)O|R/W|(% style="width:189px" %)Zero judgment checklower limit L|(% rowspan="2" style="width:74px" %)-10|(% rowspan="2" style="width:128px" %)(((
331 -2147483648 to
Leo Wei 1.1 332
333 2147483647
334 )))
Stone Wu 3.1 335 |#30|#70|R/W|(% style="width:189px" %)Zero judgment check lower limit H
336 |#31|#71|X|R/W|(% style="width:189px" %)Additional function options|(% style="width:74px" %)0|(% style="width:128px" %)0 to 1|(% style="width:466px" %)(((
337 0: Default value. Additional functions are not enabled
Leo Wei 1.1 338
339 1: Enable filter reset function.
340
Stone Wu 3.1 341 Others: Reserved
Leo Wei 1.1 342 )))
Stone Wu 3.1 343 |#32|#72|X|R/W|(% style="width:189px" %)(((
344 Additional functions
345
346 Parameter 1
347 )))|(% style="width:74px" %)0|(% style="width:128px" %)0 to 100|(% style="width:466px" %)(((
Leo Wei 1.1 348 Enable filter reset function:
349
Stone Wu 3.1 350 0: The default value does not work
Leo Wei 1.1 351
Stone Wu 3.1 352 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
Leo Wei 1.1 353 )))
Stone Wu 3.1 354 |#33|#73|X|R|(% style="width:189px" %)Digital value L|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
355 |#34|#74|X|R|(% style="width:189px" %)Digital value H
356 |#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter A|(% rowspan="2" style="width:74px" %)1|(% rowspan="2" style="width:128px" %)(((
357 -3.402823E+38
Leo Wei 1.1 358
Stone Wu 3.1 359 to 3.402823E+38
360 )))|(% rowspan="4" style="width:466px" %)Described in CH1:
361 After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
362 |#36|#76
363 |#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:189px" %)Calibration parameter B|(% rowspan="2" style="width:74px" %)0|(% rowspan="2" style="width:128px" %)(((
364 -3.402823E+38
Leo Wei 1.1 365
Stone Wu 3.1 366 to 3.402823E+38
Leo Wei 1.1 367 )))
Stone Wu 3.1 368 |#38|#78
369 |#39|#79|O|R/W|(% style="width:189px" %)Sensor sensitivity (specification)|(% style="width:74px" %)2000|(% style="width:128px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
370 For example: Modified to 1942 represent 1.942mV/V.
371 |#40|#80|X|R/W|(% style="width:189px" %)Sensor feedback voltage L|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)(((
Leo Wei 1.1 372 Write:
373
Stone Wu 3.1 374 0: not displayed
Leo Wei 1.1 375
Stone Wu 3.1 376 1: Display the current sensor feedback voltage in real time
Leo Wei 1.1 377
Stone Wu 3.1 378 2: Display the zero-point voltage during calibration
Leo Wei 1.1 379
Stone Wu 3.1 380 3: Display the voltage reading of the applied weight during calibration:
Leo Wei 1.1 381
Stone Wu 3.1 382 Displays the low bit of the voltage value. Unit: uV.
Leo Wei 1.1 383 )))
Stone Wu 3.1 384 |#41|#81|X|R|(% style="width:189px" %)(((
385 Sensor feedback
Leo Wei 1.1 386
Stone Wu 3.1 387 voltage H
388 )))|(% style="width:74px" %)0|(% style="width:128px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
Leo Wei 1.1 389
Stone Wu 3.1 390 **✎Note:**
Leo Wei 1.1 391
Stone Wu 3.1 392 * O means retentive type.
393 * X means non-retentive type.
394 * R means readable data.
395 * W means writable data.
Leo Wei 1.1 396
Stone Wu 3.1 397 == **BFM description** ==
Leo Wei 1.1 398
Stone Wu 3.1 399 **BFM0: Module code**
Leo Wei 1.1 400
Stone Wu 3.1 401 LX3V-2WT model code: 5012
Leo Wei 1.1 402
Stone Wu 3.1 403 **BFM1: module version**
Leo Wei 1.1 404
Stone Wu 3.1 405 The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
Leo Wei 1.1 406
Stone Wu 3.1 407 **BFM2: Polarity**
Leo Wei 1.1 408
409 For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
410
Stone Wu 3.1 411 **BFM3: Sampling frequency**
Leo Wei 1.1 412
Stone Wu 3.1 413 The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
Leo Wei 1.1 414
415 |**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
416 |0|7.5|23.5|5|150|21.5
417 |1|10|23.5|6|300|21
418 |2|25|23|7|600|20.5
419 |3|50|22|8|960|20
420 |4|60|22|9|2400|17.5
421
Stone Wu 3.1 422 **BFM4: State code**
Leo Wei 1.1 423
Stone Wu 3.1 424 |(% rowspan="2" %)**Bit NO.**|(% colspan="2" %)**Status code**
Leo Wei 1.1 425 |**1**|**0**
Stone Wu 3.1 426 |Bit0|CH1 zero weight (no load)|CH1 is not empty
427 |Bit1|CH2 zero weight (no load)|CH2 is not empty
428 |Bit2|(((
429 CH1 exceeds weight upper limit (overload)
430
431 **✎Note: **The upper limit weight is set by #27 and #28.
432 )))|CH1 is not overloaded
433 |Bit3|(((
434 CH2 exceeds weight upper limit (overload)
435
436 **✎Note: **The upper limit weight is set by #27 and #28.
437 )))|CH2 is not overloaded
438 |Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
439 |Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
440 |Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
441 |Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
Leo Wei 1.1 442 |(((
Stone Wu 3.1 443 Bit8
Leo Wei 1.1 444
Stone Wu 3.1 445 Bit9
Leo Wei 1.1 446 )))|(((
447 00: no error
448
Stone Wu 3.1 449 10: The weight of the base point of weight is too large
Leo Wei 1.1 450 )))|(((
451 01: No-load calibration
452
Stone Wu 3.1 453 11: Uncalibrated
Leo Wei 1.1 454 )))
Stone Wu 3.1 455 |(((
456 Bit10
Leo Wei 1.1 457
Stone Wu 3.1 458 Bit11
459 )))|(((
460 00: no error
Leo Wei 1.1 461
Stone Wu 3.1 462 10: The weight of the base point of weight is too large
463 )))|(((
464 01: No-load calibration
Leo Wei 1.1 465
Stone Wu 3.1 466 11: Uncalibrated
467 )))
468 |Bit12|(((
469 CH1 exceeds the sensor range
Leo Wei 1.1 470
Stone Wu 3.1 471 **✎Note:** Determined by sensor feedback voltage
472 )))|CH1 is within the sensor range
473 |Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
474 |Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
Leo Wei 1.1 475
Stone Wu 3.1 476 **BFM5: Error code**
Leo Wei 1.1 477
Stone Wu 3.1 478 |**Bit NO.**|**Content**|**Error state**
479 |Bit0|K1 (H0001)|Abnormal power supply
480 |Bit1|K2 (H0002)|Hardware fault
481 |Bit2|K4 (H0004)|CH1 conversion error
482 |Bit3|K8 (H0008)|CH2 conversion error
483 |Bit4|K16 (H0010)|CH1 write calibration parameter error
484 |Bit5|K32 (H0020)|CH2 write calibration parameter error
485 |Others|(% colspan="2" %)Reserved
486 |BFM#45|(% colspan="2" %)Reserved
487 |(% colspan="3" %)(((
488 **✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
489 )))
Leo Wei 1.1 490
Stone Wu 3.1 491 **Tare setting: **CH1-BFM6, CH2-BFM46
Leo Wei 1.1 492
Stone Wu 3.1 493 Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
Leo Wei 1.1 494
Stone Wu 3.1 495 The current weight value is 100, after tare setting:
Leo Wei 1.1 496
Stone Wu 3.1 497 * If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
498 * If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
Leo Wei 1.1 499
Stone Wu 3.1 500 **BFM8: Weight calibration instruction**
Leo Wei 1.1 501
Stone Wu 3.1 502 Steps are as follows. (Described with CH1)
Leo Wei 1.1 503
Stone Wu 3.1 504 * Calibration with weights
505 ** Step1: Do not put any weights on the load cell.
506 ** Step2: #8 value is written as 0x0001.
507 ** Step3: Add standard weights to the load cell.
508 ** Step4: Write the weight of the current weight on the chassis into #23.
509 ** Step5: #8 value is written as 0x0002.
510 * Weightless calibration
511 ** Step1: Do not put any weights on the load cell.
512 ** Step2: Write the maximum range of the sensor into #23.
513 ** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
514 ** Step4: #8 value is written as 0x0003.
515 * Modify calibration parameters:
516 ** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
517 ** Step2: #8 value is written as 0x0004.
Leo Wei 1.1 518
Stone Wu 3.1 519 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
Leo Wei 1.1 520
Stone Wu 3.1 521 **BFM11: filtering strength**
Leo Wei 1.1 522
523 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
524
Stone Wu 3.1 525 **BFM12: zero tracking interval**
Leo Wei 1.1 526
Stone Wu 3.1 527 BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
Leo Wei 1.1 528
Stone Wu 3.1 529 **✎Note:** This function is generally used to correct sensor temperature drift.
Leo Wei 1.1 530
Stone Wu 3.1 531 **BFM13: Zero tracking range**
Leo Wei 1.1 532
Stone Wu 3.1 533 The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
Leo Wei 1.1 534
Stone Wu 3.1 535 |**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
536 |0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
537 |1 to 100|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
538 If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
539 )))
540 |(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
Leo Wei 1.1 541
Stone Wu 3.1 542 E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
Leo Wei 1.1 543
Stone Wu 3.1 544 **BFM15: Set the AD chip gain**
Leo Wei 1.1 545
Stone Wu 3.1 546 **I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
Leo Wei 1.1 547
Stone Wu 3.1 548 |**BFM15**|**voltage range**|**Sensor sensitivity**
549 |0|±5V|<1V/V
550 |1|±625mV|<125mV/V
551 |2|±312.5mV|<62.5mV/V
552 |3|±156.2mV|<31.25mV/V
553 |4|±78.125mV|<15.625mV/V
554 |5|±39.06mV|<7.812mV/V
Leo Wei 1.1 555
Stone Wu 3.1 556 == **Function description** ==
Leo Wei 1.1 557
Stone Wu 3.1 558 **Net weight measurement function**
Leo Wei 1.1 559
Stone Wu 3.1 560 You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
Leo Wei 1.1 561
Stone Wu 3.1 562 * Tare weigh:t Refers to the weight of the outer packaging.
563 * Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
564 * Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
565 * Gross weight = net weight + tare weight
Leo Wei 1.1 566
Stone Wu 3.1 567 E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
Leo Wei 1.1 568
Stone Wu 3.1 569 * Net weight=10KG
570 * Tare weight=0.2KG
571 * Gross weight=10.2KG
Leo Wei 1.1 572
Stone Wu 3.1 573 E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
Leo Wei 1.1 574
Stone Wu 3.1 575 * Read the tare value
576 ** Write H0000 in BFM7;
577 ** Place the package on the CH1 weighing module;
578 ** Write H0001 in BFM6, and take the current package weight as the tare weight.
579 * Set BFM7=H0001
Leo Wei 1.1 580
Stone Wu 3.1 581 **Stability check**
Leo Wei 1.1 582
Stone Wu 3.1 583 When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
Leo Wei 1.1 584
Stone Wu 3.1 585 * If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
586 * When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
Leo Wei 1.1 587
Stone Wu 3.1 588 E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
Leo Wei 1.1 589
Stone Wu 3.1 590 **Zero point judgment**
Leo Wei 1.1 591
Stone Wu 3.1 592 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
Leo Wei 1.1 593
Stone Wu 3.1 594 **Filter function**
Leo Wei 1.1 595
Stone Wu 3.1 596 The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
Leo Wei 1.1 597
598 = **6 Example** =
599
Stone Wu 3.1 600 **Current state of weight**
Leo Wei 1.1 601
602 (% style="text-align:center" %)
Stone Wu 3.1 603 [[image:image-20220622145646-14.png||height="51" width="330"]]
Leo Wei 1.1 604
Stone Wu 3.1 605 Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
Leo Wei 1.1 606
Stone Wu 3.1 607 **Get current weight value**
Leo Wei 1.1 608
609 (% style="text-align:center" %)
Stone Wu 3.1 610 [[image:image-20220622145005-7.png||height="51" width="385"]]
Leo Wei 1.1 611
Stone Wu 3.1 612 Write the average weight value (BFM16) of CH1 in the weighing module into D0.
Leo Wei 1.1 613
Stone Wu 3.1 614 **Calibrating weight**
Leo Wei 1.1 615
Stone Wu 3.1 616 *In the new version, the first step can also be used for manual reset.
Leo Wei 1.1 617
Stone Wu 3.1 618 The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
Leo Wei 1.1 619
Stone Wu 3.1 620 (% style="text-align:center" %)
621 [[image:image-20220622145005-8.jpeg||height="193" width="797"]]
Leo Wei 1.1 622
Stone Wu 3.1 623 **Tare weight and gross weight**
Leo Wei 1.1 624
625 (% style="text-align:center" %)
Stone Wu 3.1 626 [[image:image-20220622145005-9.jpeg||height="274" width="749"]]
Leo Wei 1.1 627
Stone Wu 3.1 628 **Filter mode setting**
Leo Wei 1.1 629
Stone Wu 3.1 630 After setting the filtering mode and filtering strength, you need to calibrate it again.
Leo Wei 1.1 631
632 (% style="text-align:center" %)
Stone Wu 3.1 633 [[image:image-20220622145005-10.jpeg||height="196" width="791"]]
Leo Wei 1.1 634
Stone Wu 3.1 635 **Zero tracking**
Leo Wei 1.1 636
Stone Wu 3.1 637 Zero tracking is used to reduce the temperature drift interference;
Leo Wei 1.1 638
Stone Wu 3.1 639 Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
Leo Wei 1.1 640
641 (% style="text-align:center" %)
Stone Wu 3.1 642 [[image:image-20220622145005-11.jpeg||height="242" width="601"]]
Leo Wei 1.1 643
Stone Wu 3.1 644 **Calibration without weights**
Leo Wei 1.1 645
646 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
647
648 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
649
650 (% style="text-align:center" %)
Stone Wu 3.1 651 [[image:image-20220622145005-12.jpeg||height="323" width="774"]]
Leo Wei 1.1 652
Stone Wu 3.1 653 **Modify calibration parameters**
Leo Wei 1.1 654
655 (% style="text-align:center" %)
Stone Wu 3.1 656 [[image:image-20220622145005-13.jpeg||height="315" width="838"]]
Leo Wei 1.1 657
Stone Wu 3.1 658 **✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
Leo Wei 1.1 659
Stone Wu 3.1 660 = **7 Diagnosis ** =
Leo Wei 1.1 661
Stone Wu 3.1 662 == **Check** ==
Leo Wei 1.1 663
664 1. Make sure all cables are connected properly;
665 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
666 1. Make sure to select the correct operating range in application;
667 1. Make sure power supply is working properly;
668 1. LX3V CPU unit is in RUN mode;
669
Stone Wu 3.1 670 == **Check errors** ==
Leo Wei 1.1 671
Stone Wu 3.1 672 If the special function module LX3V-2WT does not operate normally, please check the following items.
Leo Wei 1.1 673
Stone Wu 3.1 674 * Check the status of the LINK indicator
675 ** Blink: Expansion cables are properly connected.
676 ** Otherwise: Check the connection of the extension cable.
677 * Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
678 ** Light on LX3V-2WT is normal, and 24VDC power is normal.
679 ** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
680 * Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
681 ** Blink: Numeric conversion works fine.
682 ** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
683 * Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.