Wiki source code of LX3V-2WT

Version 6.4 by Stone Wu on 2022/07/05 16:24

Hide last authors
Stone Wu 3.1 1 = **1 Operating principle** =
Leo Wei 1.1 2
Stone Wu 6.2 3 When a metal material is subjected to tension, the metal material becomes thinner and the electrical impedance increases; conversely, when it is compressed, the metal impedance becomes smaller, and the strain gauge made by this method is called a weighing module. This type of sensing device can transform the pressure of physical phenomena into electrical signal output, so it is often used in load, tension and pressure conversion applications.
Leo Wei 1.1 4
5 = **2 Introduction** =
6
Stone Wu 3.1 7 1. WECON LX3V-2WT expansion module’s resolution is 24-bit. The module can be used for reading signals from 4- or 6- wire configuration; The response speed can be adjusted to meet customer needs, easily meeting the full range of needs in the current load application market.
8 1. To ensure proper installation and operation of this product, please read the instruction manual carefully before using the module. This manual is intended only as an operating guide and introductory reference for the LX3V-2WT.
Stone Wu 6.2 9 1. The LX3V-2WT weighing module can read and write data with the instruction FROM/TO  through LX3V or LX5V
Leo Wei 1.1 10
Stone Wu 3.1 11 **✎Note:** Disconnect power before installing/removing modules or wiring the modules to avoid contact or product damage.
Leo Wei 1.1 12
Stone Wu 3.1 13 == **Specification** ==
Leo Wei 1.1 14
Stone Wu 3.1 15 |(% style="width:225px" %)**Item**|(% style="width:850px" %)**Description**
16 |(% style="width:225px" %)Channel|(% style="width:850px" %)Dual channel
17 |(% style="width:225px" %)A/D converter|(% style="width:850px" %)24 bit Δˉ∑ A/D
18 |(% style="width:225px" %)Resolution|(% style="width:850px" %)24 bit (signed)
19 |(% style="width:225px" %)Speed|(% style="width:850px" %)7.5/10/25/50/60/150/300Hz available
20 |(% style="width:225px" %)Polarity|(% style="width:850px" %)Unipolar and bipolar
21 |(% style="width:225px" %)Non-linearity|(% style="width:850px" %)≤0.01% full scale(25^^o^^C)
22 |(% style="width:225px" %)Zero drift|(% style="width:850px" %)≤0.2μV/^^ o^^C
23 |(% style="width:225px" %)Gain drift|(% style="width:850px" %)≤10ppm/^^ o^^C
24 |(% style="width:225px" %)Excitation voltage/ load|(% style="width:850px" %)Dual 5V, single load impedance not less than 200 Ω
25 |(% style="width:225px" %)Sensor sensitivity|(% style="width:850px" %)1mV/V to 15mV/V
26 |(% style="width:225px" %)Isolation|(% style="width:850px" %)Transformer (power supply) and the optical coupler (signal)
27 |(% style="width:225px" %)Indicator light|(% style="width:850px" %)Module power supply (24V) light, module internal data communication light (COM), communication indicator between PLC and module (LINK), channel indicator light and channel calibration light
28 |(% style="width:225px" %)Power supply|(% style="width:850px" %)24V±20% 2VA
29 |(% style="width:225px" %)Operating temperature|(% style="width:850px" %)0 to 60^^ o^^C
30 |(% style="width:225px" %)Storage temperature|(% style="width:850px" %)-20 to 80^^ o^^C
31 |(% style="width:225px" %)Dimension|(% style="width:850px" %)90(L)x58(W)x80(H) mm
Leo Wei 1.1 32
Stone Wu 3.1 33 == **Valid bits** ==
Leo Wei 1.1 34
Stone Wu 3.1 35 Refer to sampling frequency in BFM description, Chapter 5 of this manual.
36
Leo Wei 1.1 37 = **3 Dimensions** =
38
Stone Wu 3.1 39 == **Dimensions** ==
Leo Wei 1.1 40
Stone Wu 3.1 41 [[image:图片1.jpg||height="358" width="301"]] [[image:图片2.jpg||height="365" width="351"]]
Leo Wei 1.1 42
Stone Wu 3.1 43 (% style="text-align:center" %)
44 [[image:图片3.jpg||height="593" width="684"]]
Leo Wei 1.1 45
Stone Wu 3.1 46 1. Extension cable
47 1. COM light: Module internal data communication indicator
48 1. 24V light: Always on when connected to external 24V power supply
49 1. WT light: Channel input/output indicator
Leo Wei 1.1 50
Stone Wu 3.1 51 * WE light: Channel calibration indicator
Leo Wei 1.1 52
Stone Wu 3.1 53 (% start="5" %)
54 1. LINK: Communication indicator between PLC and module (LINK)
55 1. Expansion module name
56 1. Expansion module interface
57 1. DIN rail mounting clip
58 1. Hook for DIN rail
59 1. Holes for direct mounting: 2 places (φ4.5)
Leo Wei 1.1 60
Stone Wu 4.1 61 |(% style="width:121px" %)**Name**|(% style="width:346px" %)**Description**|(% style="width:126px" %)**Light status**|(% style="width:483px" %)**Event status**
Stone Wu 3.1 62 |(% rowspan="3" style="width:121px" %)(((
63
Leo Wei 1.1 64
Stone Wu 3.1 65 LINK light
Stone Wu 4.1 66 )))|(% rowspan="3" style="width:346px" %)Communication indicator between PLC and module|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
67 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
68 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
Stone Wu 3.1 69 |(% rowspan="3" style="width:121px" %)(((
70
Leo Wei 1.1 71
Stone Wu 3.1 72 COM light
Stone Wu 4.1 73 )))|(% rowspan="3" style="width:346px" %)Module internal data communication indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Data is interacting normally (communication is normal)
74 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Data interaction is abnormal, stopped or failed
75 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Abnormal software operation or hardware failure
Stone Wu 3.1 76 |(% rowspan="3" style="width:121px" %)(((
77
Leo Wei 1.1 78
Stone Wu 3.1 79 WT light
Stone Wu 4.1 80 )))|(% rowspan="3" style="width:346px" %)Channel output/input indicator|(% style="width:126px" %)Light flashes|(% style="width:483px" %)Analog input is out of range
81 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Analog input is within the range
82 |(% style="width:126px" %)Lights off|(% style="width:483px" %)Channel closed
83 |(% rowspan="2" style="width:121px" %)WE light|(% rowspan="2" style="width:346px" %)Calibration indicator for the channel|(% style="width:126px" %)Lights off|(% style="width:483px" %)Calibration succeeded
84 |(% style="width:126px" %)Always ON|(% style="width:483px" %)Calibration failed or not calibrated
Leo Wei 1.1 85
Stone Wu 3.1 86 == Use of blade terminals ==
Leo Wei 1.1 87
Stone Wu 6.4 88 [[image:image-20220705162505-2.jpeg]]
Leo Wei 1.1 89
Stone Wu 3.1 90 Use crimp terminals of the size shown in the figure. Terminal tightening torque is 0.5 to 0.8N.m. Be sure to tighten the screws so as not to cause malfunction.
Leo Wei 1.1 91
Stone Wu 3.1 92 == **Terminals** ==
Leo Wei 1.1 93
Stone Wu 3.1 94 |**Terminal**|**Terminal Instructions**
95 |24V+|External DC24 power supply+
96 |24V-|External DC24 power supply-
97 |Ground|Ground
98 |FG1|Sensor housing
99 |E1+|First sensor 5V power +
100 |E1-|First sensor 5V power -
101 |F1+|First sensor power supply feedback +
102 |F1-|First sensor power supply feedback -
103 |S1+|First sensor signal output +
104 |S1-|First sensor signal output -
105 |E2+|Second sensor 5V power +
106 |E2-|Second sensor 5V power -
107 |F2+|Second sensor power supply feedback +
108 |F2-|Second sensor power supply feedback -
109 |S2+|Second sensor signal output +
110 |S2-|Second sensor signal output -
111 |FG2|Second sensor housing
112 |Other empty terminals|Empty pin, not connect any wires
Leo Wei 1.1 113
Stone Wu 3.1 114 = **4 Wiring ** =
115
Leo Wei 1.1 116 (% style="text-align:center" %)
Stone Wu 6.4 117 [[image:image-20220705162452-1.jpeg]]
Leo Wei 1.1 118
Stone Wu 3.1 119 **✎Note:**
Leo Wei 1.1 120
Stone Wu 3.1 121 * Impedance of the weighing sensor is greater than 200 Ω.
122 * Sensors with 4 wires need to have E1+ and F1+ connected, E1- and F1- connected.
Leo Wei 1.1 123
Stone Wu 3.1 124 = **5 Buffer register (BFM)** =
Leo Wei 1.1 125
Stone Wu 3.1 126 == **BFM list** ==
Leo Wei 1.1 127
Stone Wu 3.1 128 |(% colspan="2" %)**BFM number**|(% rowspan="2" %)**Power-off hold**|(% rowspan="2" %)(((
129 **Read/**
Leo Wei 1.1 130
Stone Wu 3.1 131 **write**
Stone Wu 6.1 132 )))|(% rowspan="2" style="width:182px" %)**Register name**|(% rowspan="2" style="width:75px" %)**Default**|(% rowspan="2" style="width:134px" %)**Range**|(% rowspan="2" style="width:466px" %)**Illustrate**
Stone Wu 3.1 133 |**CH1**|**CH2**
Stone Wu 6.1 134 |(% colspan="2" %)#0|O|R|(% style="width:182px" %)Model type|(% style="width:75px" %)5012|(% style="width:134px" %)-|(% style="width:466px" %)System default, the model number of LX3V-2WT
135 |(% colspan="2" %)#1|O|R|(% style="width:182px" %)Software version|(% style="width:75px" %)15004|(% style="width:134px" %)-|(% style="width:466px" %)Software version number
136 |#2|#42|O|R/W|(% style="width:182px" %)Unipolar/Bipolar|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)0: Bipolar 1: Unipolar
137 |#3|#43|O|R/W|(% style="width:182px" %)Sampling frequency|(% style="width:75px" %)1|(% style="width:134px" %)0 to 4800|(% style="width:466px" %)(((
Stone Wu 3.1 138 0: 7.5HZ
Leo Wei 1.1 139
Stone Wu 3.1 140 1: 10HZ
Leo Wei 1.1 141
Stone Wu 3.1 142 2: 25HZ
Leo Wei 1.1 143
Stone Wu 3.1 144 3: 50HZ
Leo Wei 1.1 145
Stone Wu 3.1 146 4: 60HZ
Leo Wei 1.1 147
Stone Wu 3.1 148 5: 150HZ
Leo Wei 1.1 149
Stone Wu 3.1 150 6: 300HZ
Leo Wei 1.1 151
Stone Wu 3.1 152 7: 600HZ
Leo Wei 1.1 153
Stone Wu 3.1 154 8: 960HZ
Leo Wei 1.1 155
Stone Wu 3.1 156 9: 2400HZ
Leo Wei 1.1 157
Stone Wu 3.1 158 10 to 4800: 10Hz to 4800Hz
Leo Wei 1.1 159 )))
Stone Wu 6.1 160 |#4|#44|X|R|(% style="width:182px" %)Status code|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)For details of each status code, refer to "Buffer Register BFM Description"
161 |#5|#45|X|R|(% style="width:182px" %)Error code|(% style="width:75px" %)0|(% style="width:134px" %)—|(% style="width:466px" %)(((
Stone Wu 3.1 162 A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error, 1 means there is an error state.
Leo Wei 1.1 163
Stone Wu 3.1 164 #45: Reserved
Leo Wei 1.1 165
Stone Wu 3.1 166 b0: Abnormal power supply
Leo Wei 1.1 167
Stone Wu 3.1 168 b1: Hardware failure
Leo Wei 1.1 169
Stone Wu 3.1 170 b2: CH1 conversion error
Leo Wei 1.1 171
Stone Wu 3.1 172 b3: CH2 conversion error
Leo Wei 1.1 173
Stone Wu 3.1 174 b4: CH1 input calibration parameter error
Leo Wei 1.1 175
Stone Wu 3.1 176 b5: CH2 input calibration parameter error
177
178 Others: Reserved
Leo Wei 1.1 179 )))
Stone Wu 6.1 180 |#6|#46|X|R/W|(% style="width:182px" %)Tare reading|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
Stone Wu 3.1 181 Read the current average value as the tare weight value.
Leo Wei 1.1 182
Stone Wu 3.1 183 0: Normal (invalid).
Leo Wei 1.1 184
Stone Wu 3.1 185 1: Execute tare setting, then reset to 0.
Leo Wei 1.1 186
Stone Wu 3.1 187 Others: Invalid.
188 )))
Stone Wu 6.1 189 |#7|#47|O|R/W|(% style="width:182px" %)(((
Stone Wu 3.1 190 Gross weight/ net weigh
Leo Wei 1.1 191
Stone Wu 3.1 192 display
Stone Wu 6.1 193 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
Stone Wu 3.1 194 Choose to display the current weight as gross weight (K0) or net weight (K1).
Leo Wei 1.1 195
Stone Wu 3.1 196 0: display gross weight.
Leo Wei 1.1 197
Stone Wu 3.1 198 1: display net weight.
Leo Wei 1.1 199
Stone Wu 3.1 200 0xF: Channel closed
Leo Wei 1.1 201 )))
Stone Wu 6.1 202 |#8|#48|X|R/W|(% style="width:182px" %)Calibration|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
Stone Wu 3.1 203 The calibration is to make the module match the weight value of the load cell of the weighing module. The default value is 0.
Leo Wei 1.1 204
Stone Wu 3.1 205 0x0001: CHI zero instruction.
Leo Wei 1.1 206
Stone Wu 3.1 207 0x0002: CH1 weight base point instruction.
Leo Wei 1.1 208
Stone Wu 3.1 209 0x0003: CH1 no weight calibration instruction. (supported by 15004 and above)
Leo Wei 1.1 210
Stone Wu 3.1 211 0x0004: CH1 modify calibration parameter instruction. (supported by version 15004 and above)
Leo Wei 1.1 212
Stone Wu 3.1 213 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
Leo Wei 1.1 214 )))
Stone Wu 6.1 215 |#9|#49|X|R/W|(% style="width:182px" %)Reset|(% style="width:75px" %)0|(% style="width:134px" %)0 to 3|(% style="width:466px" %)(((
Stone Wu 3.1 216 #49: Reserved
Leo Wei 1.1 217
Stone Wu 3.1 218 1: Reset CH1
Leo Wei 1.1 219
Stone Wu 3.1 220 2: Reset CH2
Leo Wei 1.1 221
Stone Wu 3.1 222 3: Reset all channels
Leo Wei 1.1 223
Stone Wu 3.1 224 Others: no action
225 )))
Stone Wu 6.1 226 |#10|#50|O|R/W|(% style="width:182px" %)Filtering method|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)Recalibration required after change
227 |#11|#51|O|R/W|(% style="width:182px" %)Filter strength|(% style="width:75px" %)0|(% style="width:134px" %)0 to 7|(% style="width:466px" %)Recalibration required after change
228 |#12|#52|O|R/W|(% style="width:182px" %)Zero tracking intervals|(% style="width:75px" %)0|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)When the zero tracking function is enabled, the minimum interval between two consecutive zero resets. The unit is 1ms.
229 |#13|#53|O|R/W|(% style="width:182px" %)Zero tracking range|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
Stone Wu 3.1 230 0: Disable the zero tracking function
Leo Wei 1.1 231
Stone Wu 3.1 232 Others: Set the zero tracking range (absolute value)
233 )))
Stone Wu 6.1 234 |#14|#54|O|R/W|(% style="width:182px" %)Automatically reset after boot|(% style="width:75px" %)0|(% style="width:134px" %)0 to 4|(% style="width:466px" %)(((
Stone Wu 3.1 235 0: Disable automatic reset at startup
Leo Wei 1.1 236
Stone Wu 3.1 237 1: ±2%MAX
Leo Wei 1.1 238
Stone Wu 3.1 239 2: ±5%MAX
Leo Wei 1.1 240
Stone Wu 3.1 241 3: ±10%MAX
Leo Wei 1.1 242
Stone Wu 3.1 243 4: ±20%MAX
244 )))
Stone Wu 6.1 245 |#15|#55|O|R/W|(% style="width:182px" %)Sensor sensitivity setting (inside the module)|(% style="width:75px" %)4|(% style="width:134px" %)0 to 5|(% style="width:466px" %)(((
Stone Wu 3.1 246 0:<1V/V
Leo Wei 1.1 247
Stone Wu 3.1 248 1:<125mV/V
Leo Wei 1.1 249
Stone Wu 3.1 250 2:<62.5mV/V
Leo Wei 1.1 251
Stone Wu 3.1 252 3:<31.25V/V
Leo Wei 1.1 253
Stone Wu 3.1 254 4:<15.625mV/V
Leo Wei 1.1 255
Stone Wu 3.1 256 5:<7.812mV/V
Leo Wei 1.1 257
Stone Wu 3.1 258 **✎Note:** Recalibration is required after setting. (Only supported by version 13904 and above)
Leo Wei 1.1 259 )))
Stone Wu 3.1 260 |#16|#56|(% rowspan="2" %)(((
261
Leo Wei 1.1 262
Stone Wu 3.1 263 X
264 )))|(% rowspan="2" %)(((
265
Leo Wei 1.1 266
Stone Wu 3.1 267 R
Stone Wu 6.1 268 )))|(% style="width:182px" %)Average weight L|(% style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 269 -2147483648 to
Leo Wei 1.1 270
Stone Wu 3.1 271 2147483647
272 )))|(% style="width:466px" %)(((
273 Average weight display value
Leo Wei 1.1 274
Stone Wu 3.1 275 (low word)
Leo Wei 1.1 276 )))
Stone Wu 6.1 277 |#17|#57|(% style="width:182px" %)Average weight H|(% style="width:75px" %)0|(% style="width:466px" %)(((
Stone Wu 3.1 278 Average weight display value
Leo Wei 1.1 279
Stone Wu 3.1 280 (high word)
Leo Wei 1.1 281 )))
Stone Wu 6.1 282 |#18|#58|O|R/W|(% style="width:182px" %)Sliding average|(% style="width:75px" %)5|(% style="width:134px" %)1 to 50|(% style="width:466px" %)(((
Stone Wu 3.1 283 The setting range is K1 to K50, and the default value is K5.
Leo Wei 1.1 284
Stone Wu 3.1 285 When the set value exceeds the range, it is automatically changed to the critical value K1 or K50.
Leo Wei 1.1 286 )))
Stone Wu 6.1 287 |#19|#59|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Tare weight value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 288 -2147483648 to
Leo Wei 1.1 289
Stone Wu 3.1 290 2147483647
291 )))|(% rowspan="2" style="width:466px" %)You could write or read the tare weight #7 by instruction.
Stone Wu 6.1 292 |#20|#60|R/W|(% style="width:182px" %)Tare weight value H
293 |#21|#61|O|R/W|(% style="width:182px" %)CH1 Stability check time|(% style="width:75px" %)200|(% style="width:134px" %)0 to 20000|(% style="width:466px" %)Stability check time, used in conjunction with the stability check range. Unit: ms.
294 |#22|#62|O|R/W|(% style="width:182px" %)Stability check range|(% style="width:75px" %)1|(% style="width:134px" %)1 to 100|(% style="width:466px" %)If the stability check range is set to 100 and the stability check time is set to 200ms, the value is considered to be stable if the current weight bounce range is within 100 for 200ms. In other cases, it is considered unstable, and the stability flag is displayed in BFM#4.
295 |#23|#63|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
296 Weight value calibration L
297 )))|(% rowspan="2" style="width:75px" %)1000|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 298 -2147483648 to
Leo Wei 1.1 299
Stone Wu 3.1 300 2147483647
301 )))|(% rowspan="2" style="width:466px" %)(((
302 Input weight base point weight with calibration weight
Leo Wei 1.1 303
Stone Wu 3.1 304 Input sensor range without calibration weight
Leo Wei 1.1 305 )))
Stone Wu 6.1 306 |#24|#64|R/W|(% style="width:182px" %)(((
307 Weight value calibration H
Leo Wei 1.1 308 )))
Stone Wu 6.1 309 |#25|#65|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Weight upper limit L|(% rowspan="2" style="width:75px" %)32767|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 310 -2147483648 to
Leo Wei 1.1 311
312 2147483647
Stone Wu 3.1 313 )))|(% rowspan="2" style="width:466px" %)You could set the maximum weight value. When the measured value exceeds the set value, an error code will be recorded.
Stone Wu 6.1 314 |#26|#66|R/W|(% style="width:182px" %)Weight upper limit H
315 |#27|#67|(% rowspan="2" %)O|R/W|(% style="width:182px" %)(((
316 Zero judgment check
317
318 upper limit L
319 )))|(% rowspan="2" style="width:75px" %)10|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 320 -2147483648 to
Leo Wei 1.1 321
322 2147483647
Stone Wu 3.1 323 )))|(% rowspan="4" style="width:466px" %)(((
324 Zero point judgment function:
Leo Wei 1.1 325
Stone Wu 3.1 326 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judges that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1)
Leo Wei 1.1 327 )))
Stone Wu 6.1 328 |#28|#68|R/W|(% style="width:182px" %)Zero judgment check upper limit H
329 |#29|#69|(% rowspan="2" %)O|R/W|(% style="width:182px" %)Zero judgment check lower limit L|(% rowspan="2" style="width:75px" %)-10|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 330 -2147483648 to
Leo Wei 1.1 331
332 2147483647
333 )))
Stone Wu 6.1 334 |#30|#70|R/W|(% style="width:182px" %)Zero judgment check lower limit H
335 |#31|#71|X|R/W|(% style="width:182px" %)Additional function options|(% style="width:75px" %)0|(% style="width:134px" %)0 to 1|(% style="width:466px" %)(((
Stone Wu 3.1 336 0: Default value. Additional functions are not enabled
Leo Wei 1.1 337
338 1: Enable filter reset function.
339
Stone Wu 3.1 340 Others: Reserved
Leo Wei 1.1 341 )))
Stone Wu 6.1 342 |#32|#72|X|R/W|(% style="width:182px" %)(((
Stone Wu 3.1 343 Additional functions
344
345 Parameter 1
Stone Wu 6.1 346 )))|(% style="width:75px" %)0|(% style="width:134px" %)0 to 100|(% style="width:466px" %)(((
Leo Wei 1.1 347 Enable filter reset function:
348
Stone Wu 3.1 349 0: The default value does not work
Leo Wei 1.1 350
Stone Wu 3.1 351 0 to 100: The number of sampling cycles to wait to restart filtering. The values collected during the period are accumulated and averaged as the initial value of filtering.
Leo Wei 1.1 352 )))
Stone Wu 6.1 353 |#33|#73|X|R|(% style="width:182px" %)Digital value L|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)-|(% rowspan="2" style="width:466px" %)Digital quantity collected by ADC
354 |#34|#74|X|R|(% style="width:182px" %)Digital value H
355 |#35|#75|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter A|(% rowspan="2" style="width:75px" %)1|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 356 -3.402823E+38
Leo Wei 1.1 357
Stone Wu 3.1 358 to 3.402823E+38
359 )))|(% rowspan="4" style="width:466px" %)Described in CH1:
360 After modifying the calibration parameters, #8 does not write 4, it is only displayed, and not used for weight value calculation, and will not be saved when power off. After #8 is written to 4, if the parameter range is correct, write and save it for weight value calculation, # 4 error code Bit4 is set to 0. If the parameter range is wrong, no write operation is performed, and #4 error code Bit4 is set to 1.
361 |#36|#76
Stone Wu 6.1 362 |#37|#77|(% rowspan="2" %)O|(% rowspan="2" %)R/W|(% rowspan="2" style="width:182px" %)Calibration parameter B|(% rowspan="2" style="width:75px" %)0|(% rowspan="2" style="width:134px" %)(((
Stone Wu 3.1 363 -3.402823E+38
Leo Wei 1.1 364
Stone Wu 3.1 365 to 3.402823E+38
Leo Wei 1.1 366 )))
Stone Wu 3.1 367 |#38|#78
Stone Wu 6.1 368 |#39|#79|O|R/W|(% style="width:182px" %)Sensor sensitivity (specification)|(% style="width:75px" %)2000|(% style="width:134px" %)0 to 32767|(% style="width:466px" %)The default setting of 2000 means 2mV/V. For calibration without weights, you need to set the sensitivity and accuracy of the sensor. The sensitivity range is 0 to 32.767mV/V, the sensor sensitivity BFM#39 input negative value, directly convert it to 32767 and execute.
Stone Wu 3.1 369 For example: Modified to 1942 represent 1.942mV/V.
Stone Wu 6.1 370 |#40|#80|X|R/W|(% style="width:182px" %)Sensor feedback voltage L|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)(((
Leo Wei 1.1 371 Write:
372
Stone Wu 3.1 373 0: not displayed
Leo Wei 1.1 374
Stone Wu 3.1 375 1: Display the current sensor feedback voltage in real time
Leo Wei 1.1 376
Stone Wu 3.1 377 2: Display the zero-point voltage during calibration
Leo Wei 1.1 378
Stone Wu 3.1 379 3: Display the voltage reading of the applied weight during calibration:
Leo Wei 1.1 380
Stone Wu 3.1 381 Displays the low bit of the voltage value. Unit: uV.
Leo Wei 1.1 382 )))
Stone Wu 6.1 383 |#41|#81|X|R|(% style="width:182px" %)(((
Stone Wu 3.1 384 Sensor feedback
Leo Wei 1.1 385
Stone Wu 3.1 386 voltage H
Stone Wu 6.1 387 )))|(% style="width:75px" %)0|(% style="width:134px" %)-|(% style="width:466px" %)Read: Displays the low bit of the voltage value. Unit: uV.
Leo Wei 1.1 388
Stone Wu 3.1 389 **✎Note:**
Leo Wei 1.1 390
Stone Wu 3.1 391 * O means retentive type.
392 * X means non-retentive type.
393 * R means readable data.
394 * W means writable data.
Leo Wei 1.1 395
Stone Wu 3.1 396 == **BFM description** ==
Leo Wei 1.1 397
Stone Wu 3.1 398 **BFM0: Module code**
Leo Wei 1.1 399
Stone Wu 3.1 400 LX3V-2WT model code: 5012
Leo Wei 1.1 401
Stone Wu 3.1 402 **BFM1: module version**
Leo Wei 1.1 403
Stone Wu 3.1 404 The software version is displayed in decimal, which is used to indicate the software version of the expansion module.
Leo Wei 1.1 405
Stone Wu 3.1 406 **BFM2: Polarity**
Leo Wei 1.1 407
408 For bipolar, the signal will go through zero while it is in changing process, but unipolar will not. The result of the conversion from analog value to digital value is signed, so for bipolar signal the value could be minus.
409
Stone Wu 3.1 410 **BFM3: Sampling frequency**
Leo Wei 1.1 411
Stone Wu 3.1 412 The frequency of input signal reading, the lower the frequency is, the more stable the value it gets, and the higher the precision is, but the lower speed gets.
Leo Wei 1.1 413
414 |**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**|**Setting**|**Sample frequency (HZ)**|**Sample precision (Bits)**
415 |0|7.5|23.5|5|150|21.5
416 |1|10|23.5|6|300|21
417 |2|25|23|7|600|20.5
418 |3|50|22|8|960|20
419 |4|60|22|9|2400|17.5
420
Stone Wu 3.1 421 **BFM4: State code**
Leo Wei 1.1 422
Stone Wu 3.1 423 |(% rowspan="2" %)**Bit NO.**|(% colspan="2" %)**Status code**
Leo Wei 1.1 424 |**1**|**0**
Stone Wu 3.1 425 |Bit0|CH1 zero weight (no load)|CH1 is not empty
426 |Bit1|CH2 zero weight (no load)|CH2 is not empty
427 |Bit2|(((
428 CH1 exceeds weight upper limit (overload)
429
430 **✎Note: **The upper limit weight is set by #27 and #28.
431 )))|CH1 is not overloaded
432 |Bit3|(((
433 CH2 exceeds weight upper limit (overload)
434
435 **✎Note: **The upper limit weight is set by #27 and #28.
436 )))|CH2 is not overloaded
437 |Bit4|CH1 measurement value is stable|CH1 measurement value is unstable
438 |Bit5|CH2 measurement value is stable|CH2 measurement value is unstable
439 |Bit6|CH1 uncalibrated / calibrated error|CH1 calibrate successfully
440 |Bit7|CH2 uncalibrated / calibrated error|CH2 calibrate successfully
Leo Wei 1.1 441 |(((
Stone Wu 3.1 442 Bit8
Leo Wei 1.1 443
Stone Wu 3.1 444 Bit9
Leo Wei 1.1 445 )))|(((
446 00: no error
447
Stone Wu 3.1 448 10: The weight of the base point of weight is too large
Leo Wei 1.1 449 )))|(((
450 01: No-load calibration
451
Stone Wu 3.1 452 11: Uncalibrated
Leo Wei 1.1 453 )))
Stone Wu 3.1 454 |(((
455 Bit10
Leo Wei 1.1 456
Stone Wu 3.1 457 Bit11
458 )))|(((
459 00: no error
Leo Wei 1.1 460
Stone Wu 3.1 461 10: The weight of the base point of weight is too large
462 )))|(((
463 01: No-load calibration
Leo Wei 1.1 464
Stone Wu 3.1 465 11: Uncalibrated
466 )))
467 |Bit12|(((
468 CH1 exceeds the sensor range
Leo Wei 1.1 469
Stone Wu 3.1 470 **✎Note:** Determined by sensor feedback voltage
471 )))|CH1 is within the sensor range
472 |Bit14|CH1 enters the calibration without weights|CH1 has not entered the calibration without weights
473 |Bit15|CH2 enters the calibration without weights|CH2 has not entered the calibration without weights
Leo Wei 1.1 474
Stone Wu 3.1 475 **BFM5: Error code**
Leo Wei 1.1 476
Stone Wu 3.1 477 |**Bit NO.**|**Content**|**Error state**
478 |Bit0|K1 (H0001)|Abnormal power supply
479 |Bit1|K2 (H0002)|Hardware fault
480 |Bit2|K4 (H0004)|CH1 conversion error
481 |Bit3|K8 (H0008)|CH2 conversion error
482 |Bit4|K16 (H0010)|CH1 write calibration parameter error
483 |Bit5|K32 (H0020)|CH2 write calibration parameter error
484 |Others|(% colspan="2" %)Reserved
485 |BFM#45|(% colspan="2" %)Reserved
486 |(% colspan="3" %)(((
487 **✎Note:** A data register that stores all error states. Each error state is determined by the corresponding bit. It is possible to generate more than two error states at the same time. 0 means normal without error; 1 means there is an error state.
488 )))
Leo Wei 1.1 489
Stone Wu 3.1 490 **Tare setting: **CH1-BFM6, CH2-BFM46
Leo Wei 1.1 491
Stone Wu 3.1 492 Writing 1 to CH1-BFM6/CH2-BFM46 is valid; After execution, reset to 0. Select the current weight value (BFM16-17) as the weight value for the tare weight (BFM19-20). Takes CH1 as an example.
Leo Wei 1.1 493
Stone Wu 3.1 494 The current weight value is 100, after tare setting:
Leo Wei 1.1 495
Stone Wu 3.1 496 * If the gross weight is currently displayed (BFM7=0), the tare weight (BFM19-20) becomes 100, and the current weight is still 100;
497 * If the net weight is currently displayed (BFM7=1), the tare weight (BFM19-20) becomes the original value + the current weight value, and the current weight value becomes 0.
Leo Wei 1.1 498
Stone Wu 3.1 499 **BFM8: Weight calibration instruction**
Leo Wei 1.1 500
Stone Wu 3.1 501 Steps are as follows. (Described with CH1)
Leo Wei 1.1 502
Stone Wu 3.1 503 * Calibration with weights
504 ** Step1: Do not put any weights on the load cell.
Stone Wu 6.3 505 ** Step2: Write 0x0001 to #8.
Stone Wu 3.1 506 ** Step3: Add standard weights to the load cell.
507 ** Step4: Write the weight of the current weight on the chassis into #23.
Stone Wu 6.3 508 ** Step5: Write 0x0002 to #8.
Stone Wu 3.1 509 * Weightless calibration
510 ** Step1: Do not put any weights on the load cell.
511 ** Step2: Write the maximum range of the sensor into #23.
512 ** Step3: Write the sensor sensitivity into #39, accurate to three decimal places.
Stone Wu 6.3 513 ** Step4: Write 0x0003 to #8.
Stone Wu 3.1 514 * Modify calibration parameters:
515 ** Step1: Modify the calibration parameter values in BFM#35 to BFM#38;
Stone Wu 6.3 516 ** Step2: Write 0x0004 to #8.
Leo Wei 1.1 517
Stone Wu 3.1 518 **✎Note: **When a value is written to BFM#8 or BFM#48 using the device monitor, it is automatically reset to 0.
Leo Wei 1.1 519
Stone Wu 3.1 520 **BFM11: filtering strength**
Leo Wei 1.1 521
522 The higher the filter strength is, the more stable and accurate the weight value is. But the delay time will increase accordingly, and the sensitivity will decrease.
523
Stone Wu 3.1 524 **BFM12: zero tracking interval**
Leo Wei 1.1 525
Stone Wu 3.1 526 BFM#12 is used in conjunction with BFM#13. When BFM#13 is not 0, BFM#12 indicates the interval between the current automatic weight reset and the next automatic reset to prevent continuous reset.
Leo Wei 1.1 527
Stone Wu 3.1 528 **✎Note:** This function is generally used to correct sensor temperature drift.
Leo Wei 1.1 529
Stone Wu 3.1 530 **BFM13: Zero tracking range**
Leo Wei 1.1 531
Stone Wu 3.1 532 The accumulation range of zero point tracking. If the accumulation exceeds this range, the tracking will not continue.
Leo Wei 1.1 533
Stone Wu 3.1 534 |**Settings**|(% style="width:599px" %)**Description**|(% style="width:404px" %)**Remark**
535 |0|(% style="width:599px" %)Do not enable zero tracking|(% style="width:404px" %)Default
Stone Wu 6.4 536 |1 to 300|(% style="width:599px" %)When setting the zero tracking range (absolute value), tracking must be performed when the value is stable and the current weight is within the zero tracking range.|(% style="width:404px" %)(((
Stone Wu 3.1 537 If set to 10, the current weight is ±9 and the stable flag is 1, the current weight is cleared.
538 )))
539 |(% colspan="3" %)**✎Note: **When the accuracy of the measured items is not high, the temperature drift has little effect, and this function is not required.
Leo Wei 1.1 540
Stone Wu 3.1 541 E.g: The setting value is 100, after the zero point drifts from the 0 position to more than ±100, the tracking will not continue. If it drifts back to within ±100, the tracking will be resumed.
Leo Wei 1.1 542
Stone Wu 3.1 543 **BFM15: Set the AD chip gain**
Leo Wei 1.1 544
Stone Wu 3.1 545 **I**t can be set according to the sensor range. After the BFM is set, it needs to be re-calibrated.
Leo Wei 1.1 546
Stone Wu 3.1 547 |**BFM15**|**voltage range**|**Sensor sensitivity**
548 |0|±5V|<1V/V
549 |1|±625mV|<125mV/V
550 |2|±312.5mV|<62.5mV/V
551 |3|±156.2mV|<31.25mV/V
552 |4|±78.125mV|<15.625mV/V
553 |5|±39.06mV|<7.812mV/V
Leo Wei 1.1 554
Stone Wu 3.1 555 == **Function description** ==
Leo Wei 1.1 556
Stone Wu 3.1 557 **Net weight measurement function**
Leo Wei 1.1 558
Stone Wu 3.1 559 You could choose whether the measured weight is net weight or gross weight. Net weight refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging. The weight of the outer packaging is generally called the tare weight, and the gross weight is the total weight, which refers to net weight plus tare weight.
Leo Wei 1.1 560
Stone Wu 3.1 561 * Tare weigh:t Refers to the weight of the outer packaging.
562 * Net weight: Refers to the weight of the product itself, that is, the actual weight of the product after removing the weight of the outer packaging.
563 * Gross weight: Refers to the total weight, that is, the weight of the product itself (net weight), plus the weight of the outer packaging (tare weight)
564 * Gross weight = net weight + tare weight
Leo Wei 1.1 565
Stone Wu 3.1 566 E.g: There is a product that is 10KG, the carton it is packed in weighs 0.2KG, and the total weight is 10.2KG.
Leo Wei 1.1 567
Stone Wu 3.1 568 * Net weight=10KG
569 * Tare weight=0.2KG
570 * Gross weight=10.2KG
Leo Wei 1.1 571
Stone Wu 3.1 572 E.g: Use CH1 to measure the value to display the net weight, and CH2 to select OFF. (If the weight of the outer package is known, you can skip the step of reading the tare weight).
Leo Wei 1.1 573
Stone Wu 3.1 574 * Read the tare value
575 ** Write H0000 in BFM7;
576 ** Place the package on the CH1 weighing module;
577 ** Write H0001 in BFM6, and take the current package weight as the tare weight.
578 * Set BFM7=H0001
Leo Wei 1.1 579
Stone Wu 3.1 580 **Stability check**
Leo Wei 1.1 581
Stone Wu 3.1 582 When placing the item on the weighing module to measure the weight, the user can use the stability check function to know that the current measurement value is stable.
Leo Wei 1.1 583
Stone Wu 3.1 584 * If the variation range of the measured value is within the stable range #22 set by the user, the #4 stable bit of the measured value will be set to 1.
585 * When the variation range of the measured value exceeds the set stability range, the #4 stable bit of the measured value will be set to 0, until the stability check time #21 is within the stable range, the #4 stable bit of the measured value will be set to 1 again.
Leo Wei 1.1 586
Stone Wu 3.1 587 E.g: The stability check time is set to 200ms, and the stability check range is 10. When the change range exceeds 10, the measurement value is unstable, that is, the #4 stable bit of the measured value will be set to 0. When the beating range is within 10 within 200ms, the stable bit of the measurement value will be set to 1 again. (It is recommended that the user should judge whether the current measurement value is stable before performing control).
Leo Wei 1.1 588
Stone Wu 3.1 589 **Zero point judgment**
Leo Wei 1.1 590
Stone Wu 3.1 591 You could use the zero point judgment function to know that the item has been removed from the weighing module. You could judge that the measurement value is stable and the Bit is 1, which means that the item has been removed from the weighing module, and you could perform the next step at this time. (The zero point weight Bit in the zero point judgment range is 1).
Leo Wei 1.1 592
Stone Wu 3.1 593 **Filter function**
Leo Wei 1.1 594
Stone Wu 3.1 595 The average value is the function of summing and averaging the read values to obtain a slowing value, but the environment used will have unavoidable external force factors, which will cause the read value to have a sharp change in the surge value. The change also becomes larger. The function of filtering is not to include the sharply changing surge value in the aggregated average, and the obtained filtered average value will not be affected by the sharply changed surge value.
Leo Wei 1.1 596
597 = **6 Example** =
598
Stone Wu 3.1 599 **Current state of weight**
Leo Wei 1.1 600
601 (% style="text-align:center" %)
Stone Wu 3.1 602 [[image:image-20220622145646-14.png||height="51" width="330"]]
Leo Wei 1.1 603
Stone Wu 3.1 604 Read the current weighing state BFM4 and judge it by Bit state. For details, please refer to the description of BFM4 in "5.2 Buffer Register Description".
Leo Wei 1.1 605
Stone Wu 3.1 606 **Get current weight value**
Leo Wei 1.1 607
608 (% style="text-align:center" %)
Stone Wu 3.1 609 [[image:image-20220622145005-7.png||height="51" width="385"]]
Leo Wei 1.1 610
Stone Wu 3.1 611 Write the average weight value (BFM16) of CH1 in the weighing module into D0.
Leo Wei 1.1 612
Stone Wu 3.1 613 **Calibrating weight**
Leo Wei 1.1 614
Stone Wu 3.1 615 *In the new version, the first step can also be used for manual reset.
Leo Wei 1.1 616
Stone Wu 3.1 617 The adjustment is to make the module match the weight value of the load cell of the weighing module. The adjustment steps are as follows. Described with CH1.
Leo Wei 1.1 618
Stone Wu 3.1 619 (% style="text-align:center" %)
620 [[image:image-20220622145005-8.jpeg||height="193" width="797"]]
Leo Wei 1.1 621
Stone Wu 3.1 622 **Tare weight and gross weight**
Leo Wei 1.1 623
624 (% style="text-align:center" %)
Stone Wu 3.1 625 [[image:image-20220622145005-9.jpeg||height="274" width="749"]]
Leo Wei 1.1 626
Stone Wu 3.1 627 **Filter mode setting**
Leo Wei 1.1 628
Stone Wu 3.1 629 After setting the filtering mode and filtering strength, you need to calibrate it again.
Leo Wei 1.1 630
631 (% style="text-align:center" %)
Stone Wu 3.1 632 [[image:image-20220622145005-10.jpeg||height="196" width="791"]]
Leo Wei 1.1 633
Stone Wu 3.1 634 **Zero tracking**
Leo Wei 1.1 635
Stone Wu 3.1 636 Zero tracking is used to reduce the temperature drift interference;
Leo Wei 1.1 637
Stone Wu 3.1 638 Set Zero Tracking Intensity to 0 to disable tracking. Set Zero Tracking Range to 0 to make it is unlimited.
Leo Wei 1.1 639
640 (% style="text-align:center" %)
Stone Wu 3.1 641 [[image:image-20220622145005-11.jpeg||height="242" width="601"]]
Leo Wei 1.1 642
Stone Wu 3.1 643 **Calibration without weights**
Leo Wei 1.1 644
645 Calibration without weights is performed by the zero point of the sensor and the maximum range of the sensor. The accuracy is related to the sensor specifications and depends on the sensor sensitivity (mV/V).
646
647 Example: The sensitivity of LAB-B-B sensor is 2.0±10%mV/V, and there may be a maximum error of 10%, so it is best to use a sensor with a small sensor sensitivity error to use this function.
648
649 (% style="text-align:center" %)
Stone Wu 3.1 650 [[image:image-20220622145005-12.jpeg||height="323" width="774"]]
Leo Wei 1.1 651
Stone Wu 3.1 652 **Modify calibration parameters**
Leo Wei 1.1 653
654 (% style="text-align:center" %)
Stone Wu 3.1 655 [[image:image-20220622145005-13.jpeg||height="315" width="838"]]
Leo Wei 1.1 656
Stone Wu 3.1 657 **✎Note: **BFM35, BFM36, BFM37, and BFM38 are real number (float). Real numbers need to be input when inputting. If the input exceeds the range, BFM5 will report an error in writing calibration parameters.
Leo Wei 1.1 658
Stone Wu 3.1 659 = **7 Diagnosis ** =
Leo Wei 1.1 660
Stone Wu 3.1 661 == **Check** ==
Leo Wei 1.1 662
663 1. Make sure all cables are connected properly;
664 1. Make sure all rules regarding LX3V expansion modules are met. Such as expansion modules other than digital inputs and outputs are no more than 8 in total. The total number of digital inputs and outputs are no greater than 256.
665 1. Make sure to select the correct operating range in application;
666 1. Make sure power supply is working properly;
667 1. LX3V CPU unit is in RUN mode;
668
Stone Wu 3.1 669 == **Check errors** ==
Leo Wei 1.1 670
Stone Wu 3.1 671 If the special function module LX3V-2WT does not operate normally, please check the following items.
Leo Wei 1.1 672
Stone Wu 3.1 673 * Check the status of the LINK indicator
674 ** Blink: Expansion cables are properly connected.
675 ** Otherwise: Check the connection of the extension cable.
676 * Check the status of the "24V" LED indicator (top right corner of the LX3V-2WT)
677 ** Light on LX3V-2WT is normal, and 24VDC power is normal.
678 ** Otherwise: 24V DC power supply may be faulty. If the power supply is normal then the LX3V-2WT is faulty.
679 * Check the status of the "COM" LED indicator (top right corner of the LX3V-2WT)
680 ** Blink: Numeric conversion works fine.
681 ** Otherwise: Check buffer memory #5 (error status). If any of the bits (b0, b1, b2) are ON, that's why the COM indicator is off. For details, please refer to "(6) BFM5: Error Code" in "5.2 Buffer Register (BFM) Description" in "Chapter 5" of this manual.
682 * Check the sensor, measure whether the voltage between S+ and S- is less than (5*sensor sensitivity) mv, the sensor sensitivity is found in the sensor manual used, the unit is (mv/v), if the voltage at this point is out of range, it means the sensor Deformation or wiring errors have occurred. Measure whether the voltage between F+ and F- is 5V, if not, check the sensor wiring.