Wiki source code of 11 PID Control Instruction

Version 2.5 by Iris on 2025/09/17 19:48

Show last authors
1 == **PID/PID calculation** ==
2
3 **PID**
4
5 This instruction is used to perform PID control that changes the output value according to the amount of input change.
6
7 -[PID (s1)(s2)(s3)(d)]
8
9 **Content, range and data type**
10
11 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
12 |(s1)|Device number for storing the target value (SV)|-32767 to 32767|Signed BIN 16 bit|ANY16
13 |(s2)|Device number for storing the measured value (PV)|-32767 to 32767|Signed BIN 16 bit|ANY16
14 |(s3)|Device number for storing parameters|1 to 32767|Signed BIN 16 bit|ANY16
15 |(d)|Device number for storing output value (MV)|-32767 to 32767|Signed BIN 16 bit|ANY16
16
17 **Device used**
18
19 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="3" %)**Devices**|(((
20 **Offset modification**
21 )))|(((
22 **Pulse extension**
23 )))
24 |**D**|**R**|**SD**|**[D]**|**XXP**
25 |(% rowspan="4" %)PID|Parameter 1|●|●|●| |
26 |Parameter 2|●|●|●| |
27 |Parameter 3|●|●|●| |
28 |Parameter 4|●|●|●| |
29
30 **Features**
31
32 This instruction is to complete the PID operation and is used to control the parameters of the closed-loop control system. PID control has a wide range of applications in mechanical equipment, pneumatic equipment, constant pressure water supply and electronic equipment, etc. among them:
33
34 [[image:11_html_1c6bb88c06ac24cf.png]] is the target value of PID control;
35
36 [[image:11_html_fb5122fb6e3a43d5.png]] is the measured feedback value;
37
38 [[image:11_html_6c3fad4a32a3db43.png]] The starting address of the buffer area for setting parameters required for PID operation and saving intermediate results, occupies a total of 26 variable units in the subsequent addresses, the value range is D0 to D7974, it is best to specify the power failure retention area, which will remain after the power is OFF Set the value, otherwise the buffer area needs to be assigned value before starting the operation for the first time. The function and parameter description of each unit are described in this section;
39
40 [[image:11_html_b126b1b2673dc1f4.png]] is the storage unit of the PID calculation result. Please designate [[image:11_html_d47cd1f59b766ed3.png]] as a non-battery holding area, otherwise it needs to be initialized and cleared before starting the calculation for the first time.
41
42 **Programming example**
43
44 [[image:1758108900843-990.png]]
45
46 The parameter description is as follows:
47
48 What is stored in D9 is the target value of PID adjustment, and D10 is the closed-loop feedback value. Note that D9 and D10 must be of the same dimension, such as both 0.01MPa units, or 1℃ units, etc.;
49
50 A total of 26 units of D200 to D225 are used to store the set value and process value of PID operation. These values must be set item by item before the first PID calculation;
51
52 The D130 unit is used to store the calculated control output value to control the execution of the action.
53
54 The function and setting method of the parameter value of each unit about starting of [[image:11_html_6c3fad4a32a3db43.png]] are described in the following table:
55
56 |**Unit**|**Features**|**Setting instructions**
57 |[[image:11_html_6c3fad4a32a3db43.png]]|Sampling time (TS)|The setting range is 1 to 32767 (ms), but it needs to be greater than the PLC program scan period
58 |[[image:11_html_6c3fad4a32a3db43.png]] +1|Action direction (ACT)|(((
59 bit0: 0 = positive action; 1 = reverse action bit3: 0 = unidirectional; 1 = bidirectional
60
61 bit4: 0 = auto-tuning does not work; 1 = auto-tuning is executed, others cannot be used.
62 )))
63 |[[image:11_html_6c3fad4a32a3db43.png]] +2|Maximum ascent rate (DeltaT)|Setting range 0 to 32000 is the threshold of integral increment
64 |[[image:11_html_6c3fad4a32a3db43.png]] +3|Proportional gain (Kp)|Setting range 0 to 32767, note that this value is enlarged by 256 times, the actual value is Kp/256
65 |[[image:11_html_6c3fad4a32a3db43.png]] +4|Integral gain (Ki)|Setting range 0 to 32767, Ki=16384Ts/Ti, Ti is the integral time
66 |[[image:11_html_6c3fad4a32a3db43.png]] +5|Differential gain (Kd)|Setting range 0 to 32767, Kd≈Td/Ts, Td is the derivative time
67 |[[image:11_html_6c3fad4a32a3db43.png]] +6|Filtering (C0)|Setting range 0 to 1023, integral part filtering
68 |[[image:11_html_6c3fad4a32a3db43.png]] +7|Output lower limit|(((
69 Recommended setting range -2000 to 2000
70
71 {{id name="OLE_LINK630"/}}When bit3 of S3+1=0, set to 0; When bit3 of S3+1=1, set to -2000;
72 )))
73 |[[image:11_html_6c3fad4a32a3db43.png]] +8|Output upper limit|Recommended setting value 2000
74 |[[image:11_html_6c3fad4a32a3db43.png]] +9|Reserved|Reserved
75 |︙|︙|︙
76 |[[image:11_html_6c3fad4a32a3db43.png]] +25|Reserved|Reserved
77
78 **Auto tuning example**
79
80 (% style="text-align:center" %)
81 [[image:11_html_c64303b9c6a47ae9.png||class="img-thumbnail"]]
82
83 **✎Note:**
84
85 ● When multiple instructions are used, the device number of (d) cannot be repeated.
86
87 ● During the execution of auto-tuning, the (s3) parameter space cannot be modified.
88
89 ● The instruction occupies 26 point devices from the device specified in (s3).
90
91 ● PID instruction can be used multiple times in the program and can be executed at the same time, but the variable area used in each PID instruction should not overlap; it can also be used in step instructions, jump instructions, timing interrupts, and subroutines, in this case When executing the PID instruction, the (s3)+9 cache unit must be cleared in advance.
92
93 ● The maximum error of the sampling time Ts is -(1 operation cycle +1ms) +(1 operation cycle). If the sampling time Ts ≤ 1 operation cycle of the programmable controller, the following PID operation error (4D86H) will occur, and the PID operation will be executed with TS = operation cycle. In this case, it is recommended to use constant scan mode or use PID instruction in timer interrupt.
94
95 **Error code**
96
97 |**Error code**|**Content**
98 |4085H|When the device specified in the read application instructions (s1), (s2), (s3), (d) exceeds the range of the corresponding device.
99 |4086H|When the device specified in the write application instruction (s3) and (d) exceeds the range of the corresponding device.
100 |4D80H|The sampling time is out of range.​(T,,S,,≤0)
101 |4D81H|Input filter constant (,, ,,α ) is out of range (α​<0 or α>1023)
102 |4D82H|The maximum ascent rate (△T) is out of range.(△T​<0 or △T​>1023)
103 |4D83H|The proportional gain (K//p//) is out of range.​​​​(K//p//<0)
104 |4D84H|The integral gain (K//i//) is out of range.(K//i​//<0)
105 |4D85H|The differential gain (K//d//) is out of range.​​​​(K//d//<0)
106 |4D86H|The sampling time (T//s//) is less than the operation cycle.​​​​(T//s//<Scan cycle)
107
108 **Example**
109
110 See manual.
111
112 == {{id name="_Toc32463"/}}{{id name="_Toc21837"/}}{{id name="_Toc31152"/}}**CCPID/CCPID calculation** ==
113
114 **CCPID**
115
116 This instruction is used to perform PID control that changes the output value according to the amount of input change.
117
118 -[CCPID (s1) (s2) (s3) (d)]
119
120 **Content, range and data type**
121
122 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
123 |(s1)|Device number for storing the target value (SV)|-32767 to 32767|Signed BIN 16 bit|ANY16
124 |(s2)|Device number for storing the measured value (PV)|-32767 to 32767|Signed BIN 16 bit|ANY16
125 |(s3)|Device number for storing parameters|1 to 32767|Signed BIN 16 bit|ANY16
126 |(d)|Device number for storing output value (MV)|-32767 to 32767|Signed BIN 16 bit|ANY16
127
128 **Device used**
129
130 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="3" %)**Devices**|(((
131 **Offset modification**
132 )))|(((
133 **Pulse extension**
134 )))
135 |**D**|**R**|**SD**|**[D]**|**XXP**
136 |(% rowspan="4" %)CCPID|Parameter 1|●|●|●| |
137 |Parameter 2|●|●|●| |
138 |Parameter 3|●|●|●| |
139 |Parameter 4|●|●|●| |
140
141 **Features**
142
143 After setting target value (s1), measured value (s2), parameter (s3) to (s3) +12 and executing the program, the calculation result (MV) will be stored to the output according to the first sampling time (s3) in the parameter Value (d). For details, please refer to the user manual of "Wecon CC Series ccpid Function Description v1.4".
144
145 **✎Note:**
146
147 It can be executed multiple times at the same time (there is no limit to the number of loops), but please note that the device numbers (s3) and (d) used in the calculation cannot be repeated.
148
149 The instruction occupies 52 points of devices starting from the device specified in (s3).
150
151 During the execution of auto-tuning, the (s3) parameter space cannot be modified.
152
153 **Error code**
154
155 |**Error code**|**Content**
156 |4085H|When the device specified in the read application instructions (s1), (s2), (s3), (d) exceeds the range of the corresponding device.
157 |4086H|When the device specified in the write application instruction (s3) and (d) exceeds the range of the corresponding device.
158 |4D80H|The sampling time is out of range.​(T,,S,,≤0)
159 |4D81H|Input filter constant (Co) is out of range (Co<0 or Co≥1023)
160 |4D82H|The maximum ascent rate (△//T//) is out of range.(△//T//​<0 or △//T//​>32000)
161 |4D83H|(((
162 The proportional gain (Kp) is out of range. Kp<0[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps287.png]]
163 )))
164 |(((
165 4D84H
166 )))|(((
167 The integral gain (Ki) is out of range. Ki<0[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps288.png]]
168 )))
169 |4D85H|(((
170 The differential gain (Kd) is out of range. Kd<0[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps289.png]]
171 )))
172 |4D86H|The sampling time (Ts) is less than the operation cycle.​​​​(T//s//<Scan cycle)
173
174 **Example**
175
176 See "__CCPID Instruction Manual__".
177
178 == **{{id name="_Toc8661"/}}{{id name="_Toc13227"/}}{{id name="_Toc18478"/}}{{id name="_Toc29418"/}}{{id name="_Toc5268"/}}{{id name="_Toc5168"/}}{{id name="_Toc307"/}}**FPID/FPID calculation ==
179
180 **FPID**
181
182 The function of this instruction is to adjust PID control parameters by fuzzy algorithm.
183
184 -[FPID (s) (d1) (d2) (d3)]
185
186 **Content, range and data type**
187
188 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
189 |(s)|Store the start number of the device of the fuzzy parameter table (no input required)|-|Signed BIN 16 bit|ANY16
190 |(d1)|Start number of the device storing the initialization parameters|-|Signed BIN 16 bit|ANY16
191 |(d2)|Store the start number of the device of the input PID parameter|-|Signed BIN 16 bit|ANY16
192 |(d3)|The start number of the device that stores the adjusted PID parameters|-|Signed BIN 16 bit|ANY16
193
194 **Device used**
195
196 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Soft component**|**Offset modification**|(((
197 **Pulse extension**
198 )))
199 |**D**|**R**|**SD**|**LC**|**[D]**|**XXP**
200 |(% rowspan="4" %)FPID|Parameter 1|●|●|●|●| |
201 |Parameter 2|●|●|●|●| |
202 |Parameter 3|●|●|●|●| |
203 |Parameter 4|●|●|●|●| |
204
205 **Features**
206
207 This instruction needs to be used in conjunction with the PID instruction. It completes the fuzzy calculation of the adjustments of the three parameters of PID, Kp, Ki, and Kd. By passing in the three parameters of the PID, the new three parameters are calculated and substituted into the PID for output control.
208
209 **Parameter Description:**
210
211 |(% colspan="6" %)**S parameter setting**
212 |**Parameter**|**Offset address**|**Name**|**Format**|**Instruction**|**Range**
213 |Parameter 1|S|-|-|-|-
214
215 |(% colspan="6" %)**d1 parameter setting**
216 |**Parameter**|**Offset address**|**Name**|**Format**|**Instruction**|**Range**
217 |(% rowspan="2" %)Parameter 1|d1|(% rowspan="2" %)em domain|(% rowspan="2" %)Floating point|(% rowspan="2" %)Temperature difference|(% rowspan="2" %)>0
218 |d1+1
219 |(% rowspan="2" %)Parameter 2|d1+2|(% rowspan="2" %)ecm domain|(% rowspan="2" %)Floating point|(% rowspan="2" %)Temperature difference|(% rowspan="2" %)>0
220 |d1+3
221 |(% rowspan="2" %)Parameter 3|d1+4|(% rowspan="2" %)kpm coefficient|(% rowspan="2" %)Floating point|(% rowspan="2" %)0.5 (fixed) (not set)|(% rowspan="2" %)-
222 |d1+5
223 |(% rowspan="2" %)Parameter 4|d1+6|(% rowspan="2" %)kim coefficient|(% rowspan="2" %)Floating point|(% rowspan="2" %)1 (fixed) (not set)|(% rowspan="2" %)-
224 |d1+7
225 |(% rowspan="2" %)Parameter 5|d1+8|(% rowspan="2" %)kdm coefficient|(% rowspan="2" %)Floating point|(% rowspan="2" %)1 (fixed) (not set)|(% rowspan="2" %)-
226 |d1+9
227 |(% rowspan="2" %)Parameter 6|d1+10|(% rowspan="2" %)EM|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)6 (fixed) (not set)|(% rowspan="2" %)-
228 |d1+11
229 |(% rowspan="2" %)Parameter 7|d1+12|(% rowspan="2" %)ECM|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)6 (fixed) (not set)|(% rowspan="2" %)-
230 |d1+13
231 |(% rowspan="2" %)Parameter 8|d1+14|(% rowspan="2" %)UM|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)6 (fixed) (not set)|(% rowspan="2" %)-
232 |d1+15
233 |(% rowspan="2" %)Parameter 9|d1+16|(% rowspan="2" %)Size_x|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)13 (fixed) (not set)|(% rowspan="2" %)-
234 |d1+17
235 |(% rowspan="2" %)Parameter 10|d1+18|(% rowspan="2" %)Size_y|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)13 (fixed) (not set)|(% rowspan="2" %)-
236 |d1+19
237 |Parameter 11|d1+20|Kpm reserved for internal use|Reserved|Reserved|-
238 |Parameter 12|d1+21|Kim reserved for internal use|Reserved|Reserved|-
239 |Parameter 13|d1+22|Kdm reserved for internal use|Reserved|Reserved|-
240 |Parameter 14|d1+23|Kukp reserved for internal use|Reserved|Reserved|-
241 |Parameter 15|d1+24|Kuki reserved for internal use|Reserved|Reserved|-
242 |Parameter 16|d1+25|Kukd reserved for internal use|Reserved|Reserved|-
243 |︙|︙|︙|︙|Reserved|-
244 |Parameter 20|d1+37|Reserved for internal use|Reserved|Reserved|-
245
246 |(% colspan="6" %)**d2 parameter setting**
247 |**Parameter**|**Offset address**|**Name**|**Format**|**Instruction**|**Range**
248 |Parameter 1|d2|Current Temperature|16-bit integer|Current test temperature|-
249 |Parameter 2|d2+1|set temperature|16-bit integer|Set temperature|-
250 |Parameter 3|d2+2|Calculation period|16-bit integer|Take an integer multiple of the pid sampling time, usually the same|-
251 |Parameter 4|d2+3|Kp|16-bit integer|PID initial Kp value|-
252 |Parameter 5|d2+4|KI|16-bit integer|PID initial Ki value|-
253 |Parameter 6|d2+5|KD|16-bit integer|PID initial Kd value|-
254 |Parameter 7|d2+6|Sampling cycle|16-bit integer|No need to enter|-
255 |Parameter 8|d2+7|Initialization flag|16-bit integer|Reserved for internal use|-
256 |(% rowspan="2" %)Parameter 9|d2+8|(% rowspan="2" %)Last calculation time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)View usage (not operable)|(% rowspan="2" %)-
257 |d2+9
258 |Parameter 10|d2+10|Last temperature|16-bit integer|View usage (not operable)|-
259 |Parameter 11|d2+11|Reserved|16-bit integer|Reserved|
260 |(% colspan="6" %)**d3 parameter setting**
261 |**Parameter**|**Offset address**|**Name**|**format**|**Instruction**|**Range**
262 |Parameter 1|d3|Current Temperature|16-bit integer|Current test temperature|-
263 |Parameter 2|d3+1|set temperature|16-bit integer|Set temperature|-
264 |Parameter 3|d3+2|Calculation period|16-bit integer|Take an integer multiple of the pid sampling time, usually the same|-
265 |Parameter 4|d3+3|Kp|16-bit integer|Kp value of PID after adjustment|-
266 |Parameter 5|d3+4|KI|16-bit integer|Ki value of PID after adjustment|-
267 |Parameter 6|d3+5|KD|16-bit integer|Kd value of PID after adjustment|-
268 |Parameter 7|d3+6|Sampling cycle|16-bit integer|No need to enter|-
269 |Parameter 8|d3+7|Reserved|16-bit integer|Reserved|-
270
271 **✎Note:**
272
273 The instruction starts from the device specified in (d1) and occupies 38 points of the device, and initializes the parameters. Normally, it only needs to be initialized once before calling (some parameters are fixed) (occupies 38 words space).
274
275 The instruction starts with the device specified in (d2) and occupies 12 points of the device, input parameters, and input the first 6 parameters, where Kp, Ki, Kd are the initial values of the PID control parameters (occupies 12 words space) .
276
277 The instruction starts from the device specified in (d3) and occupies 8 points of soft elements and output parameters, among which Kp, Ki, Kd are the parameter values after fuzzy adaptive calculation, which can be input to the designated position of PID (occupy 8 words space).
278
279 The FPID instruction occupies 58 words. The address of each operand must have a specified interval interval, which cannot be occupied by other instructions.
280
281 **Error code**
282
283 |**Error code**|**Content**
284 |4085H|When the device specified in the read application instructions (d1), (d2), (d3) exceeds the range of the corresponding device.
285 |4086H|When the device specified in the write application instructions (d1), (d2), (d3) exceeds the range of the corresponding device.
286 |4D91H|FPID calculation cycle is less than or equal to 0
287 |4D92H|FPID parameter range error
288 |4D93H|FPID initial flag error
289
290 **Example**
291
292 ~1. Parameter d1
293
294 (% style="text-align:center" %)
295 [[image:11_html_93e9f66475d6eb0c.png||class="img-thumbnail"]]
296
297 2. Parameter d2
298
299 (% style="text-align:center" %)
300 [[image:11_html_548b859bc5568099.png||class="img-thumbnail"]]
301
302 3. Invoke FPID
303
304 (% style="text-align:center" %)
305 [[image:11_html_599ccfa817c379fd.png||class="img-thumbnail"]]
306
307 == **CCPID instruction introduction manual** ==
308
309 **Background and purpose**
310
311 (1) Background:
312
313 PID (proportion, integral, derivative) controller has been the earliest practical controller for nearly a hundred years, and it is still the most widely used industrial controller. The PID controller is simple and easy to understand, and does not require precise system models and other prerequisites in use, making it the most widely used controller.
314
315 (2) Purpose:
316
317 You might not be familiar with the parameter settings in the new series of CCPID for the first time, this manual could let you quickly understand the meaning of each parameter in the CCPID and the influence on the control effect, so that you can quickly learn the CCPID.
318
319 **Description of the host CCPID instruction**
320
321 **Instruction description**
322
323 **Content, range and data type**
324
325 |**Name**|**Features**|**Bits (bits)**|**Whether pulse type**|**Instruction format**|**Step count**
326 |CCPID|PID Operation|16|No|CCPID [[image:11_html_253eb1176b58e989.png]] [[image:11_html_80fccb1046bf8776.png]] [[image:11_html_8760537828f7beaf.png]] [[image:11_html_8b4fbd61f8ea9808.png]]|9
327
328 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="3" %)**Devices**|**Offset modification**|**Pulse extension**
329 |**D**|**R**|**SD**|**[D]**|**XXP**
330 |(% rowspan="4" %)CCPID|Parameter 1|●|●|●| |
331 |Parameter 2|●|●|●| |
332 |Parameter 3|●|●|●| |
333 |Parameter 4|●|●|●| |
334
335 **Device used**
336
337 [[image:11_html_954290ac172c672b.jpg]] is the target value (SV) of PID control;
338
339 [[image:11_html_31f47ac5eec30067.jpg]] is the measured feedback value (PV);
340
341 [[image:11_html_6dcdd8fc88703a47.jpg]] is the start address of the buffer area for setting parameters required for PID operation and saving intermediate results, occupying a total of 52 variable units of subsequent addresses (recommended to reserve 100 continuous spaces).The value range is D0 to D7,948, it is better to specify power failure retention, and the setting value remains after power supply is off. Otherwise,the buffer needs to be assigned value before starting the calculation for the first time. The function and parameter description of each unit are described in this section;
342
343 [[image:11_html_7e06d96423d5de52.jpg]] is the storage unit (MV) of the PID calculation result. Please specify it as a non-battery retentive area, otherwise it needs to be initialized and cleared before the first start of calculation.
344
345 (% style="text-align:center" %)
346 [[image:11_html_8eeef07485b91193.jpg||class="img-thumbnail"]]
347
348 **Programming example**
349
350 The parameter description is as follows:
351
352 In D9, the target value of PID adjustment is stored, and D10 is the closed-loop feedback value. Note that D9 and D10 must be of the same dimension, such as both 0.01MPa units, or 1℃ units, etc.;
353
354 A total of 52 units of D200 to D251 are used to store the set value and process value of PID operation. These values must be set item by item before the first PID calculation;
355
356 D130 unit is used to store the calculated control output value to control the execution of the action.
357
358 The functions and setting methods of the parameter values of each unit used by [[image:11_html_6dcdd8fc88703a47.jpg]] are described in the following table:
359
360 [[image:11_html_6dcdd8fc88703a47.jpg]] to [[image:11_html_6dcdd8fc88703a47.jpg]] +14 is the parameter range that can be set (parameters set when CCPID is executed).
361
362 [[image:11_html_6dcdd8fc88703a47.jpg]] +15 to [[image:11_html_6dcdd8fc88703a47.jpg]] +21 is the space used internally by CCPID control.
363
364 [[image:11_html_6dcdd8fc88703a47.jpg]] +22 to [[image:11_html_6dcdd8fc88703a47.jpg]] +51 is the parameter space used in the auto-tuning process.
365
366 |**Unit**|**Features**|**Setting instructions**|**Supplement**
367 | |Sample time (TS)|The set range is 1 to 32,767 (ms), but greater than PLC program scan cycle.|It is how often the instruction calculates and updates the output value (MV). When TS is less than one scan time, PID instruction is executed with one scan time and alarm 4D86H. When TS ≤ 0, alarm 4D80H and no execution.
368 |+1|Action direction (ACT)|(((
369 bit0: 0=positive action; 1=reverse action bit2: auto-tuning transition zone switch. 0=not open;1=open
370
371 bit3: 0=unidirection; 1=bidirection
372
373 Bit4: 0=auto-tuning does not execute; 1=execute auto-tuning
374
375 [Bit6:0=Two-stage auto-tuning does not execute. 1=Execute two-stage auto-tuning (bit4 must be set to 1).
376
377 bit7: 0=Three-stage auto-tuning does not execute. 1=Execute three-stage auto-tuning (bit4 must be set to 1 )]
378
379 The Others cannot be used.
380 )))|(((
381 bit0: Positive action: similar heating system, when the temperature is lower than the set value, increases the output ; Reverse action: similar cooling system, when the temperature is greater than the set value, increases the output.
382
383 bit2: Self-tuning transition zone switch. There is a transition zone size of 1.5℃ when opened.
384
385 bit3: Bidirection indicates that outputs the positive and negative values to the heating system or the cooling system to control two external systems by one PID.
386
387 bit4: **✎**When bit4=1 and bit6 and bit7 are not 1, auto-tuning is not executed. **✎**When bit4=0 and one of bit6 and bit7 is 1, auto-tuning is not executed. **✎**When bit4=1 and bit6 and bit7 are both 1, auto-tuning is executed
388 )))
389 |+2|Filter coefficient|The first-order inertia filter of feedback amount (0 to 100%) has a range of 0 to100|When the value is greater than or equal to 100, it will be executed as 0, that is, no filtering will be executed;
390 |+3|Proportional gain(Kp)|Set range: 0 to 30,000[%]|Overrun error 4D87H
391 |+4|Integration time (Ti)|Ti is integration time, and the range is 0 to 3,600 (s)|Overrun error 4D88H
392 |+5|Differential time (Td)|Td is derivative time, and the range is 0 to 1,000 (s)|Overrun error 4D89H
393 |+6|Working interval|Operating temperature setting enabled by PID (0 indicates no effect) The range is 0 to 1,000|It is recommended to be greater than 5°C, that is, 50 (precision 0.1°C). If it exceeds the range, the boundary value will be taken.
394 |+7|Output low limit|(((
395 Range: -10,000 to 10,000.
396
397 Recommended setting range: -2,000 or 0 (when S3+1 bit3=0, the lower limit = 0;
398
399 when bit3=1, the lower limit = -2,000)
400 )))|(((
401 ~1. Self-tuning initialization:
402
403 ① Unidirection control: the lower limit is 0;
404
405 ② Bidirection control: If the lower limit is greater than 0, adjust the lower limit to 0; if the upper limit and the lower limit are equal to 0, the default lower limit is -2,000. **✎**Note: If set to -2,000, and the output value (MV) is less than -2,000, it will output -2,000.
406
407 2. During the control process, the lower limit is dynamically adjustable. If the lower limit is greater than or equal to the upper limit, error 4D90H will be reported.
408 )))
409 |+8|Output upper limit|(((
410 Value range: -10,000 to 10,000.
411
412 Recommended setting value is 2,000
413 )))|(((
414 ~1. Self-tuning initialization:
415
416 ① Unidirection control: If the upper limit is less than 0, the default upper limit is 2,000;
417
418 ② Bidirection control: If the upper limit is less than 0, adjust the upper limit to 0; if the upper limit and the lower limit are equal to 0, the default upper limit is -2,000. **✎**Note: If set to -2,000 and the output value (MV) is greater than -2,000, it will output 2,000.
419
420 2. During the control process, the upper limit is dynamically adjustable. If the lower limit is greater than or equal to the upper limit, error 4D90H will be reported.
421 )))
422 |+9|Mode setting|(((
423 0: Overshoot allowed
424
425 1: Slight overshoot or no overshoot
426
427 2: Dynamic setting
428 )))|(((
429 0:Overshoot allowed (ukd = 100)
430
431 1: Slight overshoot or no overshoot mode (ukd = 300)
432 )))
433 |+10|(((
434 Scale factor
435
436 (ukp)
437 )))|Typically sets value to 100 (default 100) [enabled when S3+9 is set to 2].The range is 1 to 500.|When the value is less than or equal to 0, or greater than 500, the boundary value will be taken.
438 |+11|Integral coefficient (uki)|Typically sets value to 50 (default 50) [enabled when S3+9 is set to 2]. The range is 1 to 300.|When the value is less than or equal to 0, or greater than 300, the boundary value will be taken.
439 |+12|Differential coefficient (ukd)|Typically sets value to 50 (default 100. 300 to 400 can be set when slight overshoot is required) [Enable when S3+9 is set to 2]. The range is 1 to 500.|When the value is less than or equal to 0, or greater than 500, the boundary value will be taken.
440 |+13|Maximum ascent rate (DeltaT)|The range is 0 to 32,000, which is the threshold of integral increment|Overrun error 4D82H
441 |+14|Filtering (C0)|The range is 0 to 1,023, integral part filtering|Overrun error 4D81H
442 |+15|(% rowspan="3" %)reserved for internal control|(% rowspan="3" %)Internal control space occupation|(% rowspan="3" %)
443 |┆
444 |+21
445 |+22|(% rowspan="3" %)used space for self-tuning|(% rowspan="3" %)New self-tuning space for internal use|(% rowspan="3" %)
446 |┆
447 |+51
448
449 1) The auto-tuning process occupies the space of S3+22 to S3+51. When the auto-tuning is successful, the adjusted parameters will be written into the space of S3+2 to S3+21.
450
451 2) +2 filter coefficient α: Processing in first-order inertial filter
452
453 Formula: **T,,now,,=(100-α)×T,,α,,+α×T,,old,,**
454
455 T,,α ,,is the currently measured temperature. T,,old ,,is the temperature that participated in the PID calculation last time. T,,now ,,is the temperature used for the current PID calculation. α is the filter coefficient (when α=0, no filtering is performed, and the range of α is 0 to 100.(If there is a temperature with a small overshoot but a long stabilization time, the parameter can be set to 80, and analyze the specific problems in detail)
456
457 3) +6 work range: Twork(example: 170 represents 17℃)
458
459 (% style="text-align:center" %)
460 [[image:11_html_7ab814bb49fffa5a.gif||class="img-thumbnail"]]
461
462 4) +9 working mode:
463
464 0: Working mode that allows overshoot
465
466 1: Slight overshoot or no overshoot working mode
467
468 2: Custom settings; to achieve by setting +10, +11, +12 three coefficients.
469
470 5) +1 bit2 self-tuning transition zone switch: (upper limit 1℃, low limit 0.5℃)
471
472 The transition zone description in forward control:
473
474 (% style="text-align:center" %)
475 [[image:11_html_d90c24627566bf2f.gif||class="img-thumbnail"]]
476
477 In the heating process, when PV≤SV+1℃, 100% power output; when PV>SV+1℃, no output.
478
479 In the cooling process, when PV<SV-0.5℃, 100% power output; When PV≥SV-0.5℃, no output.
480
481 The transition zone description in reverse control:
482
483 (% style="text-align:center" %)
484 [[image:11_html_d3c25044a54c62ce.gif||class="img-thumbnail"]]
485
486 In the cooling process, when PV≥SV-1℃, 100% power output; when PV<SV-1℃, no output.
487
488 In the heating process, when PV>SV+0.5℃, 100% power output; When PV≤SV+0.5℃, no output.
489
490 The transition zone description in bidirectional control:
491
492 (% style="text-align:center" %)
493 [[image:11_html_9eb35607c95b1580.gif||class="img-thumbnail"]]
494
495 In the heating process, when PV≤SV+1℃, 100% power heating output; when PV>SV+1℃, 100% power cooling output.
496
497 In the cooling process, when PV<SV-0.5℃, 100% power heating output. When PV≥SV-0.5℃, 100% power cooling output
498
499 **Programming case**
500
501 **CCPID application configuration**
502
503 (1) Parameter setting
504
505 (% style="text-align:center" %)
506 [[image:11_html_36a152ee534a7f24.png||class="img-thumbnail"]]
507
508 (2) CCPID control process setting
509
510 (% style="text-align:center" %)
511 [[image:11_html_51d50fa8b154baca.png||class="img-thumbnail"]]
512
513 (% style="text-align:center" %)
514 [[image:11_html_66c8a636f6176c1f.png||class="img-thumbnail"]]
515
516 (3) Bidirection control
517
518 (% style="text-align:center" %)
519 [[image:11_html_234093eac2fe184d.png||class="img-thumbnail"]]
520
521 **✎Note:**
522
523 ~1. CCPID is a special instruction for operation control. CCPID operation will be executed only after the sample time is reached.
524
525 2. There is no limit to the number of times the CCPID instruction can be used, but+51 cannot be repeated.
526
527 3. Before CCPID instruction is executed, CCPID parameters need to be set.
528
529 **Case analysis**
530
531 **(1) Control requirements**
532
533 The control environment of this example is a kettle. The configuration is controlled by PLC-5V2416 host with 4PT module, and PI8070 screen is used for data storage and process curve viewing.
534
535 **(2) Sample program**
536
537 (% style="text-align:center" %)
538 [[image:11_html_f0a22955a8da7129.png||class="img-thumbnail"]]
539
540 (% style="text-align:center" %)
541 [[image:11_html_ad08c65bd672c66e.png||class="img-thumbnail"]]
542
543 **(3) Parameter description**
544
545 |**PLC device**|**Control instructions**
546 |M0|Set auto tuning
547 |M1|CCPID instruction calculation start
548 |M2|CCPID operating status
549 |Y0|Pulse output with adjustable pulse width
550 |D0|Temperature measured value
551 |D1|Temperature setting value
552 |D100|sample time
553 |D101|Control detail settings
554 |D102|First-order inertial filter coefficient
555 |D106|Working interval
556 |D109|Operating mode
557
558 **(4) Parameter control effect description**
559
560 1) Boiling water experiment
561
562 ① Auto-tuning process and control process (no transition zone setting), take two-stage auto-tuning as an example
563
564 (% style="text-align:center" %)
565 [[image:11_html_9149b1e837158a17.gif||class="img-thumbnail"]]
566
567 Figure 1 Auto-tuning process curve without transition zone
568
569 When the control system is a single temperature control system or a system where environmental interference does not cause large fluctuations. Generally the automatic tuning without transition zone is selected, so that the self-tuning process can be completed more quickly than the method with transition zone.
570
571 ②Self-tuning process and control process (transition zone setting)
572
573 (% style="text-align:center" %)
574 [[image:11_html_a1e8ad7a31bb04af.gif||class="img-thumbnail"]]
575
576 Figure 2 Self-tuning process curve with transition zone
577
578 It is more suitable in a two-way control system with transition zone self-tuning process. The transition zone has a range of 1.5°C. The upper limit is 1°C, and the lower limit is 0.5°C.
579
580 2) Difference in working interval setting
581
582 (% style="text-align:center" %)
583 [[image:11_html_4140432ce11883ad.gif||class="img-thumbnail"]]
584
585 Figure 3 Process curve under different working interval parameters
586
587 (% style="text-align:center" %)
588 [[image:11_html_f742d80c8cc95f35.gif||class="img-thumbnail"]]
589
590 Figure 4 Process curve without different working interval parameters (heating process diagram)
591
592 It can be seen from the partially enlarged graph that the parameters of the working interval have a certain influence on the overshoot and the stable time. In the case of allowing overshoot, setting the working interval parameters can make the overshoot smaller. This is because the deviation E of PID starting to work is relatively small, and the integration accumulation will not quickly saturate.
593
594 3) Result of filter coefficient setting
595
596 (% style="text-align:center" %)
597 [[image:11_html_815ec6c129ae3891.gif||class="img-thumbnail"]]
598
599 Figure 5 Process curve under different filtering parameters
600
601 The figure above is the experimental result under the small overshoot coefficient, the sample time is 1s. The coefficients of the first-order inertial filtering are (20, 50, 70, 80, 90). After adding the inertia coefficient, the stability time of system control is greatly accelerated, and it is increased by about 6 minutes for the boiling water experiment. The overshoot is about 1.2°C to 1.7°C.
602
603 Therefore, the introduction of first-order inertial filtering could greatly improve the PID environment where the temperature fluctuates to a certain extent and increase stabilization time.
604
605 **✎Note: **This parameter of filter coefficient is helpful for systems with not very large hysteresis or the control effect of the phenomenon that the control amount fluctuates back and forth has been greatly improved.
606
607 4) The difference in mode selection
608
609 0: Overshoot allowed(ukd = 100)
610
611 1: Small overshoot or no overshoot (ukd = 300)
612
613 (% style="text-align:center" %)
614 [[image:11_html_3a7b42c8f4672ce4.gif||class="img-thumbnail"]]
615
616 Figure 6 Process curves in different working modes
617
618 When selecting mode 1 (small overshoot or no overshoot), the stable temperature may be slightly higher than the set temperature (fluctuates above the set temperature).
619
620 5) The function of the coefficient
621
622 (% style="text-align:center" %)
623 [[image:11_html_74a7527eace55103.gif||class="img-thumbnail"]]
624
625
626 **11.6 LAGCDL Large time-delay temperature control instruction**
627
628 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps243.png]]**LAGCDL**
629
630 This instruction is used to perform large time-delay system temperature control that changes the output value according to changes in the input.
631
632 -[LAGCDL (s1) (s2)  (s3) (d)]
633
634 **Content, range and data type**
635
636 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
637 |(s1)|The device number that stores the target value (SV)|-32767 to 32767|Signed BIN 16 bit|ANY16
638 |(s2)|The device number that stores the measured value (SV)|-32767 to 32767|Signed BIN 16 bit|ANY16
639 |(s3)|The device number that stores parameters|1 to 32767|Signed BIN 16 bit|ANY16
640 |(d)|The device number that stores the output value (SV)|-32767 to 32767|Signed BIN 16 bit|ANY16
641
642 **Device used**
643
644 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="24" %)**Devices**|(((
645 **Offset**
646
647 **modification**
648 )))|(((
649 **Pulse**
650
651 **extension**
652 )))
653 |**X**|**Y**|**M**|**S**|**SM**|**T(bit)**|**C(bit)**|**LC(bit)**|**HSC(bit)**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**SD**|**LC**|**HSC**|**K**|**H**|**E**|**[D]**|**XXP**
654 |(% rowspan="4" %)LAGCDL|Parameter 1| | | | | | | | | | | | | | | | |●|●|●| | | | | | |
655 |Parameter 2| | | | | | | | | | | | | | | | |●|●|●| | | | | | |
656 |Parameter 3| | | | | | | | | | | | | | | | |●|●|●| | | | | | |
657 |Parameter 4| | | | | | | | | | | | | | | | |●|●|●| | | | | | |
658
659 **Features**
660
661 This instruction is to complete large time-delay system control operation, and used to control the parameters of the closed-loop control system.
662
663 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps244.png]] is the target value of CCPID SHT control (SV).
664
665 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps245.png]] is the measured feedback value (PV).
666
667 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps246.png]] is the start address of the cache where the parameters required by LAGCDL operation and intermediate results are saved,
668
669 occupying a total of 634 variable units of subsequent addresses. The value range is from D0 to D7974 or from R0 to R35000. It is better to specify power failure retention, and the setting value remains after power supply is off. Otherwise, the cache needs to be assigned value before starting the calculation for the first time. The function and parameter description of each unit are described in this section.
670
671 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps247.png]] is the storage unit of the LAGCDL calculation result. Please specify it as a non-battery retentive area, otherwise it needs to be initialized and cleared before the first start of calculation.
672
673 **Programming example**
674
675 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps248.jpg]]
676
677 The parameter description is as follows:
678
679 The target value of LAGCDL adjustment is stored in D1, and D0 is the closed-loop feedback value. Note that D0 and D9 must be of the same dimension, such as both 0.01MPa units, or 1℃ units, etc..
680
681 A total of 634 units of D1000 to D1633 are used to store the set value and process value of LAGCDL operation. These values must be set item by item before the first LAGCDL calculation.
682
683 D100 unit is used to store the calculated control output value to control the execution of the action.
684
685 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps249.png]] to [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps250.png]]+15 is the parameter range that can be set (parameters set when LAGCDL is executed). [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps251.png]]+28 to [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps252.png]]+631 is the historical data space for LAGCDL control internal use. [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps253.png]]+4 to [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps254.png]]+27 is the parameter space used in the self-tuning process. (This space is multiplexed with the parameter space during control)
686
687 The functions and setting methods of the parameter values of each unit started by [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps255.png]] are described in the following table:
688
689
690
691 |**Unit**|**Function**|**Description**
692 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps256.png]]|Sampling time (TS)|Range: 1 to 32767 (ms). It must be longer than PLC program scan cycle.
693 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps257.png]]+1|Control flag bit|(((
694 bit0: 0=Forward action; 1=Reverse action
695
696 bit1: Overshoot power limit output enable bit. 0=no limit; 1=limited
697
698 Bit2: Reset historical data. 0=reset; 1=no reset. This bit must be 0 before each execution.
699
700 bit4: 0=Self-tuning does not act; 1=Perform self-tuning and the others are not available.
701
702 Bit14:Historical data initialization flag bit. When initialization is complete, it is set to 1.
703
704 Bit15: The instruction initializes the flag bit. When initialization is complete, it is set to 1.
705 )))
706 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps258.png]]+2|Output lower limit|Range: -32000 to 32000. Recommended setting range: -2000 or 0.
707 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps259.png]]+3|Output upper limit|Range: 0 to 32000. Recommended setting value is 2000. When the upper and lower limits are both 0, the upper limit becomes 2000 and the lower limit becomes 0.
708 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps260.png]]+4|Full power output boundary|The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
709 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps261.png]]+5|Half-power output boundary|The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
710 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps262.png]]+6|Stop output boundary|The suggested value can be obtained by self-tuning, and can also be adjusted according to the actual situation.
711 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps263.png]]+7|The maximum rate of increase of the controlled system|Given by self-tuning
712 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps264.png]]+8|The lagged time of the controlled system|Given by self-tuning. Unit: s
713 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps265.png]]+9|The time constant of the controlled system|Given by self-tuning. Unit: s
714 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps266.png]]+10|Ideal closed-loop time constant|Given by self-tuning. Unit: s
715 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps267.png]]+11|Ideal closed-loop sampling time|Given by self-tuning. This parameter can be adjusted during the control process. Unit: s
716 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps268.png]]+12|Maximum temperature difference during setting|Given by self-tuning. (for your reference)
717 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps269.png]]+13|The temperature difference between the residual heat and temperature rise|Given by self-tuning. (for your reference)
718 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps270.png]]+14|Heating time|Given by self-tuning. (for your reference)
719 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps271.png]]+15|Setting time|Given by self-tuning. (for your reference)
720 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps272.png]]+16|(% rowspan="3" %)Self-tuning use space|(% rowspan="3" %)Reserved for internal use
721 |┇
722 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps273.png]]+27
723 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps274.png]]+28|Current temperature difference|Used during control
724 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps275.png]]+29|Previous temperature difference|Used during control
725 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps276.png]]+30|The 1st operation flag bit|Used during control
726 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps277.png]]+31|Number of valid history outputs|Used during control
727 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps278.png]]+32|(% rowspan="3" %)Historical output data|(% rowspan="3" %)Used during control
728 |┇
729 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps279.png]]+631
730 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps280.png]]+632|(% rowspan="2" %)Previous sampling time stamp|(% rowspan="2" %)Reserved for internal use
731 |[[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps281.png]]+633
732
733 **Error code**
734
735 |**Error code**|**Content**
736 |4085H|Read application instruction (S1), (S2), (S3) and (d) output results exceed the range of device.
737 |4086H|The devices specified in write application instruction (S3) and (d) exceed the range of the corresponding device.
738 |4D86H|Sampling time (Ts) < operation cycle
739 |4DA1H|Power limit boundary (s3+4), (s3+5) and (s3+6) exceed the range.
740 |4DA2H|System parameters (s3+7), (s3+8) and (s3+9) exceed the range.
741 |4DA3H|Control parameters (s3+10) and (s3+11) exceed the range.
742 |4DA4H|The output upper limit is smaller than the lower limit
743
744 **Example**
745
746 [[image:file:///C:\Users\Administrator\AppData\Local\Temp\ksohtml11524\wps282.png]]
747
748
749 == **PRUN/Octal digit transmission (16-bit data)** ==
750
751 ----
752
753 PRUN(P)
754
755 After processing the device numbers of (s) and (d) with specified digits as octal numbers, transfer the data.
756
757 -[PRUN (s) (d)]
758
759 Content, range and data type
760
761 |=**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**|=**Custom variable type**
762 |(s)|Digit specification*1|-|BIN16 bit|ANY16|~-~-
763 |(d)|Transfer target device number*1|-|BIN16 bit|ANY16|~-~-
764
765 Device used
766
767 |=(% style="width: 64px;" %)**Instruction**|=(% style="width: 128px;" %)**Parameter**|=(% colspan="24" %)**Devices**|=**Index modification**|=**Pulse expansion**
768 |(% style="width:64px" %) |(% style="width:128px" %) |**X**|**Y**|**M**|**S**|**SM**|**T(bit)**|**C(bit)**|**LC(bit)**|(% style="width:32px" %)**HSC(bit)**|(% style="width:94px" %)**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|(% style="width:41px" %)**SD**|(% style="width:42px" %)**LC**|**HSC**|**K**|**H**|**E**|**[D]**|**XXP**
769 |(% colspan="1" rowspan="2" style="width:64px" %)PRUN|(% style="width:128px" %)Parameter 1| | | | | | | | |(% style="width:32px" %) |(% style="width:94px" %) |●| |●| | | | | |(% style="width:41px" %) |(% style="width:42px" %) | | | | |●|●
770 |(% style="width:128px" %)Parameter 2| | | | | | | | |(% style="width:32px" %) |(% style="width:94px" %) | |●|●| | | | | |(% style="width:41px" %) |(% style="width:42px" %) | | | | |●|●
771
772 Function
773
774 • Octal digit device→ decimal digit device
775
776 (% style="text-align:center" %)
777 [[image:1709790843788-781.png]]
778
779 • Decimal digit device → octal digit device
780
781 (% style="text-align:center" %)
782 [[image:1709790863850-104.png]]
783
784 Error code
785
786 |=**Error code**|=**Content**
787 |4085H|When the specified device range for reading exceeds the range of the corresponding device
788 |4086H|When the specified device range for writing exceeds the range of the corresponding device
789
790 Example
791
792 (% style="text-align:center" %)
793 [[image:1709790902188-165.png]]
794
795 As shown in the above ladder diagram: X0~~X17 takes the value of octal digits and pass it to the devices corresponding to M.
796
797 (% style="text-align:center" %)
798 [[image:1709790924438-346.png]]
799
800
801 == **TRH/Wet and dry bulb temperature and humidity conversion** ==
802
803 ----
804
805 [[image:file:///C:\Users\ADMINI~~1\AppData\Local\Temp\ksohtml13328\wps3.png]]TRH
806
807 This command completes the conversion of dry bulb temperature, wet bulb temperature and corresponding humidity.
808
809 -[TRH (d1) (s) (d2) (n)]
810
811 Content, range and data type
812
813 |=**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**|=**Custom variable type**
814 |(d1)|Humidity|0~~100|Single-precision floating point|ANYREAL_32|REAL
815 |(s)|Dry bulb temperature|-|Single-precision floating point|ANYREAL_32|REAL
816 |(d2)|Wet bulb temperature|-|Single-precision floating point|ANYREAL_32|REAL
817 |(n)|Mode|0 to 1|Signed BIN 32 bit|ANY32|DINT
818
819 Device used
820
821 |=**Instruction**|=**Parameter**|=(% colspan="24" %)**Devices**|=**Index modification**|=**Pulse expansion**
822 | | |**X**|**Y**|**M**|**S**|**SM**|**T(bit)**|**C(bit)**|**LC(bit)**|**HSC(bit)**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**SD**|**LC**|**HSC**|**K**|**H**|**E**|**[D]**|**XXP**
823 |(% colspan="1" rowspan="4" %)TRH|Parameter 1| | | | | | | | | | | | | | |●|●|●|●|●| | | | | |●|
824 |Parameter 2| | | | | | | | | | | | | | |●|●|●|●|●| | | | | |●|
825 |Parameter 3| | | | | | | | | | | | | | |●|●|●|●|●| | | | | |●|
826 |Parameter 4| | | | | | | | | | |●|●|●|●|●|●|●|●|●| | |●|●| |●|
827
828 Function
829
830 There are two modes to choose from (n):
831
832 Mode 0: Calculate the corresponding humidity by wet bulb temperature and dry bulb temperature.
833
834 Mode 1: Calculate the corresponding wet bulb temperature by dry bulb temperature and humidity.
835
836 The conversion process formula is as follows:
837
838 Assuming that the wet bulb temperature is A, the dry bulb temperature is B, and the corresponding current humidity is C, which meet the following conditions:
839
840 (% style="text-align:center" %)
841 [[image:1709791199711-348.png||height="101" width="342"]]
842
843
844 Precautions
845
846 ·The wet bulb temperature is not greater than the dry bulb temperature. When they are the same, the humidity reaches the maximum value 100%.
847
848 ·The unit of dry and wet bulb temperature is (^^o^^C).
849
850 ·The general value range of dry bulb is between 0~~100^^o^^C, and the command does not judge its range, so pay special attention when using this command.
851
852 Error code
853
854 |=**Error code**|=**Content**
855 |(% rowspan="4" %)4084H|When the value specified in (n) exceeds the following range. 0 to 1
856 |The value specified in (d1) exceeds the following range. 0 to 100
857 |A negative value is specified in (s).
858 |A negative value is specified in (d2).
859 |4085H|The output result of (d1)(s)(d2)(n) in the read application command exceeds the device range.
860 |4086H|The output result of the write application command (d1) and (d2) exceeds the device range.
861
862 Example
863
864 (% style="text-align:center" %)
865 [[image:1709791591456-917.png]]
866
867 Dry and wet bulb temperature/humidity conversion table
868
869 (% style="text-align:center" %)
870 [[image:1709791607332-438.png]]