Changes for page 02 Devices

Last modified by Mora Zhou on 2023/11/22 14:13

From version 13.1
edited by Stone Wu
on 2022/09/23 16:50
Change comment: There is no comment for this version
To version 3.1
edited by Stone Wu
on 2022/07/13 20:33
Change comment: Renamed from xwiki:PLC Editor2.1 User manual.2\.1 LX5V user manual.02.WebHome

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -02 Registers
1 +02 Description of each device
Parent
... ... @@ -1,1 +1,1 @@
1 -PLC Editor2.WebHome
1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome
Content
... ... @@ -1,30 +1,31 @@
1 -= Device list =
1 +**Device list**
2 2  
3 -|=(% scope="row" %)**Classification**|=**Type**|=**Device name**|=**Sign**|=**Range**|=**Number**
4 -|=(% rowspan="10" %)User devices|Bit|Input|X|0 to 1777|Octal number
5 -|(% scope="row" %)Bit|Output|Y|0 to 1777|Octal number
6 -|(% scope="row" %)Bit|Internal relay|M|0 to 7999|Decimal number
7 -|(% scope="row" %)Bit|Step relay|S|0 to 4095|Decimal number
8 -|(% scope="row" %)Bit/word|Timer|T|0 to 511|Decimal number
9 -|(% scope="row" %)Bit/word|Counter|C|0 to 255|Decimal number
10 -|(% scope="row" %)Bit/double word|Long counter|LC|0 to 255|Decimal number
11 -|(% scope="row" %)Bit/double word|High-speed counter|HSC|0 to 15|Decimal number
12 -|(% scope="row" %)Word|Data Register|D|0 to 7999|Decimal number
13 -|(% scope="row" %)Word|Data Register|R|0 to 29999|Decimal number
14 -|=(% rowspan="2" %)System devices|Bit|Special|SM|0 to 4095|Decimal number
15 -|(% scope="row" %)Word|Special register|SD|0 to 4095|Decimal number
16 -|=(% rowspan="3" %)Index registers|Word|Index register|[D]|0 to 7999|Decimal number
17 -|(% scope="row" %)Word|Index register|V|0 to 7|Decimal number
18 -|(% scope="row" %)Double word|Long index register|Z|0 to 7|Decimal number
19 -|=Nested|Bit|Nested|N|0 to 7|Decimal number
20 -|=Pointer|-|Pointer|P|0 to 4095|Decimal number
21 -|=(% rowspan="3" %)Constant|-|Decimal constant|K|-|Decimal number
22 -|(% scope="row" %)-|Hexadecimal constant|H|-|Hexadecimal number
23 -|(% scope="row" %)Single precision floating point|Real constant|E|-|-
3 +(% class="table-bordered" %)
4 +|**Classification**|**Type**|**Device name**|**Sign**|**Range**|**Mark**
5 +|(% rowspan="10" %)User device|Bit|Input|X|0 to 1777|Octal number
6 +|Bit|Output|Y|0 to 1777|Octal number
7 +|Bit|Internal relay|M|0 to 7999|Decimal number
8 +|Bit|Step relay|S|0 to 4095|Decimal number
9 +|Bit/word|Timer|T|0 to 511|Decimal number
10 +|Bit/word|Counter|C|0 to 255|Decimal number
11 +|Bit/double word|Long counter|LC|0 to 255|Decimal number
12 +|Bit/double word|High-speed counter|HSC|0 to 15|Decimal number
13 +|Word|Data Register|D|0 to 7999|Decimal number
14 +|Word|Data Register|R|0 to 29999|Decimal number
15 +|(% rowspan="2" %)System software|Bit|Special|SM|0 to 4095|Decimal number
16 +|Word|Special register|SD|0 to 4095|Decimal number
17 +|(% rowspan="3" %)Index register|Word|Index register|[D]|0 to 7999|Decimal number
18 +|Word|Index register|V|0 to 7|Decimal number
19 +|Double word|Long index register|Z|0 to 7|Decimal number
20 +|Nested|Bit|Nested|N|0 to 7|Decimal number
21 +|Pointer|-|Pointer|P|0 to 4095|Decimal number
22 +|(% rowspan="3" %)Constant|-|Decimal constant|K|-|Decimal number
23 +|-|Hexadecimal constant|H|-|Hexadecimal number
24 +|Single precision floating point|Real constant|E|-|-
24 24  
25 -= User registers =
26 += **User device** =
26 26  
27 -== Input relay (X) ==
28 +== {{id name="_Toc10233"/}}**{{id name="_Toc9353"/}}{{id name="_Toc1366"/}}{{id name="_Toc17120"/}}Input relay (X)** ==
28 28  
29 29  The input relay represents the original PLC external input signal status, and the external signal status is detected through the input X port. 0 represents the external signal is open, and 1 represents the external signal is closed.
30 30  
... ... @@ -34,7 +34,7 @@
34 34  
35 35  When an expansion module is connected, the extended X point will also use the X point as the component of the input signal state, and the occupied X point is the starting position of the X point used by the PLC with 0 as the end of the X point, such as PLC Occupy 17 to 24 X points (X0 to X21, X0 to X27), at this time the X points of the expansion module will be stored starting from X30.
36 36  
37 -== Output relay (Y) ==
38 +== {{id name="_Toc2094"/}}**Output relay (Y)** ==
38 38  
39 39  The output relay is a Devices directly connected to the hardware port of the external user control device, and logically corresponds to the physical output port of the PLC. After the PLC scans the user program each time, the component status of the Y relay will be transmitted to the hardware port of the PLC. 0 means the output port is open; 1 means the output port is closed.
40 40  
... ... @@ -42,17 +42,17 @@
42 42  
43 43  In terms of hardware, according to the different output components, it can be divided into relay type, transistor type, solid state relay type, etc. If there are output expansion module ports, they are numbered in sequence starting from the main module.
44 44  
45 -== Internal relay (M) ==
46 +== {{id name="_Toc10273"/}}**Internal relay (M)** ==
46 46  
47 47  The auxiliary relay M element is used as an intermediate variable in the execution of the user program, just like the auxiliary relay in the actual electronic control system, used for the transmission of status information, and multiple M variables can also be combined into word variables. M variables and external ports There is no direct connection, but you can copy X to M through program statements, or copy M to Y to connect with the outside world. An M variable can be used unlimited times.
48 48  
49 49  The auxiliary relay M is identified by Signs such as M0, M1........., M7999, and its serial number is numbered in decimal system.
50 50  
51 -== Status relay (S) ==
52 +== **Status relay (S)** ==
52 52  
53 53  The state relay S is used for the design and execution of the step program. The STL step instruction is used to control the transfer of the step state S, simplifying the programming design. If STL programming is not used, S can be used as an M variable. State S variables are identified by Signs such as S0, S1...S4095, and their serial numbers are numbered in decimal system.
54 54  
55 -== Timer (T) ==
56 +== **Timer (T)** ==
56 56  
57 57  The timer T is equivalent to the time relay in the relay system and is used to complete the timing function. The timer is an addition expression. When the timer expires, the current value and the set value are the same value.
58 58  
... ... @@ -62,18 +62,15 @@
62 62  
63 63  When the timer coil (OUT T instruction) is executed, the timer coil is turned on/off, the current value is updated, and the contact is turned on/off.
64 64  
66 +(% class="table-bordered" %)
67 +|**Device number**|(% style="width:582px" %)**Timer**|(% style="width:162px" %)**Device number**|(% style="width:210px" %)**Timer**
68 +|T0 to T191|(% style="width:582px" %)100ms timer|(% style="width:162px" %)T246 to T249|(% style="width:210px" %)1ms accumulative timer
69 +|(% rowspan="2" %)T192 to T199|(% rowspan="2" style="width:582px" %)100ms subroutine timer (used in the subroutine, even if the subroutine is not called, it will still be updated)|(% style="width:162px" %)T250 to T255|(% style="width:210px" %)10ms cumulative timer
70 +|(% style="width:162px" %)T256 to T383|(% style="width:210px" %)1ms timer
71 +|T200 to T245|(% style="width:582px" %)10ms timer|(% style="width:162px" %)T384 to T511|(% style="width:210px" %)0.1ms timer
65 65  
66 -|=Registers|=Timer
67 -|=T0 to T191|100ms timer
68 -|=T192 to T199|100ms subroutine timer (used in the subroutine, even if the subroutine is not called, it will still be updated)
69 -|=T200 to T245|10ms timer
70 -|=T246 to T249|1ms accumulative timer
71 -|=T250 to T255|10ms cumulative timer
72 -|=T256 to T383|1ms timer
73 -|=T384 to T511|0.1ms timer
73 +**(1) General-purpose timer (T0 to T245)**{{id name="OLE_LINK328"/}}
74 74  
75 -**(1) General-purpose timer (T0 to T245)**
76 -
77 77  (% style="text-align:center" %)
78 78  [[image:02(1)_html_b1b48247f79e373c.gif||height="214" width="800" class="img-thumbnail"]]
79 79  
... ... @@ -95,7 +95,7 @@
95 95  
96 96  After PLC is powered on, multiplication is performed, D3=D0*2. Use the data of D3 as the timing time value of T10.
97 97  
98 -== Counter (C) ==
96 +== {{id name="_Toc21206"/}}**{{id name="_Toc31862"/}}{{id name="_Toc26590"/}}{{id name="_Toc29366"/}}Counter (C)** ==
99 99  
100 100  The counter is used to complete the counting function. Each counter contains a coil, a contact, and a timer value register. Whenever the driving signal of the counter coil changes from OFF to ON, the counter reading value increases by 1, if the timer value reaches the preset time value, Its contact action, a contact (NO contact) is closed, b contact (NC contact) is opened; if the timing value is cleared, the output a contact will be opened, and b contact (NC contact) will be closed. Some timers have features such as power-down retention, accumulation, etc., and maintain the value before power-down after power-on again.
101 101  
... ... @@ -108,13 +108,13 @@
108 108  
109 109  The setting value of the 16-bit up counter is 1 to 32767. As shown in the working process of the up counter in Figure c, after the normally open contact of X1 in the figure is turned on, C0 is reset, its corresponding bit storage unit is set to 0, the normally open contact of C0 is disconnected, and the normally closed contact Point is turned on, and its current counter value is set to 0 at the same time. X2 provides a counting input signal. When the reset input circuit of the counter is disconnected and the counting input circuit changes from disconnected to connected (that is, the rising edge of the counting pulse), the current value of counter C0 is increased by 1. After 10 count pulses, the current value of C0 is equal to the set value of 10, and its corresponding bit storage unit is set to 1, and the Y0 contact is turned on at this time. When counting pulses again, the current value does not change until the reset input signal is turned on, and the current value of the counter is set to 0.
110 110  
111 -== Long Counter (LC) ==
109 +== {{id name="_Toc30139"/}}**{{id name="_Toc23467"/}}{{id name="_Toc16112"/}}{{id name="_Toc2290"/}}Long Counter (LC)** ==
112 112  
113 113  The long counter (LC) is basically the same as the counter (C), but compared to the counter (C), the long counter (LC) is a 32-bit register, and the range of values that can be counted is larger.
114 114  
115 115  The long counter is identified by LC0, LC1,...,LC255, and the sequence is numbered in decimal.
116 116  
117 -== High-speed counter (HSC) ==
115 +== {{id name="_Toc27105"/}}**{{id name="_Toc1133"/}}{{id name="_Toc1198"/}}{{id name="_Toc19952"/}}High-speed counter (HSC)** ==
118 118  
119 119   High-speed counter (HSC) is a device used for counting through external input of high-speed pulse signals. HSC is a 32-bit register.
120 120  
... ... @@ -128,7 +128,7 @@
128 128  
129 129  
130 130  
131 -== Data Register (D&R) ==
129 +== **Data Register (D & R)** ==
132 132  
133 133  Registers are used for data calculation and storage, such as the calculation and calculation of timers, counters, and analog parameters. The width of each register is 16 bits. If 32bit instructions are used, the adjacent registers are automatically formed into 32bit registers for use, the lower address is the low byte, and the higher address is the high byte.
134 134  
... ... @@ -138,23 +138,23 @@
138 138  
139 139  When 32-bit data needs to be processed, the two adjacent D registers can be formed into a 32-bit double word. For example, when accessing D100 in 32-bit format, use the high address D101 register as the high word and the high byte bit 15 as The sign bit of a double word can handle values from -2147483648 to 2 147483647.
140 140  
141 -= System device =
139 += {{id name="_Toc24649"/}}**System device** =
142 142  
143 -== Special Relay (SM) ==
141 +== {{id name="_Toc26153"/}}**{{id name="_Toc29513"/}}{{id name="_Toc18631"/}}{{id name="_Toc28930"/}}Special Relay (SM)** ==
144 144  
145 145  The special relay SM is an internal relay with a certain specification inside the programmable controller, so it cannot be used in the program like ordinary internal relays. It can be turned ON/OFF as needed to control the PLC.
146 146  
147 -For details, please refer to [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)__Special relays (SM) list__>>path:https://docs.we-con.com.cn/bin/view/PLC%20Editor2/15/#HAppendix1SpecialRelay28SM29]](%%).
145 +{{id name="OLE_LINK152"/}}For details, please refer to [[(% class="wikiinternallink wikiinternallink wikiinternallink" %)__Special relays (SM) list__>>path:#_Attachment 1 Special Relay (SM)]](%%).
148 148  
149 -== Special Register (SD) ==
147 +== {{id name="_Toc7566"/}}**{{id name="_Toc3384"/}}{{id name="_Toc32434"/}}{{id name="_Toc20897"/}}Special Register (SD)** ==
150 150  
151 151  The special register SD is an internal register whose specifications are determined within the programmable controller, so it cannot be used in the program like a normal internal register, and the corresponding data can be written as needed to control the PLC.
152 152  
153 -For details, please refer to [[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)__Special register (SD) list__>>path:https://docs.we-con.com.cn/bin/view/PLC%20Editor2/15/#HAppendix2SpecialRegister28SD29]](%%).
151 +For details, please refer to [[(% class="wikiinternallink wikiinternallink wikiinternallink" %)__Special register (SD) list__>>path:#_Appendix 2 Special Register (SD)]](%%).
154 154  
155 -= Index Register =
153 += {{id name="_Toc18802"/}}**Index Register** =
156 156  
157 -== Index register ([D]) ==
155 +== {{id name="_Toc2075"/}}**{{id name="_Toc5787"/}}{{id name="_Toc5824"/}}{{id name="_Toc2076"/}}Index register ([D])** ==
158 158  
159 159  The index register is used to modify the index of the Devices. [D] The index register is actually the same as the data register D, ranging from D0 to D7999. The input method is as follows, just add [D] directly after the Devices:
160 160  
... ... @@ -175,9 +175,9 @@
175 175  
176 176  Whether the index modification can be used depends on whether each instruction supports the format, you can check the "offset modification" in the description of the available device for each instruction.
177 177  
178 -= Nesting =
176 += {{id name="_Toc29907"/}}**{{id name="_Toc2190"/}}{{id name="_Toc18837"/}}Nesting** =
179 179  
180 -== Nesting (N) ==
178 +== {{id name="_Toc10381"/}}**{{id name="_Toc9090"/}}{{id name="_Toc18834"/}}{{id name="_Toc11480"/}}Nesting (N)** ==
181 181  
182 182  Nesting is a device used in master station control instructions (MC/MCR instructions)*1 to program operating conditions through a nested structure. Specify with a small number (order from N0 to N7) from the outside of the nested structure.
183 183  
... ... @@ -186,27 +186,27 @@
186 186  
187 187  *1 is an instruction used to create an efficient ladder switching program by opening and closing the common bus of the Circuit program.
188 188  
189 -= pointer =
187 += {{id name="_Toc31133"/}}**pointer** =
190 190  
191 -== Pointer (P) ==
189 +== {{id name="_Toc9036"/}}**{{id name="_Toc12926"/}}{{id name="_Toc20167"/}}{{id name="_Toc17677"/}}Pointer (P)** ==
192 192  
193 193  The pointer is the device used in the jump instruction (CJ instruction).
194 194  
195 195  At present, the CALL instruction directly uses the subroutine name to call, and no longer uses the P pointer.
196 196  
197 -= Constant =
195 += {{id name="_Toc3845"/}}**Constant** =
198 198  
199 199  The constants are explained below.
200 200  
201 -== Decimal constant (K) ==
199 +== {{id name="_Toc24739"/}}**{{id name="_Toc31877"/}}{{id name="_Toc5216"/}}{{id name="_Toc13896"/}}Decimal constant (K)** ==
202 202  
203 203  “K” is a Sign that represents a decimal integer and is specified by K£ (for example: K123). It is mainly used to designate the set value of a timer or counter or the value in the operand of an application instruction. In 16bit instructions, the value range of constant K is -32768 to 32767; in 32bit instructions, the value range of constant K is -247483648 to 2147483647.
204 204  
205 -== Hexadecimal constant (H) ==
203 +== {{id name="_Toc23697"/}}**{{id name="_Toc8455"/}}{{id name="_Toc19156"/}}{{id name="_Toc18932"/}}Hexadecimal constant (H)** ==
206 206  
207 207  “H” is the Sign of hexadecimal number, specified by H□ (example: H123), mainly used to designate the value of the operand of the application instruction. The value range of the constant H is 0000 to FFFF; in the 32-bit instruction, the value range of the constant K is 0000, 0000 to FFFF, FFFF.
208 208  
209 -== Real number constant (E) ==
207 +== {{id name="_Toc9652"/}}**{{id name="_Toc27560"/}}{{id name="_Toc27972"/}}{{id name="_Toc17774"/}}Real number constant (E)** ==
210 210  
211 211  “E” is the single-precision floating-point number representation Sign, specified by E□ (example: E1.23), mainly used to specify the value of the operand of the application instruction, the value range of the single-precision floating-point number E is ±1.175495*10 -38 to ±3.402823*10+38 (±1.175495 E-38 to ±3.402823 E+38) and 0 (7 effective digits).
212 212  
... ... @@ -215,7 +215,7 @@
215 215  
216 216   (The address occupies D1 and D0)
217 217  
218 -== String constant ==
216 +== {{id name="_Toc20728"/}}**{{id name="_Toc22438"/}}{{id name="_Toc27030"/}}{{id name="_Toc32625"/}}String constant** ==
219 219  
220 220  The character string constant is the device that specifies the character string, and only supports the ASCII code character set, and any character string ends with a NULL character (00H). To use string devices, you must use double eye marks to modify the characters, as follows to convert the string to ASCII characters and fill in the device starting with D0:
221 221  
... ... @@ -222,7 +222,7 @@
222 222  (% style="text-align:center" %)
223 223  [[image:02(1)_html_61bdd1807e91322f.png||class="img-thumbnail"]]
224 224  
225 -= Power-down retention setting =
223 += {{id name="_Toc15009"/}}**Power-down retention setting** =
226 226  
227 227  The user can freely configure the power-off storage range within the range of the Devices. The constant configuration is located in: “Project Management”→”Parameters”→”PLC Parameters”→”Device Latch”.
228 228  
... ... @@ -229,9 +229,9 @@
229 229  (% style="text-align:center" %)
230 230  [[image:02(1)_html_6ba62f454f76a539.png||class="img-thumbnail"]]
231 231  
232 -**✎Note: **The X and Y registers do not support the power-down save function.
230 +**{{id name="OLE_LINK153"/}}✎Note: **The X and Y registers do not support the power-down save function.
233 233  
234 -= Special use of device =
232 += {{id name="_Toc8668"/}}**Special use of device** =
235 235  
236 236  **(1) Use bits to form words**
237 237