Wiki source code of 17 LX3V/5V/5S comparsion

Version 24.1 by Jim on 2022/09/06 11:25

Show last authors
1 = **1 Basic differences** =
2
3 |=(% scope="row" %)Functions|=5V|=5S|=3V
4 |=Running Mode|(% colspan="3" %)Cyclic scan /Interrupt
5 |=Power supply|(% colspan="3" %)A:AC 220V;D:DC 24V
6 |=Output type|MT:Transistor|MT:Transistor;MR:Relay|MT:Transistor;MR:Relay
7 |=I/O|1212;1412;1616;2416;2424;3624;|0806;1208;1212;1412;
8 1616;2416;2424;3624;|0806;1208;1212;1412;
9 1616;2416;2424;3624;
10 |=Programming|(% colspan="3" %)Ladder
11 |=Type of instruction| | |
12 |=Execute Time|Basic 0.01-0.03μs|Basic 0.03-0.08μs|Basic 0.06μs/Applied instruction:1-10us
13 |=Program Capacity|(% colspan="2" %)512KB|16k
14 |=High Speed Pulse Output|≤1412MT and smaller: 4*200KHz;
15 ≥1616MT and bigger:  8*200KHz。|MT/MR2H: 2* 200KHz;
16 MT4H: 4* 200KHz。|MT/2H: 2*100KHZ, or 4H: 4*100, single: 200kHZ
17 |=High speed counter Interrupt|(% colspan="2" %)100 channels|21channels
18 |=Timer Interrupt|(% colspan="2" %)100 channels,Support 0.1ms Interrupt|95 channels
19 |=X Interrupt|X0-X7 Rising & Falling|X0-X5 Rising & Falling|X0-X5 Rising & Falling
20 |=**High speed counter Single Phase**|**≤1412 and smaller: 4*150KHz
21 ≥1616 and bigger: 8*150KHz**|**≤1412 and smaller: 2*150KHz;4*10KHz
22 ≥1616 and bigger: 6*150KHz**|**2*200KHz; 4*10KHz**
23 |=**High speed counter AB phase**|**≤1412 and smaller: 4*100KHz
24 ≥1616 and bigger: 8*100KHz**|**≤1412 and smaller: 1*100KHz+2*10KHz
25 ≥1616 and bigger: 3*100KHz**|**2*100KHz**
26 |=Storage Type|(% colspan="3" %)FLASH
27 |=Serial Communication|(((
28 COM1: RS422、RS485;COM2: RS485
29 )))|1208 and smaller: COM1: RS422;COM2: RS485;
30 1212 and bigger: COM1: RS422、RS485;COM2:RS485|1208 and smaller: COM1: RS422;COM2: RS485;
31 1212 and bigger: COM1: RS422、RS485;COM2: RS485
32 |=BD board support|yes|yes|yes
33 |=Communication BD board|(% colspan="2" %)support LX5V-2RS485-BD and LX5V-ETH-BD|RS485 BD support, 3vp supports ethernet bd board
34 |=Expansion Module|(% colspan="2" %)yes √ (1212 and bigger can support)|yes √ (1212 and bigger can support)
35 |=Electronic CAM|√(2 sheets for switch)|√(2 sheets for switch)|N/A
36 |=S-type CAM|√|√|N/A
37 |=N:N Comm|√|√|N/A
38 |=Linear Interpolation|√|√|N/A
39 |=Circular Interpolation|√|√|N/A
40 |=sub-rotine|√|√|N/A
41
42 = **2 Software difference between 5S vs 5V** =
43
44 == **High speed counter configuration** ==
45
46 **5V as below**
47
48 [[image:image-20220614151005-1.png]]
49
50 **5S is as below**
51
52 [[image:image-20220614151015-2.png]]
53
54 **More detail information,please check the product catalog**
55
56 = **3** **Functions that 3V has but 5V does not** =
57
58 == **BD board** ==
59
60 LX5V does not support LX3V-2RS485-BD
61
62 LX5V does not support LX3V-ETH-BD
63
64 == **Analog BD board expansion address** ==
65
66 Provides the function of analog board BD to modify parameters such as filtering. For specific functions, please refer to the BD board manual.
67
68 == **PLDID** ==
69
70 Program label function, when the label of the program corresponds to the label of the PLC, the ladder diagram can be uploaded and downloaded. Clearing the memory does not clear this tag either. It is mainly to limit the ladder diagram used by PLC.
71
72 == **Instructions** ==
73
74 (1) NOP instruction (null instruction)
75
76 (2) TRAN instruction (SFC transfer begins)
77
78 (3) FEND instruction (main program ends)
79
80 (4) IRET instruction (interrupt return)
81
82 (5) SRET instruction (subroutine return)
83
84 (6) SPD instruction
85
86 (7) DRVI2 instruction
87
88 (8) PTO/DPTO instruction(envelope pulse command)
89
90 (9) DABS instruction
91
92 (10) RSLIST instruction
93
94 (11) CPAVL instruction(communication BD configuration)
95
96 == **Unsupported special register function (M8000, D8000)** ==
97
98 === **Clock related** ===
99
100 Clock function not supported by LX5V
101
102 |=M8014|Oscillation clock with 1 minute clock period
103 |=M8015|Clock stop and preset
104 |=M8016|Stop time to read the display
105 |=M8017|±30 seconds correction
106 |=M8018|install and examine
107 |=M8019|Real-time clock (RTC) error
108
109 === **High-speed counter ring counting function** ===
110
111 |=M8099|High-speed ring counter count start
112 |=M8099|Ring count configuration
113
114 === **X0~~X5 pulse capture function** ===
115
116 |=M8170|X000 pulse capture
117 |=M8171|X001 pulse capture
118 |=M8172|X002 pulse capture
119 |=M8173|X003 pulse capture
120 |=M8174|X004 pulse capture
121 |=M8175|X005 pulse capture
122
123 = **4 3V and 5V incompatible functions** =
124
125 (% class="wikigeneratedid" %)
126 **(These can be automatically converted in the future)**
127
128 == **General register** ==
129
130 (% class="table-bordered" %)
131 |=(% scope="row" %)**register**|=**LX3V**|=**LX5V**|=**Remarks**
132 |=Input|X0~~X377|X0~~X1777|
133 |=Output|Y0~~Y377|Y0~~Y1777|
134 |=Auxiliary|M0~~M3071|M0~~M7999|
135 |=Status|S0~~S999|S0~~S4095|
136 |=Timer|T0~~T255|T0~~T511|
137 |=counter|C0~~C199|C0~~C255|
138 |=Double word counter|C200~~C219|LC0~~LC99|Non-power-down save
139 |=Double word counter|C220~~C234|LC100~~LC255|Power-down save
140 |=High-speed counter|C235~~C255|HSC0~~HSC7|Check the high-speed input function
141 |=Data Register|D0~~D7999|D0~~D7999 (R0~~R29999)|
142 |=Pointer P|P0~~P127|P0~~P4095|
143 |=Instruction I|I0~~I8xx|None|
144 |=constant|K, H, E|K, H, E|
145
146 **Incompatible part**
147
148 ~1. T250~~T255 of LX3V are 100ms timers, while T250~~T255 of LX5V are 10ms timer.
149
150 2. C200~~C234 of LX3V are double word counters, LX5V is changed to single word, and LC0~~LC255 are added as double word counters.
151
152 3. LX3V's high-speed counters C235~~C255 are no longer used. In LX5V, the high-speed counter type is configured through the configuration table, and HSC0~~HSC7 is selected as the high-speed input counter according to the channel. See the high-speed input function for details.
153
154 4. CJ instruction uses pointer P63 to jump directly to END instruction in 3V, but P63 of LX5V is a normal label.
155
156 5. Pointer I is cancelled in LX5V, please check the programming mode for details.
157
158 == **Programming method** ==
159
160 === **Subroutine** ===
161
162 (% class="wikigeneratedid" %)
163 **(For details, please refer to LX5V Programming Manual Chapter 1.4-Subroutine Branch)**
164
165 **Use of LX3V subroutines**
166 [[image:1652684087594-147.png]]
167
168 (% id="cke_bm_21076S" style="display:none" %)** **(%%)Use of LX5V subroutines
169
170 Add new subroutine: project management -> subroutine -> right click -> new
171
172 [[image:1652684473552-267.png]]
173
174 Subroutine can be directly used in the main program by calling its name.
175
176 [[image:1652684829740-769.png]]
177
178 === **Interrupt** ===
179
180 (% class="wikigeneratedid" %)
181 **(For details, please refer to LX5V Programming Manual Chapter 1.4-Branch)**
182
183 **LX3V interrupt**
184
185 The interrupt program is under FEND and returns with IRET. The meaning of the specific interrupt is distinguished by the pointer I number.(Refer to EI/DI instruction in 3V)
186
187 The 1ms interrupt program of LX3V is as follows:
188
189 [[image:1652685542135-419.png]]
190
191 **LX5V interrupt**
192
193 Add new interrupt: Project Management -> program->Interrupt -> New
194
195 [[image:1652685665041-340.png]]
196
197 Interrupt configuration: select interrupt mode
198
199 [[image:1652685809566-630.png]]
200
201 === **Instructions** ===
202
203 **OUT instruction**
204
205 Double word counter[[image:file:///C:\Users\ANNAXU~~1\AppData\Local\Temp\ksohtml14432\wps28.png]]
206
207 LX3V: OUT C200 KXXX
208
209 LX5V: OUT LC0 KXXX
210
211 The C200~~C219 of LX3V are converted to LC0~~LC19 of LX5V (Un-power-down save).
212
213 The OUT C220~~C234 of LX3V is converted to OUT LC100~~LC114 of LX5V (Power-down save).
214
215 **CALL instruction**
216
217 LX3V: OUT C200 PXXX
218
219 LX5V: OUT LC0 subroutine name(See LX5V programming manual for details)
220
221 **CJ instruction**
222
223 LX5V does not support CJ P63 to jump directly to the END instruction.
224
225 LX5V does not support CJ instructions to jump into subroutines and interrupts.
226
227 **DI, EI instructions**
228
229 There is no need to connect the contact before the DI instruction of LX3V.
230
231 [[image:1652687225743-267.png]]
232
233 The contact must be connected before the DI instruction of LX5V.
234
235 [[image:1652687930224-987.png]]
236
237 **DHSCS instruction**
238
239 LX3V: calls interrupt using IXX
240
241 [[image:1652688357931-327.png]]
242
243 LX5V: calls interrupts by using the interrupt program name
244
245 [[image:1652688536392-339.png]]
246
247 **CPAVL instruction**
248
249 CPVAL is used to configure communication BD boards in 3V. LX5V does not currently support it.
250
251 CPVAL is used to switch electronic cam table in LX3V. LX5V uses ECAMCUT instruction(Refer to Chapter 9.1 of LX5V Programming Manual for details).
252
253 **TRH instruction**
254
255 LX3V: input parameters are floating
256
257 LX5V: input parameters are integer
258
259 **ASC instruction**
260
261 LX3V: input strings don't need double quotes
262
263 [[image:1652689598958-799.png]]
264
265 LX5V: input strings need double quotes
266
267 [[image:1652689626279-240.png]]
268
269 = **5 High-speed input function** =
270
271 == **Use on LX3V** ==
272
273 Find the high-speed input counter you need to use according to the following table:
274
275 [[image:1652689864332-317.png]]
276
277 Through special registers, configure the functions such as frequency multiplication and counting direction.
278
279 Use the OUT instruction to start the high-speed counter counting.
280
281 [[image:1652690126303-800.png]]
282
283 == **Use on LX5V** ==
284
285 According to channel, select the HSC register to use:
286
287 [[image:1652692297496-626.png]]
288
289 Configure the high-speed counter mode through the host computer configuration table:
290
291 [[image:1652692281566-353.png]]
292
293 Use the OUT instruction to start the high-speed counter counting.
294
295 [[image:1652692388207-617.png]]
296
297 == **Difference between high-speed counters on LX5V and LX3V** ==
298
299 LX3V updates the count value when the OUT instruction is executed, which is affected by the scan cycle.
300
301 LX5V is updated in the 100us interrupt, not affected by the scan cycle, and provides the REF instruction to refresh the current high-speed counter value immediately.
302
303 LX5V single-phase high-speed counter supports filtering function, configurable 0~~17us.
304
305 LX5V high-speed input counter will update the input frequency in the special soft element (SD) every 100us.
306
307 = **6 High-speed output function** =
308
309 **High-speed pulse commands are the same in the use of commands.**
310
311 (% class="table-bordered" %)
312 |=(% scope="row" %) |=LX3V|=LX5V
313 |=DRVI|√|√
314 |=DRVA|√|√
315 |=PLSR|√|√
316 |=PLSV|√|√
317 |=PLSY|√|√
318 |=DVIT|√|√
319 |=ZRN|√|√
320 |=PLSR2|√|√
321
322 **High-speed pulse command difference.**
323
324 PLSR2 instruction parameter address is different
325
326 **Special device change**
327
328 ~1. LX3V has multiple high-speed pulse devices that are shared by multiple axes, while LX5V is separated. Therefore, when converting the program, this type of special address needs to be assigned to all axes together. For example, D8148 of 3V is the acceleration and deceleration time of 4 axes Y0~~Y3, then in LX5V, Y0 acceleration time SD902, deceleration time SD962 and other axis acceleration and deceleration time need to be set to the value of D8148.
329
330 2. Comparison of bit devices
331
332 (% class="table-bordered" %)
333 |=(% scope="row" %)**3V**|=**Description**|=**5V**|=**Description**
334 |=M8145|Y000 pulse output stop|SM898|Y000 pulse output stop
335 |=M8146|Y001 Pulse output stop|SM958|Y001 Pulse output stop
336 |=M8152|Y002 pulse output stop|SM1018|Y002 pulse output stop
337 |=M8153|Y003 Pulse output stop|SM1078|Y003 Pulse output stop
338 |=M8147|Y000 monitoring during pulse output|SM880|Y000 monitoring during pulse output
339 |=M8148|Y001 Monitoring during pulse output|SM940|Y001 Monitoring during pulse output
340 |=M8149|Y002 Monitoring during pulse output|SM1000|Y002 Monitoring during pulse output
341 |=M8150|Y003 Monitoring during pulse output|SM1060|Y003 Monitoring during pulse output
342 |=(% rowspan="4" %)(((
343
344
345
346 M8029
347 )))|(% rowspan="4" %)(((
348
349
350 Some instructions (PLSR, etc.) instruction execution completed (Y0-Y3)
351 )))|SM882|Y0 pulse sending completed
352 |=SM942|Y1 pulse sending completed
353 |=SM1002|Y2 pulse transmission completed
354 |=SM1062|Y3 pulse transmission completed
355 |=M8134|Y0's thousandth control bit|SM897|Y0's thousandth control bit
356 |=M8135|(((
357 The acceleration and deceleration time between each axis of Y1's thousandth control position positioning command is separated
358 )))|(((
359 SM957
360 )))|Y1 Perimeter control bit
361 |=M8136|Y2 Perimeter control bit|SM1017|Y2 Perimeter control bit
362 |=M8137|Y3 Perimeter control bit|SM1077|Y3 Perimeter control bit
363
364 3. Comparison of word devices
365
366 (% class="table-bordered" %)
367 |=(% scope="row" %)**3V**|=**Description**|=**5V**|=**Description**
368 |=D8104|Y0 acceleration and deceleration time (open M8135)|SD902/SD962|Y0 acceleration/deceleration time
369 |=D8105|Y1 acceleration and deceleration time (open M8135)|SD1022/SD1082|Y1 acceleration/deceleration time
370 |=D8106|Y2 acceleration and deceleration time (open M8135)|SD1142/SD1202|Y2 acceleration/deceleration time
371 |=D8107|Y3 acceleration and deceleration time (open M8135)|SD1262/SD1322|Y3 acceleration/deceleration time
372 |=D8140|Y000 Current position low|SD880|Y000 Current position low
373 |=D8141|Y000 current position high|SD881|Y000 current position high
374 |=D8142|Y001 Current position low|SD940|Y001 Current position low
375 |=D8143|Y001 Current position high|SD941|Y001 Current position high
376 |=D8150|Y002 current position low|SD1000|Y002 current position low
377 |=D8151|Y002 current position high|SD1001|Y002 current position high
378 |=D8152|Y003 Current position low|SD1060|Y003 Current position low
379 |=D8153|Y003 Current position high|SD1061|Y003 Current position high
380 |=(% rowspan="4" %)(((
381
382
383
384 D8145
385 )))|(% rowspan="4" %)(((
386
387
388
389 Y0-Y3 Paranoid speed (single word)
390 )))|SD900, SD901|Y0 Paranoid speed (double word)
391 |=SD960, SD961|Y1 Paranoid speed (double word)
392 |=SD1020, SD1021|Y2 Paranoid speed (double word)
393 |=SD1080, SD1081|Y3 Paranoid speed (double word)
394 |=(% rowspan="8" %)(((
395
396
397
398
399
400 D8146,D8147
401 )))|(% rowspan="8" %)(((
402
403
404
405
406
407 Y0-Y3 maximum frequency (double word)
408 )))|SD898|Y0 Maximum speed low
409 |=SD899|Y0 Highest speed
410 |=SD958|Y1 Maximum speed low
411 |=SD959|Y1 Highest speed
412 |=SD1018|Y2 Maximum speed low
413 |=SD1019|Y2 Highest speed
414 |=SD1078|Y3 Maximum speed low
415 |=SD1079|Y3 Highest speed
416 |=(% rowspan="4" %)(((
417
418
419
420 D8148
421 )))|(% rowspan="4" %)(((
422
423
424 4-axis acceleration/deceleration time (when M8135 is not turned on)
425 )))|SD902/SD962|Y0 acceleration/deceleration time
426 |=SD1022/SD1082|Y1 acceleration/deceleration time
427 |=SD1142/SD1202|Y2 acceleration/deceleration time
428 |=SD1262/SD1322|Y3 acceleration/deceleration time
429
430 4. New features of high-speed pulse instructions on LX5V
431
432 ①Support lower frequency output
433
434 3V: 10hz-200KHZ 5V: 1HZ-200K
435
436 ②Support a larger range of acceleration/deceleration time, separate acceleration/deceleration
437
438 3V: 50ms-5000ms 5V: 15ms-32000ms
439
440 ③Support to directly set the start frequency
441
442 ④Support to modify the pulse frequency during operation
443
444 ⑤Support to modify the pulse position (number) during operation
445
446 ⑥Support direction delay (first output the direction and then delay and then output the pulse)
447
448 ⑦Support positive and negative limit
449
450 ⑧Provide different stopping methods (deceleration to stop or immediate stop)
451
452 ⑨Support direction reversal (can set the forward direction to low level)
453
454 = **7 Communication function** =
455
456 **~1. Communication parameter configuration**
457
458 There is a difference in the serial port parameter settings, mainly in the start bit of STX and ETX of the custom protocol. 3V is B8 B9 and 5V is B10 B11. The main reason is that 5V increases the baud rate of 921600.
459
460 **2. Differences in protocol settings**
461
462 3V settings:
463
464 (% class="table-bordered" %)
465 |=(% scope="row" %)**protocol**|=**D8126 value setting**
466 |=RS instruction (custom protocol)|00H
467 |=HMI monitoring protocol (PLC protocol)|01H
468 |=MODBUS-RTU slave|02H
469 |=MODBUS-ASCII slave|03H
470 |=N:N network communication protocol slave|04H
471 |=RS instruction (custom protocol)|10H
472 |=MODBUS-RTU master station|20H
473 |=MODBUS-ASCII master station|30H
474 |=N:N network communication protocol master station|40H
475
476 5V settings:
477
478 (% class="table-bordered" %)
479 |=(% scope="row" %)**SD2592 value setting**|=**Protocol**
480 |=0 H|Wecon Modbus slave
481 |=2 H|ModbusRTU slave
482 |=3 H|ModbusASCII slave
483 |=10 H|User-defined protocol
484 |=20 H|ModbusRTU master station
485 |=30 H|(((
486 ModbusASCII master
487
488
489 )))
490
491 Although 5V does not have 3V HMI monitoring protocol. But the current HMI has matched the 5V Wecon Modbus slave protocol. The Wecon Modbus slave protocol is modified based on ModbusRTU slave,  Compatible with all ModbusRTU slave content.
492
493 **3. Differences in special devices**
494
495 3V only supports setting the serial port parameters in the first cycle of the scan cycle. The mode of the first cycle setting can be switched only by modifying the corresponding soft element setting according to the special soft element comparison table.
496
497 **4. Slave address difference**
498
499 5V address:
500
501 (% class="table-bordered" %)
502 |=(% scope="row" %)Port|=Occupy|=(% style="width: 240px;" %)Address range|=(% style="width: 221px;" %)(((
503 10 hex Register
504 )))|=(((
505 Total reserved land Address size
506 )))
507 |=**Word address**| |(% style="width:240px" %) |(% style="width:221px" %) |
508 |=T0~~T511|512 WORD|(% style="width:240px" %)0x0000-0x01ff|(% style="width:221px" %)0|1536
509 |=C0~~C255|256 WORD|(% style="width:240px" %)0x0600-0x06ff|(% style="width:221px" %)1536|1024
510 |=LC0~~LC255|512 WORD|(% style="width:240px" %)0x0A00-0x0BFF|(% style="width:221px" %)2560|1024
511 |=HSC0~~HSC15|128 WORD|(% style="width:240px" %)0x0E00-0x0E1F|(% style="width:221px" %)3584|512
512 |=D0~~D7999|8000 WORD|(% style="width:240px" %)0x1000-0x2F3F|(% style="width:221px" %)4096|16384
513 |=SD0~~SD4095|4096 WORD|(% style="width:240px" %)0x5000-0x5FFF|(% style="width:221px" %)20480|12288
514 |=R0~~R30000|30000 WORD|(% style="width:240px" %)0x8000-0xF52F|(% style="width:221px" %)32768|30000
515 |=**Bit address**| |(% style="width:240px" %) |(% style="width:221px" %) |
516 |=T0~~T511|512 bit|(% style="width:240px" %)0x0000-0x01ff|(% style="width:221px" %) |1536
517 |=C0~~C255|256 bit|(% style="width:240px" %)0x0600-0x06ff|(% style="width:221px" %)1536|1024
518 |=LC0~~LC255|256 bit|(% style="width:240px" %)0x0A00-0x0AFF|(% style="width:221px" %)2560|1024
519 |=HSC0~~HSC15|64 bit|(% style="width:240px" %)0x0E00-0x0E0F|(% style="width:221px" %)3584|512
520 |=M0~~M8000|8192bit|(% style="width:240px" %)0x1000-0x2F3F|(% style="width:221px" %)4096|16384
521 |=SM0~~SM4095|4096bit|(% style="width:240px" %)0x5000-0x5FFF|(% style="width:221px" %)20480|12288
522 |=Reserved| |(% style="width:240px" %)0x8000-0xBFFF|(% style="width:221px" %) |16383
523 |=S0~~S4095|4096bit|(% style="width:240px" %)0xC000-0xCFFF|(% style="width:221px" %)49152|8192
524 |=X0~~X1023|1024bit|(% style="width:240px" %)0xE000-0xE3FF|(% style="width:221px" %)57344|4096
525 |=Y0~~Y1023|1024bit|(% style="width:240px" %)0xF000-0xF3FF|(% style="width:221px" %)61440|4096
526
527 **5. LX5V added functions**
528
529 Modify serial communication parameters during RUN. For example, use PROTOCOL instruction to modify the protocol during run. The corresponding instruction description can also find the method of setting without instruction. For details, please refer to the relevant instructions of the instruction. Commands are PROTOCOL (set serial port protocol), PROTPARA (set serial port parameters), STATION (set station number)