Wiki source code of 17 LX3V/5V/5S comparsion

Version 25.1 by Jim on 2022/10/20 09:48

Show last authors
1 = **1 Basic differences** =
2
3 |=(% scope="row" %)Functions|=5V|=5S|=3V
4 |=Running Mode|(% colspan="3" %)Cyclic scan /Interrupt
5 |=Power supply|(% colspan="3" %)A:AC 220V;D:DC 24V
6 |=Output type|MT:Transistor|MT:Transistor;MR:Relay|MT:Transistor;MR:Relay
7 |=I/O|1212;1412;1616;2416;2424;3624;|0806;1208;1212;1412;
8 1616;2416;2424;3624;|0806;1208;1212;1412;
9 1616;2416;2424;3624;
10 |=Programming|(% colspan="3" %)Ladder
11 |=Type of instruction| | |
12 |=Execute Time|Basic 0.01-0.03μs|Basic 0.03-0.08μs|Basic 0.06μs/Applied instruction:1-10us
13 |=Program Capacity|(% colspan="2" %)512KB|16k
14 |=High Speed Pulse Output|≤1412MT and smaller: 4*200KHz;
15 ≥1616MT and bigger:  8*200KHz。|MT/MR2H: 2* 200KHz;
16 MT4H: 4* 200KHz。|MT/2H: 2*100KHZ, or 4H: 4*100, single: 200kHZ
17 |=High speed counter Interrupt|(% colspan="2" %)100 channels|21channels
18 |=Timer Interrupt|(% colspan="2" %)100 channels,Support 0.1ms Interrupt|95 channels
19 |=X Interrupt|X0-X7 Rising & Falling|X0-X5 Rising & Falling|X0-X5 Rising & Falling
20 |=**High speed counter Single Phase**|**≤1412 and smaller: 4*150KHz
21 ≥1616 and bigger: 8*150KHz**|**≤1412 and smaller: 2*150KHz;4*10KHz
22 ≥1616 and bigger: 6*150KHz**|(((
23 **Hardware counter for the first two channels:2*200KHz;**
24
25 **Software counter for the first two channels:2*100KHz;**
26
27 **Software counter for back four channels:4*10KHz**
28 )))
29 |=**High speed counter AB phase**|**≤1412 and smaller: 4*100KHz
30 ≥1616 and bigger: 8*100KHz**|**≤1412 and smaller: 1*100KHz+2*10KHz
31 ≥1616 and bigger: 3*100KHz**|(((
32 **Hardware counter for the first two channels:2*100KHz;**
33
34 **Software counter for the first two channels:2*50KHz;**
35
36 **Software counter for back four channels:4*5KHz**
37 )))
38 |=Storage Type|(% colspan="3" %)FLASH
39 |=Serial Communication|(((
40 COM1: RS422、RS485;COM2: RS485
41 )))|1208 and smaller: COM1: RS422;COM2: RS485;
42 1212 and bigger: COM1: RS422、RS485;COM2:RS485|1208 and smaller: COM1: RS422;COM2: RS485;
43 1212 and bigger: COM1: RS422、RS485;COM2: RS485
44 |=BD board support|yes|yes|yes
45 |=Communication BD board|(% colspan="2" %)support LX5V-2RS485-BD and LX5V-ETH-BD|RS485 BD support, 3vp supports ethernet bd board
46 |=Expansion Module|(% colspan="2" %)yes √ (1212 and bigger can support)|yes √ (1212 and bigger can support)
47 |=Electronic CAM|√(2 sheets for switch)|√(2 sheets for switch)|N/A
48 |=S-type CAM|√|√|N/A
49 |=N:N Comm|√|√|N/A
50 |=Linear Interpolation|√|√|N/A
51 |=Circular Interpolation|√|√|N/A
52 |=sub-rotine|√|√|N/A
53
54 = **2 Software difference between 5S vs 5V** =
55
56 == **High speed counter configuration** ==
57
58 **5V as below**
59
60 [[image:image-20220614151005-1.png]]
61
62 **5S is as below**
63
64 [[image:image-20220614151015-2.png]]
65
66 **More detail information,please check the product catalog**
67
68 = **3** **Functions that 3V has but 5V does not** =
69
70 == **BD board** ==
71
72 LX5V does not support LX3V-2RS485-BD
73
74 LX5V does not support LX3V-ETH-BD
75
76 == **Analog BD board expansion address** ==
77
78 Provides the function of analog board BD to modify parameters such as filtering. For specific functions, please refer to the BD board manual.
79
80 == **PLDID** ==
81
82 Program label function, when the label of the program corresponds to the label of the PLC, the ladder diagram can be uploaded and downloaded. Clearing the memory does not clear this tag either. It is mainly to limit the ladder diagram used by PLC.
83
84 == **Instructions** ==
85
86 (1) NOP instruction (null instruction)
87
88 (2) TRAN instruction (SFC transfer begins)
89
90 (3) FEND instruction (main program ends)
91
92 (4) IRET instruction (interrupt return)
93
94 (5) SRET instruction (subroutine return)
95
96 (6) SPD instruction
97
98 (7) DRVI2 instruction
99
100 (8) PTO/DPTO instruction(envelope pulse command)
101
102 (9) DABS instruction
103
104 (10) RSLIST instruction
105
106 (11) CPAVL instruction(communication BD configuration)
107
108 == **Unsupported special register function (M8000, D8000)** ==
109
110 === **Clock related** ===
111
112 Clock function not supported by LX5V
113
114 |=M8014|Oscillation clock with 1 minute clock period
115 |=M8015|Clock stop and preset
116 |=M8016|Stop time to read the display
117 |=M8017|±30 seconds correction
118 |=M8018|install and examine
119 |=M8019|Real-time clock (RTC) error
120
121 === **High-speed counter ring counting function** ===
122
123 |=M8099|High-speed ring counter count start
124 |=M8099|Ring count configuration
125
126 === **X0~~X5 pulse capture function** ===
127
128 |=M8170|X000 pulse capture
129 |=M8171|X001 pulse capture
130 |=M8172|X002 pulse capture
131 |=M8173|X003 pulse capture
132 |=M8174|X004 pulse capture
133 |=M8175|X005 pulse capture
134
135 = **4 3V and 5V incompatible functions** =
136
137 (% class="wikigeneratedid" %)
138 **(These can be automatically converted in the future)**
139
140 == **General register** ==
141
142 (% class="table-bordered" %)
143 |=(% scope="row" %)**register**|=**LX3V**|=**LX5V**|=**Remarks**
144 |=Input|X0~~X377|X0~~X1777|
145 |=Output|Y0~~Y377|Y0~~Y1777|
146 |=Auxiliary|M0~~M3071|M0~~M7999|
147 |=Status|S0~~S999|S0~~S4095|
148 |=Timer|T0~~T255|T0~~T511|
149 |=counter|C0~~C199|C0~~C255|
150 |=Double word counter|C200~~C219|LC0~~LC99|Non-power-down save
151 |=Double word counter|C220~~C234|LC100~~LC255|Power-down save
152 |=High-speed counter|C235~~C255|HSC0~~HSC7|Check the high-speed input function
153 |=Data Register|D0~~D7999|D0~~D7999 (R0~~R29999)|
154 |=Pointer P|P0~~P127|P0~~P4095|
155 |=Instruction I|I0~~I8xx|None|
156 |=constant|K, H, E|K, H, E|
157
158 **Incompatible part**
159
160 ~1. T250~~T255 of LX3V are 100ms timers, while T250~~T255 of LX5V are 10ms timer.
161
162 2. C200~~C234 of LX3V are double word counters, LX5V is changed to single word, and LC0~~LC255 are added as double word counters.
163
164 3. LX3V's high-speed counters C235~~C255 are no longer used. In LX5V, the high-speed counter type is configured through the configuration table, and HSC0~~HSC7 is selected as the high-speed input counter according to the channel. See the high-speed input function for details.
165
166 4. CJ instruction uses pointer P63 to jump directly to END instruction in 3V, but P63 of LX5V is a normal label.
167
168 5. Pointer I is cancelled in LX5V, please check the programming mode for details.
169
170 == **Programming method** ==
171
172 === **Subroutine** ===
173
174 (% class="wikigeneratedid" %)
175 **(For details, please refer to LX5V Programming Manual Chapter 1.4-Subroutine Branch)**
176
177 **Use of LX3V subroutines**
178 [[image:1652684087594-147.png]]
179
180 (% id="cke_bm_21076S" style="display:none" %)** **(%%)Use of LX5V subroutines
181
182 Add new subroutine: project management -> subroutine -> right click -> new
183
184 [[image:1652684473552-267.png]]
185
186 Subroutine can be directly used in the main program by calling its name.
187
188 [[image:1652684829740-769.png]]
189
190 === **Interrupt** ===
191
192 (% class="wikigeneratedid" %)
193 **(For details, please refer to LX5V Programming Manual Chapter 1.4-Branch)**
194
195 **LX3V interrupt**
196
197 The interrupt program is under FEND and returns with IRET. The meaning of the specific interrupt is distinguished by the pointer I number.(Refer to EI/DI instruction in 3V)
198
199 The 1ms interrupt program of LX3V is as follows:
200
201 [[image:1652685542135-419.png]]
202
203 **LX5V interrupt**
204
205 Add new interrupt: Project Management -> program->Interrupt -> New
206
207 [[image:1652685665041-340.png]]
208
209 Interrupt configuration: select interrupt mode
210
211 [[image:1652685809566-630.png]]
212
213 === **Instructions** ===
214
215 **OUT instruction**
216
217 Double word counter[[image:file:///C:\Users\ANNAXU~~1\AppData\Local\Temp\ksohtml14432\wps28.png]]
218
219 LX3V: OUT C200 KXXX
220
221 LX5V: OUT LC0 KXXX
222
223 The C200~~C219 of LX3V are converted to LC0~~LC19 of LX5V (Un-power-down save).
224
225 The OUT C220~~C234 of LX3V is converted to OUT LC100~~LC114 of LX5V (Power-down save).
226
227 **CALL instruction**
228
229 LX3V: OUT C200 PXXX
230
231 LX5V: OUT LC0 subroutine name(See LX5V programming manual for details)
232
233 **CJ instruction**
234
235 LX5V does not support CJ P63 to jump directly to the END instruction.
236
237 LX5V does not support CJ instructions to jump into subroutines and interrupts.
238
239 **DI, EI instructions**
240
241 There is no need to connect the contact before the DI instruction of LX3V.
242
243 [[image:1652687225743-267.png]]
244
245 The contact must be connected before the DI instruction of LX5V.
246
247 [[image:1652687930224-987.png]]
248
249 **DHSCS instruction**
250
251 LX3V: calls interrupt using IXX
252
253 [[image:1652688357931-327.png]]
254
255 LX5V: calls interrupts by using the interrupt program name
256
257 [[image:1652688536392-339.png]]
258
259 **CPAVL instruction**
260
261 CPVAL is used to configure communication BD boards in 3V. LX5V does not currently support it.
262
263 CPVAL is used to switch electronic cam table in LX3V. LX5V uses ECAMCUT instruction(Refer to Chapter 9.1 of LX5V Programming Manual for details).
264
265 **TRH instruction**
266
267 LX3V: input parameters are floating
268
269 LX5V: input parameters are integer
270
271 **ASC instruction**
272
273 LX3V: input strings don't need double quotes
274
275 [[image:1652689598958-799.png]]
276
277 LX5V: input strings need double quotes
278
279 [[image:1652689626279-240.png]]
280
281 = **5 High-speed input function** =
282
283 == **Use on LX3V** ==
284
285 Find the high-speed input counter you need to use according to the following table:
286
287 [[image:1652689864332-317.png]]
288
289 Through special registers, configure the functions such as frequency multiplication and counting direction.
290
291 Use the OUT instruction to start the high-speed counter counting.
292
293 [[image:1652690126303-800.png]]
294
295 == **Use on LX5V** ==
296
297 According to channel, select the HSC register to use:
298
299 [[image:1652692297496-626.png]]
300
301 Configure the high-speed counter mode through the host computer configuration table:
302
303 [[image:1652692281566-353.png]]
304
305 Use the OUT instruction to start the high-speed counter counting.
306
307 [[image:1652692388207-617.png]]
308
309 == **Difference between high-speed counters on LX5V and LX3V** ==
310
311 LX3V updates the count value when the OUT instruction is executed, which is affected by the scan cycle.
312
313 LX5V is updated in the 100us interrupt, not affected by the scan cycle, and provides the REF instruction to refresh the current high-speed counter value immediately.
314
315 LX5V single-phase high-speed counter supports filtering function, configurable 0~~17us.
316
317 LX5V high-speed input counter will update the input frequency in the special soft element (SD) every 100us.
318
319 = **6 High-speed output function** =
320
321 **High-speed pulse commands are the same in the use of commands.**
322
323 (% class="table-bordered" %)
324 |=(% scope="row" %) |=LX3V|=LX5V
325 |=DRVI|√|√
326 |=DRVA|√|√
327 |=PLSR|√|√
328 |=PLSV|√|√
329 |=PLSY|√|√
330 |=DVIT|√|√
331 |=ZRN|√|√
332 |=PLSR2|√|√
333
334 **High-speed pulse command difference.**
335
336 PLSR2 instruction parameter address is different
337
338 **Special device change**
339
340 ~1. LX3V has multiple high-speed pulse devices that are shared by multiple axes, while LX5V is separated. Therefore, when converting the program, this type of special address needs to be assigned to all axes together. For example, D8148 of 3V is the acceleration and deceleration time of 4 axes Y0~~Y3, then in LX5V, Y0 acceleration time SD902, deceleration time SD962 and other axis acceleration and deceleration time need to be set to the value of D8148.
341
342 2. Comparison of bit devices
343
344 (% class="table-bordered" %)
345 |=(% scope="row" %)**3V**|=**Description**|=**5V**|=**Description**
346 |=M8145|Y000 pulse output stop|SM898|Y000 pulse output stop
347 |=M8146|Y001 Pulse output stop|SM958|Y001 Pulse output stop
348 |=M8152|Y002 pulse output stop|SM1018|Y002 pulse output stop
349 |=M8153|Y003 Pulse output stop|SM1078|Y003 Pulse output stop
350 |=M8147|Y000 monitoring during pulse output|SM880|Y000 monitoring during pulse output
351 |=M8148|Y001 Monitoring during pulse output|SM940|Y001 Monitoring during pulse output
352 |=M8149|Y002 Monitoring during pulse output|SM1000|Y002 Monitoring during pulse output
353 |=M8150|Y003 Monitoring during pulse output|SM1060|Y003 Monitoring during pulse output
354 |=(% rowspan="4" %)(((
355
356
357
358 M8029
359 )))|(% rowspan="4" %)(((
360
361
362 Some instructions (PLSR, etc.) instruction execution completed (Y0-Y3)
363 )))|SM882|Y0 pulse sending completed
364 |=SM942|Y1 pulse sending completed
365 |=SM1002|Y2 pulse transmission completed
366 |=SM1062|Y3 pulse transmission completed
367 |=M8134|Y0's thousandth control bit|SM897|Y0's thousandth control bit
368 |=M8135|(((
369 The acceleration and deceleration time between each axis of Y1's thousandth control position positioning command is separated
370 )))|(((
371 SM957
372 )))|Y1 Perimeter control bit
373 |=M8136|Y2 Perimeter control bit|SM1017|Y2 Perimeter control bit
374 |=M8137|Y3 Perimeter control bit|SM1077|Y3 Perimeter control bit
375
376 3. Comparison of word devices
377
378 (% class="table-bordered" %)
379 |=(% scope="row" %)**3V**|=**Description**|=**5V**|=**Description**
380 |=D8104|Y0 acceleration and deceleration time (open M8135)|SD902/SD962|Y0 acceleration/deceleration time
381 |=D8105|Y1 acceleration and deceleration time (open M8135)|SD1022/SD1082|Y1 acceleration/deceleration time
382 |=D8106|Y2 acceleration and deceleration time (open M8135)|SD1142/SD1202|Y2 acceleration/deceleration time
383 |=D8107|Y3 acceleration and deceleration time (open M8135)|SD1262/SD1322|Y3 acceleration/deceleration time
384 |=D8140|Y000 Current position low|SD880|Y000 Current position low
385 |=D8141|Y000 current position high|SD881|Y000 current position high
386 |=D8142|Y001 Current position low|SD940|Y001 Current position low
387 |=D8143|Y001 Current position high|SD941|Y001 Current position high
388 |=D8150|Y002 current position low|SD1000|Y002 current position low
389 |=D8151|Y002 current position high|SD1001|Y002 current position high
390 |=D8152|Y003 Current position low|SD1060|Y003 Current position low
391 |=D8153|Y003 Current position high|SD1061|Y003 Current position high
392 |=(% rowspan="4" %)(((
393
394
395
396 D8145
397 )))|(% rowspan="4" %)(((
398
399
400
401 Y0-Y3 Paranoid speed (single word)
402 )))|SD900, SD901|Y0 Paranoid speed (double word)
403 |=SD960, SD961|Y1 Paranoid speed (double word)
404 |=SD1020, SD1021|Y2 Paranoid speed (double word)
405 |=SD1080, SD1081|Y3 Paranoid speed (double word)
406 |=(% rowspan="8" %)(((
407
408
409
410
411
412 D8146,D8147
413 )))|(% rowspan="8" %)(((
414
415
416
417
418
419 Y0-Y3 maximum frequency (double word)
420 )))|SD898|Y0 Maximum speed low
421 |=SD899|Y0 Highest speed
422 |=SD958|Y1 Maximum speed low
423 |=SD959|Y1 Highest speed
424 |=SD1018|Y2 Maximum speed low
425 |=SD1019|Y2 Highest speed
426 |=SD1078|Y3 Maximum speed low
427 |=SD1079|Y3 Highest speed
428 |=(% rowspan="4" %)(((
429
430
431
432 D8148
433 )))|(% rowspan="4" %)(((
434
435
436 4-axis acceleration/deceleration time (when M8135 is not turned on)
437 )))|SD902/SD962|Y0 acceleration/deceleration time
438 |=SD1022/SD1082|Y1 acceleration/deceleration time
439 |=SD1142/SD1202|Y2 acceleration/deceleration time
440 |=SD1262/SD1322|Y3 acceleration/deceleration time
441
442 4. New features of high-speed pulse instructions on LX5V
443
444 ①Support lower frequency output
445
446 3V: 10hz-200KHZ 5V: 1HZ-200K
447
448 ②Support a larger range of acceleration/deceleration time, separate acceleration/deceleration
449
450 3V: 50ms-5000ms 5V: 15ms-32000ms
451
452 ③Support to directly set the start frequency
453
454 ④Support to modify the pulse frequency during operation
455
456 ⑤Support to modify the pulse position (number) during operation
457
458 ⑥Support direction delay (first output the direction and then delay and then output the pulse)
459
460 ⑦Support positive and negative limit
461
462 ⑧Provide different stopping methods (deceleration to stop or immediate stop)
463
464 ⑨Support direction reversal (can set the forward direction to low level)
465
466 = **7 Communication function** =
467
468 **~1. Communication parameter configuration**
469
470 There is a difference in the serial port parameter settings, mainly in the start bit of STX and ETX of the custom protocol. 3V is B8 B9 and 5V is B10 B11. The main reason is that 5V increases the baud rate of 921600.
471
472 **2. Differences in protocol settings**
473
474 3V settings:
475
476 (% class="table-bordered" %)
477 |=(% scope="row" %)**protocol**|=**D8126 value setting**
478 |=RS instruction (custom protocol)|00H
479 |=HMI monitoring protocol (PLC protocol)|01H
480 |=MODBUS-RTU slave|02H
481 |=MODBUS-ASCII slave|03H
482 |=N:N network communication protocol slave|04H
483 |=RS instruction (custom protocol)|10H
484 |=MODBUS-RTU master station|20H
485 |=MODBUS-ASCII master station|30H
486 |=N:N network communication protocol master station|40H
487
488 5V settings:
489
490 (% class="table-bordered" %)
491 |=(% scope="row" %)**SD2592 value setting**|=**Protocol**
492 |=0 H|Wecon Modbus slave
493 |=2 H|ModbusRTU slave
494 |=3 H|ModbusASCII slave
495 |=10 H|User-defined protocol
496 |=20 H|ModbusRTU master station
497 |=30 H|(((
498 ModbusASCII master
499
500
501 )))
502
503 Although 5V does not have 3V HMI monitoring protocol. But the current HMI has matched the 5V Wecon Modbus slave protocol. The Wecon Modbus slave protocol is modified based on ModbusRTU slave,  Compatible with all ModbusRTU slave content.
504
505 **3. Differences in special devices**
506
507 3V only supports setting the serial port parameters in the first cycle of the scan cycle. The mode of the first cycle setting can be switched only by modifying the corresponding soft element setting according to the special soft element comparison table.
508
509 **4. Slave address difference**
510
511 5V address:
512
513 (% class="table-bordered" %)
514 |=(% scope="row" %)Port|=Occupy|=(% style="width: 240px;" %)Address range|=(% style="width: 221px;" %)(((
515 10 hex Register
516 )))|=(((
517 Total reserved land Address size
518 )))
519 |=**Word address**| |(% style="width:240px" %) |(% style="width:221px" %) |
520 |=T0~~T511|512 WORD|(% style="width:240px" %)0x0000-0x01ff|(% style="width:221px" %)0|1536
521 |=C0~~C255|256 WORD|(% style="width:240px" %)0x0600-0x06ff|(% style="width:221px" %)1536|1024
522 |=LC0~~LC255|512 WORD|(% style="width:240px" %)0x0A00-0x0BFF|(% style="width:221px" %)2560|1024
523 |=HSC0~~HSC15|128 WORD|(% style="width:240px" %)0x0E00-0x0E1F|(% style="width:221px" %)3584|512
524 |=D0~~D7999|8000 WORD|(% style="width:240px" %)0x1000-0x2F3F|(% style="width:221px" %)4096|16384
525 |=SD0~~SD4095|4096 WORD|(% style="width:240px" %)0x5000-0x5FFF|(% style="width:221px" %)20480|12288
526 |=R0~~R30000|30000 WORD|(% style="width:240px" %)0x8000-0xF52F|(% style="width:221px" %)32768|30000
527 |=**Bit address**| |(% style="width:240px" %) |(% style="width:221px" %) |
528 |=T0~~T511|512 bit|(% style="width:240px" %)0x0000-0x01ff|(% style="width:221px" %) |1536
529 |=C0~~C255|256 bit|(% style="width:240px" %)0x0600-0x06ff|(% style="width:221px" %)1536|1024
530 |=LC0~~LC255|256 bit|(% style="width:240px" %)0x0A00-0x0AFF|(% style="width:221px" %)2560|1024
531 |=HSC0~~HSC15|64 bit|(% style="width:240px" %)0x0E00-0x0E0F|(% style="width:221px" %)3584|512
532 |=M0~~M8000|8192bit|(% style="width:240px" %)0x1000-0x2F3F|(% style="width:221px" %)4096|16384
533 |=SM0~~SM4095|4096bit|(% style="width:240px" %)0x5000-0x5FFF|(% style="width:221px" %)20480|12288
534 |=Reserved| |(% style="width:240px" %)0x8000-0xBFFF|(% style="width:221px" %) |16383
535 |=S0~~S4095|4096bit|(% style="width:240px" %)0xC000-0xCFFF|(% style="width:221px" %)49152|8192
536 |=X0~~X1023|1024bit|(% style="width:240px" %)0xE000-0xE3FF|(% style="width:221px" %)57344|4096
537 |=Y0~~Y1023|1024bit|(% style="width:240px" %)0xF000-0xF3FF|(% style="width:221px" %)61440|4096
538
539 **5. LX5V added functions**
540
541 Modify serial communication parameters during RUN. For example, use PROTOCOL instruction to modify the protocol during run. The corresponding instruction description can also find the method of setting without instruction. For details, please refer to the relevant instructions of the instruction. Commands are PROTOCOL (set serial port protocol), PROTPARA (set serial port parameters), STATION (set station number)