Changes for page 08 High-speed pulse output
Last modified by Mora Zhou on 2024/08/08 14:35
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 34 removed)
- image-20220921163523-1.jpeg
- image-20220921163600-2.png
- image-20220921163619-3.png
- image-20220921163641-4.png
- image-20220921163737-5.png
- image-20220921163754-6.png
- image-20220921163843-7.png
- image-20220921163904-8.png
- image-20220921163935-9.png
- image-20220921163953-10.png
- image-20220921171331-1.png
- image-20220921171348-2.png
- image-20220921171411-3.png
- image-20220921171433-4.png
- image-20220921171529-5.png
- image-20220921171628-6.png
- image-20220921171639-7.png
- image-20220921171703-8.png
- image-20220921171735-9.png
- image-20220921171807-10.png
- image-20220921171852-11.png
- image-20220921171930-12.png
- image-20220921171956-13.png
- image-20220921172054-14.png
- image-20220921172134-15.png
- image-20220921172159-16.png
- image-20220921172255-17.png
- image-20220921172410-1.png
- image-20220921172417-2.png
- image-20220921172437-3.png
- image-20220921172524-4.png
- image-20220921172550-5.png
- image-20220921172606-6.png
- image-20220921172617-7.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.admin - Content
-
... ... @@ -1,5 +1,7 @@ 1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Originreturn** =1 += **High-speed pulse output instruction** = 2 2 3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** == 4 + 3 3 **ZRN/DZRN** 4 4 5 5 This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions. ... ... @@ -9,33 +9,33 @@ 9 9 **{{id name="OLE_LINK392"/}}Content, range and data type** 10 10 11 11 (% class="table-bordered" %) 12 -|**Parameter**| (% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**13 -|(s1)| (% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 15 +|(s1)|The speed when the origin return starts|((( 14 14 1 to 32767 15 15 16 16 1 to 200000 17 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S18 -|(s2)| (% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 20 +|(s2)|Crawl speed|((( 19 19 1 to 32767 20 20 21 21 1 to 200000 22 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S23 -|(s3)| (% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 -|(d)| (% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 25 25 26 26 **Device used** 27 27 28 -(% class="table-bordered" style="width:1049px"%)29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px"%)**Parameter**|(% colspan="14"style="width:617px"%)**Devices**|(% style="width:138px" %)**Offset modification**|(((30 +(% class="table-bordered" %) 31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 30 30 **Pulse** 31 31 32 32 **extension** 33 33 ))) 34 -| (% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**35 -|(% rowspan="4" %)ZRN| (% style="width:133px" %)Parameter 1|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|36 -| (% style="width:133px" %)Parameter 2|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|37 -| (% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|38 -| (% style="width:133px" %)Parameter 4|(%style="width:3px" %)|●| | | | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 39 +|Parameter 3|●|●|●|●| | | | | | | | | | | | 40 +|Parameter 4| |●| | | | | | | | | | | | | | 39 39 40 40 **Features** 41 41 ... ... @@ -44,7 +44,7 @@ 44 44 . 45 45 46 46 (% style="text-align:center" %) 47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]] 48 48 49 49 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000) 50 50 ... ... @@ -59,7 +59,7 @@ 59 59 • The pulse frequency could be modified during operation. 60 60 61 61 (% style="text-align:center" %) 62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]] 63 63 64 64 **{{id name="OLE_LINK84"/}}✎Note:** 65 65 ... ... @@ -70,7 +70,7 @@ 70 70 Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed. 71 71 72 72 (% style="text-align:center" %) 73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]] 74 74 75 75 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 76 76 ... ... @@ -85,11 +85,11 @@ 85 85 **Example** 86 86 87 87 (% style="text-align:center" %) 88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]] 89 89 90 90 {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 91 91 92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** = 94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** == 93 93 94 94 **{{id name="OLE_LINK390"/}}DSZR/DDSZR** 95 95 ... ... @@ -100,35 +100,35 @@ 100 100 **Content, range and data type** 101 101 102 102 (% class="table-bordered" %) 103 -|**Parameter**| (% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**104 -|(s1)| (% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 106 +|(s1)|The speed when the origin return starts|((( 105 105 1 to 32767 106 106 107 107 1 to 200000 108 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S109 -|(s2)| (% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 111 +|(s2)|Crawling speed|((( 110 110 1 to 32767 111 111 112 112 1 to 200000 113 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S114 -|(s3)| (% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL115 -|(d1)| (% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL116 -|(d2)| (% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(%style="width:124px" %)|(%style="width:226px" %)|(%style="width:180px" %)115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | | 117 117 118 118 **Device used** 119 119 120 -(% class="table-bordered" style="width:1022px"%)121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px"%)**Parameter**|(% colspan="15"style="width:630.359px"%)**Devices**|(% style="width:128px" %)**Offset modification**|(((122 +(% class="table-bordered" %) 123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 122 122 **Pulse** 123 123 124 124 **extension** 125 125 ))) 126 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**127 -|(% rowspan="5" %)DSZR| (% style="width:133.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|128 -| (% style="width:133.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|129 -| (% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|130 -| (% style="width:133.641px" %)Parameter 4|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|131 -| (% style="width:133.641px" %)Parameter 5|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | | 132 +|Parameter 4| |●| | | | | | | | | | | | | | | 133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | | 132 132 133 133 **Features** 134 134 ... ... @@ -135,7 +135,7 @@ 135 135 The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions. 136 136 137 137 (% style="text-align:center" %) 138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]] 139 139 140 140 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000) 141 141 ... ... @@ -152,7 +152,7 @@ 152 152 • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}} 153 153 154 154 (% style="text-align:center" %) 155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]] 156 156 157 157 **✎Note:** 158 158 ... ... @@ -165,7 +165,7 @@ 165 165 {{id name="OLE_LINK399"/}} 166 166 167 167 (% style="text-align:center" %) 168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]] 169 169 170 170 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 171 171 ... ... @@ -184,7 +184,7 @@ 184 184 185 185 Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 186 186 187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** = 189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** == 188 188 189 189 **DVIT/DDVIT** 190 190 ... ... @@ -221,17 +221,17 @@ 221 221 **Device used** 222 222 223 223 (% class="table-bordered" %) 224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px"%)**Parameter**|(% colspan="15"style="width:628.359px"%)**Devices**|(% style="width:129px" %)**Offset modification**|(((226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 225 225 **Pulse** 226 226 227 227 **extension** 228 228 ))) 229 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**230 -|(% rowspan="5" %)DVIT| (% style="width:134.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|231 -| (% style="width:134.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|232 -| (% style="width:134.641px" %)Parameter 3|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|233 -| (% style="width:134.641px" %)Parameter 4|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|234 -| (% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 234 +|Parameter 3| |●| | | | | | | | | | | | | | | 235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | | 236 +|Parameter 5|●| |●|●| | | | | | | | | | | | | 235 235 236 236 **Features** 237 237 ... ... @@ -248,7 +248,7 @@ 248 248 • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified. 249 249 250 250 (% style="text-align:center" %) 251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]] 252 252 253 253 **✎Note:** 254 254 ... ... @@ -278,9 +278,9 @@ 278 278 Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal. 279 279 280 280 (% style="text-align:center" %) 281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]] 282 282 283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** = 285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** == 284 284 285 285 **DRVI/DDRVI** 286 286 ... ... @@ -331,17 +331,17 @@ 331 331 332 332 **Device used** 333 333 334 -(% class="table-bordered" style="width:1046px"%)335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px"%)**Parameter**|(% colspan="14"style="width:603.125px"%)**Devices**|(% style="width:125px" %)**Offset modification**|(((336 +(% class="table-bordered" %) 337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 336 336 **Pulse** 337 337 338 338 **extension** 339 339 ))) 340 -| (% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**341 -|(% rowspan="4" %)DRVI| (% style="width:132.875px" %)Parameter 1|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|342 -| (% style="width:132.875px" %)Parameter 2|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|343 -| (% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|344 -| (% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 345 +|Parameter 3|●| | | | | | | | | | | | | | | 346 +|Parameter 4|●|●|●|●| | | | | | | | | | | | 345 345 346 346 **Features** 347 347 ... ... @@ -350,7 +350,7 @@ 350 350 With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning. 351 351 352 352 (% style="text-align:center" %) 353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]] 354 354 355 355 • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647) 356 356 ... ... @@ -363,7 +363,7 @@ 363 363 • The pulse frequency and pulse position could be modified during the operation of this instruction. 364 364 365 365 (% style="text-align:center" %) 366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]] 367 367 368 368 **✎Note:** 369 369 ... ... @@ -384,7 +384,7 @@ 384 384 385 385 {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K. 386 386 387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** = 389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** == 388 388 389 389 **DRVA/DDRVA** 390 390 ... ... @@ -450,7 +450,7 @@ 450 450 {{id name="OLE_LINK365"/}} 451 451 452 452 (% style="text-align:center" %) 453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]] 454 454 455 455 • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647) 456 456 ... ... @@ -463,7 +463,7 @@ 463 463 • The pulse frequency and pulse position could be modified during the operation of this instruction. 464 464 465 465 (% style="text-align:center" %) 466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]] 467 467 468 468 **✎Note:** 469 469 ... ... @@ -484,7 +484,7 @@ 484 484 485 485 Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000 486 486 487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** = 489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** == 488 488 489 489 **PLSR/DPLSR** 490 490 ... ... @@ -564,7 +564,7 @@ 564 564 • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified. 565 565 566 566 (% style="text-align:center" %) 567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]] 568 568 569 569 **✎Note:** 570 570 ... ... @@ -585,7 +585,7 @@ 585 585 586 586 Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K. 587 587 588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** = 590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** == 589 589 590 590 **PLSR2** 591 591 ... ... @@ -738,7 +738,7 @@ 738 738 The waveform diagram is as follows: 739 739 740 740 (% style="text-align:center" %) 741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]] 742 742 743 743 2) Waiting time 744 744 ... ... @@ -762,7 +762,7 @@ 762 762 The waveform diagram is as follows: 763 763 764 764 (% style="text-align:center" %) 765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]] 766 766 767 767 3) Waiting signal 768 768 ... ... @@ -786,7 +786,7 @@ 786 786 If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation) 787 787 788 788 (% style="text-align:center" %) 789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]] 790 790 791 791 4)** **Trigger signal 792 792 ... ... @@ -812,7 +812,7 @@ 812 812 The pulse waveform diagram is as follows: 813 813 814 814 (% style="text-align:center" %) 815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]] 816 816 817 817 If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency. 818 818 ... ... @@ -826,7 +826,7 @@ 826 826 |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range 827 827 |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started. 828 828 829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** = 831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** == 830 830 831 831 **PLSV/DPLSV** 832 832 ... ... @@ -868,7 +868,7 @@ 868 868 • The pulse frequency could be modified while the instruction is running. 869 869 870 870 (% style="text-align:center" %) 871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]] 872 872 873 873 **✎Note:** 874 874 ... ... @@ -896,9 +896,9 @@ 896 896 The sending pulse is as follows: 897 897 898 898 (% style="text-align:center" %) 899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]] 900 900 901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** = 903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** == 902 902 903 903 **PLSY/DPLSY** 904 904 ... ... @@ -940,7 +940,7 @@ 940 940 • The instruction pulse output has no acceleration/deceleration process. 941 941 942 942 (% style="text-align:center" %) 943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]] 944 944 945 945 **✎Note:** 946 946 ... ... @@ -964,7 +964,7 @@ 964 964 [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]] 965 965 966 966 (% style="text-align:center" %) 967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 968 968 969 969 **(2) Pulse output: positioning address (operand (n))> 0** 970 970 ... ... @@ -973,9 +973,9 @@ 973 973 [[image:08_html_87bd5854f06006b0.png]] 974 974 975 975 (% style="text-align:center" %) 976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 977 977 978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** = 980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** == 979 979 980 980 **PWM** 981 981 ... ... @@ -1020,7 +1020,7 @@ 1020 1020 • The pulse width and pulse period can be modified during pulse sending. 1021 1021 1022 1022 (% style="text-align:center" %) 1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]] 1024 1024 ))) 1025 1025 1026 1026 **✎Note:** ... ... @@ -1051,9 +1051,9 @@ 1051 1051 The waveform diagram is shown as right. 1052 1052 1053 1053 (% style="text-align:center" %) 1054 -[[image:08_html_f38f59f98fdc96c0.png||height="213" width="600" class="img-thumbnail"]]1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]] 1055 1055 1056 -= **PWM/PWM perimeter mode** = 1058 +== **PWM/PWM perimeter mode** == 1057 1057 1058 1058 **PWM** 1059 1059 ... ... @@ -1143,7 +1143,7 @@ 1143 1143 (% style="text-align:center" %) 1144 1144 [[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]] 1145 1145 1146 -= **G90G01 Absolute position line interpolation instruction** = 1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** == 1147 1147 1148 1148 **G90G01** 1149 1149 ... ... @@ -1183,7 +1183,7 @@ 1183 1183 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation. 1184 1184 1185 1185 (% style="text-align:center" %) 1186 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]] 1187 1187 1188 1188 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1189 1189 ... ... @@ -1208,8 +1208,11 @@ 1208 1208 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1209 1209 1210 1210 (% style="text-align:center" %) 1211 -[[image: image-20220921172417-2.png]]1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1212 1212 1215 +(% style="text-align:center" %) 1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1217 + 1213 1213 **{{id name="_Toc32765"/}}Error Codes** 1214 1214 1215 1215 (% class="table-bordered" %) ... ... @@ -1218,16 +1218,16 @@ 1218 1218 |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range 1219 1219 |4088H|The same pulse output axis (d1) is used and has been started. 1220 1220 1221 -**Example** 1226 +**{{id name="_Toc29603"/}}Example** 1222 1222 1223 1223 (% style="text-align:center" %) 1224 -[[image: image-20220921163523-1.jpeg||class="img-thumbnail"]]1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1225 1225 1226 1226 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1227 1227 1228 -= **G91G01 Relative position line interpolation instruction** = 1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** == 1229 1229 1230 -**G91G01** 1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01** 1231 1231 1232 1232 Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode. 1233 1233 ... ... @@ -1265,7 +1265,7 @@ 1265 1265 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position. 1266 1266 1267 1267 (% style="text-align:center" %) 1268 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]] 1269 1269 1270 1270 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647. 1271 1271 ... ... @@ -1288,10 +1288,13 @@ 1288 1288 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1289 1289 1290 1290 (% style="text-align:center" %) 1291 -[[image: image-20220921172437-3.png]]1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1292 1292 1293 -**Error Codes** 1298 +(% style="text-align:center" %) 1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1294 1294 1301 +**{{id name="_Toc8461"/}}Error Codes** 1302 + 1295 1295 (% class="table-bordered" %) 1296 1296 |**Error Codes**|**Contents** 1297 1297 |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1300,11 +1300,12 @@ 1300 1300 1301 1301 **{{id name="_Toc16441"/}}Example** 1302 1302 1303 -[[image:image-20220921163600-2.png]] 1311 +(% style="text-align:center" %) 1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1304 1304 1305 1305 {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1306 1306 1307 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** = 1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** == 1308 1308 1309 1309 **G90G02** 1310 1310 ... ... @@ -1342,7 +1342,7 @@ 1342 1342 {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point. 1343 1343 1344 1344 (% style="text-align:center" %) 1345 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]] 1346 1346 1347 1347 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1348 1348 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1365,10 +1365,13 @@ 1365 1365 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1366 1366 1367 1367 (% style="text-align:center" %) 1368 -[[image: image-20220921172524-4.png]]1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1369 1369 1370 -**Error Codes** 1379 +(% style="text-align:center" %) 1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1371 1371 1382 + **Error Codes** 1383 + 1372 1372 (% class="table-bordered" %) 1373 1373 |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents** 1374 1374 |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1384,11 +1384,11 @@ 1384 1384 **{{id name="OLE_LINK268"/}}Example** 1385 1385 1386 1386 (% style="text-align:center" %) 1387 -[[image: image-20220921163619-3.png||class="img-thumbnail"]]1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1388 1388 1389 1389 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1390 1390 1391 -= **G91G02 Relative position clockwise circular interpolation instruction** = 1403 +== **G91G02 Relative position clockwise circular interpolation instruction** == 1392 1392 1393 1393 **G91G02** 1394 1394 ... ... @@ -1430,7 +1430,7 @@ 1430 1430 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position. 1431 1431 1432 1432 (% style="text-align:center" %) 1433 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]] 1434 1434 1435 1435 * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647. 1436 1436 * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1453,8 +1453,11 @@ 1453 1453 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1454 1454 1455 1455 (% style="text-align:center" %) 1456 -[[image: image-20220921172550-5.png]]1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1457 1457 1470 +(% style="text-align:center" %) 1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1472 + 1458 1458 **Error Codes** 1459 1459 1460 1460 (% class="table-bordered" %) ... ... @@ -1472,11 +1472,11 @@ 1472 1472 **Example**{{id name="OLE_LINK22"/}} 1473 1473 1474 1474 (% style="text-align:center" %) 1475 -[[image: image-20220921163641-4.png||class="img-thumbnail"]]1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1476 1476 1477 1477 {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1478 1478 1479 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** = 1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** == 1480 1480 1481 1481 G90G03 1482 1482 ... ... @@ -1518,7 +1518,7 @@ 1518 1518 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point. 1519 1519 1520 1520 (% style="text-align:center" %) 1521 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]] 1522 1522 1523 1523 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1524 1524 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1541,8 +1541,11 @@ 1541 1541 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1542 1542 1543 1543 (% style="text-align:center" %) 1544 -[[image: image-20220921172606-6.png]]1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1545 1545 1561 +(% style="text-align:center" %) 1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1563 + 1546 1546 **Error Codes** 1547 1547 1548 1548 (% class="table-bordered" %) ... ... @@ -1560,11 +1560,11 @@ 1560 1560 **Example** 1561 1561 1562 1562 (% style="text-align:center" %) 1563 -[[image: image-20220921163737-5.png||class="img-thumbnail"]]1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1564 1564 1565 1565 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1566 1566 1567 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** = 1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** == 1568 1568 1569 1569 **G91G03** 1570 1570 ... ... @@ -1606,7 +1606,7 @@ 1606 1606 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position. 1607 1607 1608 1608 (% style="text-align:center" %) 1609 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]] 1610 1610 1611 1611 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1612 1612 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1629,8 +1629,11 @@ 1629 1629 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1630 1630 1631 1631 (% style="text-align:center" %) 1632 -[[image: image-20220921172617-7.png]]1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1633 1633 1652 +(% style="text-align:center" %) 1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1654 + 1634 1634 **Error Codes** 1635 1635 1636 1636 (% class="table-bordered" %) ... ... @@ -1648,11 +1648,11 @@ 1648 1648 **Example** 1649 1649 1650 1650 (% style="text-align:center" %) 1651 -[[image: image-20220921163754-6.png]]1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1652 1652 1653 1653 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1654 1654 1655 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** = 1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** == 1656 1656 1657 1657 **G90G02H** 1658 1658 ... ... @@ -1696,7 +1696,7 @@ 1696 1696 (% style="text-align:center" %) 1697 1697 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1698 1698 1699 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is image-20220921171331-1.png||height="31" width="113"]],,,,.(The range is -2147483648 to +2147483647.)1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1700 1700 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1701 1701 1702 1702 * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1716,7 +1716,7 @@ 1716 1716 1717 1717 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1718 1718 1719 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian image-20220921171348-2.png||height="47" width="90"]],,),,1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1720 1720 1721 1721 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1722 1722 ... ... @@ -1728,16 +1728,15 @@ 1728 1728 (% style="text-align:center" %) 1729 1729 [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1730 1730 1731 -(9) Exact match pitch of screws (lead) K and Ze,,.,,1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1732 1732 1733 -The starting point coordinate of helical interpolation is (0,0,0),,,,, set the end point coordinate to(Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates(Xe',Ye')of X axis and Y axis according to the number of turns of interpolation.1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1734 1734 1735 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes(Xe',Ye'),,,,may not be equal to the set(Xe,Ye), but it must pass through the set point(Xe,Ye),1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1736 1736 1737 -(% style="text-align:center" %) 1738 -[[image:image-20220921171411-3.png||height="62" width="312"]] 1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1739 1739 1740 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),the end point coordinate(0,0,Ze).1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1741 1741 1742 1742 (% class="table-bordered" %) 1743 1743 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** ... ... @@ -1758,16 +1758,16 @@ 1758 1758 |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1759 1759 |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1760 1760 |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0. 1761 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,,,[[image:image-20220921171529-5.png||height="32" width="69"]],,,,)1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1762 1762 1763 1763 **{{id name="_Toc12418"/}}Example** 1764 1764 1765 1765 (% style="text-align:center" %) 1766 -[[image: image-20220921163843-7.png||class="img-thumbnail"]]1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1767 1767 1768 1768 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1769 1769 1770 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** = 1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** == 1771 1771 1772 1772 **G91G02H** 1773 1773 ... ... @@ -1811,7 +1811,7 @@ 1811 1811 (% style="text-align:center" %) 1812 1812 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1813 1813 1814 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]].(The range is -2147483648 to +2147483647.)1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1815 1815 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1816 1816 1817 1817 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1831,10 +1831,8 @@ 1831 1831 1832 1832 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1833 1833 1834 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1835 1835 1836 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),, 1837 - 1838 1838 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1839 1839 1840 1840 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: ... ... @@ -1845,16 +1845,15 @@ 1845 1845 (% style="text-align:center" %) 1846 1846 [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1847 1847 1848 -(9) Exact match pitch of screws (lead) K and Ze,,.,,1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1849 1849 1850 -The starting point coordinate of helical interpolation is (0,0,0), set the end point coordinate to(Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates(Xe‘,Ye’)of X axis and Y axis according to the number of turns of interpolation.1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1851 1851 1852 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes(Xe‘,Ye’),, ,,may not be equal to the set(Xe,Ye),, ,,, but it must pass through the set poin(Xe,Ye),, ,,in the whole circle.1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1853 1853 1854 -(% style="text-align:center" %) 1855 -[[image:image-20220921171703-8.png||height="58" width="291"]] 1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1856 1856 1857 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),,,,,the end point coordinate(0,0,Ze),,,,.1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 1858 1858 1859 1859 (% class="table-bordered" %) 1860 1860 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** ... ... @@ -1875,16 +1875,16 @@ 1875 1875 |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1876 1876 |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1877 1877 |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0. 1878 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image: image-20220921171735-9.png||height="28" width="59"]])1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1879 1879 1880 1880 **{{id name="_Toc28830"/}}Example** 1881 1881 1882 1882 (% style="text-align:center" %) 1883 -[[image: image-20220921163904-8.png]]1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1884 1884 1885 1885 Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1886 1886 1887 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** = 1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** == 1888 1888 1889 1889 **G90G03H** 1890 1890 ... ... @@ -1928,8 +1928,7 @@ 1928 1928 (% style="text-align:center" %) 1929 1929 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1930 1930 1931 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. 1932 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.) 1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1933 1933 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1934 1934 1935 1935 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1949,10 +1949,8 @@ 1949 1949 1950 1950 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1951 1951 1952 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1953 1953 1954 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]] 1955 - 1956 1956 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1957 1957 1958 1958 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: ... ... @@ -1963,16 +1963,15 @@ 1963 1963 (% style="text-align:center" %) 1964 1964 [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1965 1965 1966 -(9) Exact match pitch of screws (lead) K and Ze1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1967 1967 1968 -The starting point coordinate of helical interpolation is (0,0,0),,,,, set the end point coordinate to(Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1969 1969 1970 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes(Xe',Ye'),,,,may not be equal to the set(Xe,Ye),,,,, but it must pass through the set point(Xe,Ye),,,,in the whole circle.1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1971 1971 1972 -(% style="text-align:center" %) 1973 -[[image:image-20220921171930-12.png||height="74" width="370"]] 1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1974 1974 1975 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),,,,,the end point coordinate(0,0,Ze),,,,).1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1976 1976 1977 1977 (% class="table-bordered" %) 1978 1978 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** ... ... @@ -1993,16 +1993,16 @@ 1993 1993 |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1994 1994 |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1995 1995 |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0. 1996 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image: image-20220921171956-13.png||height="29" width="61"]])2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1997 1997 1998 1998 **{{id name="_Toc18584"/}}Example** 1999 1999 2000 2000 (% style="text-align:center" %) 2001 -[[image: image-20220921163935-9.png||class="img-thumbnail"]]2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2002 2002 2003 2003 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 2004 2004 2005 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** = 2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** == 2006 2006 2007 2007 **G91G03H** 2008 2008 ... ... @@ -2066,10 +2066,8 @@ 2066 2066 2067 2067 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 2068 2068 2069 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 2070 2070 2071 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]] 2072 - 2073 2073 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 2074 2074 2075 2075 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: ... ... @@ -2080,16 +2080,15 @@ 2080 2080 (% style="text-align:center" %) 2081 2081 [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 2082 2082 2083 -(9) Exact match pitch of screws (lead) K and Ze2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 2084 2084 2085 -The start point coordinate of helical interpolation is (0,0,0), set the end point coordinate to(Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 2086 2086 2087 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes(Xe',Ye'),,,,may not be equal to the set(Xe,Ye), but it must pass through the set point(Xe,Ye),,,,in the whole circle.2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 2088 2088 2089 -(% style="text-align:center" %) 2090 -[[image:image-20220921172159-16.png||height="72" width="362"]] 2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 2091 2091 2092 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate (0,0,0),the end point coordinate(0,0,Ze).2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 2093 2093 2094 2094 (% class="table-bordered" %) 2095 2095 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** ... ... @@ -2110,12 +2110,12 @@ 2110 2110 |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 2111 2111 |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 2112 2112 |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0. 2113 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead image-20220921172255-17.png||height="29" width="62"]],,,,)2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 2114 2114 2115 2115 **{{id name="_Toc11997"/}}Example** 2116 2116 2117 2117 (% style="text-align:center" %) 2118 -[[image: image-20220921163953-10.png||class="img-thumbnail"]]2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2119 2119 2120 2120 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}} 2121 2121 ... ... @@ -2265,7 +2265,7 @@ 2265 2265 When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle. 2266 2266 2267 2267 (% style="text-align:center" %) 2268 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]] 2269 2269 2270 2270 **(9) Not scanned** 2271 2271 ... ... @@ -2516,7 +2516,7 @@ 2516 2516 [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement. 2517 2517 2518 2518 (% style="text-align:center" %) 2519 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]] 2520 2520 2521 2521 **(8) Direction delay** 2522 2522 ... ... @@ -2529,7 +2529,7 @@ 2529 2529 |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325 2530 2530 2531 2531 (% style="text-align:center" %) 2532 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]] 2533 2533 2534 2534 **(9) External start signal** 2535 2535 ... ... @@ -2561,12 +2561,12 @@ 2561 2561 ①Reachable frequency 2562 2562 2563 2563 (% style="text-align:center" %) 2564 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]] 2565 2565 2566 2566 ②Unreachable frequency 2567 2567 2568 2568 (% style="text-align:center" %) 2569 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]] 2570 2570 2571 2571 2) Modify the number of pulses: 2572 2572 ... ... @@ -2573,12 +2573,12 @@ 2573 2573 ①Modify to the number of reachable pulses 2574 2574 2575 2575 (% style="text-align:center" %) 2576 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]] 2577 2577 2578 2578 ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending) 2579 2579 2580 2580 (% style="text-align:center" %) 2581 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]] 2582 2582 2583 2583 **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range** 2584 2584 ... ... @@ -2635,17 +2635,17 @@ 2635 2635 Time-minute ladder acceleration and deceleration 2636 2636 2637 2637 (% style="text-align:center" %) 2638 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]] 2639 2639 2640 2640 Time-minute S-type acceleration and deceleration 2641 2641 2642 2642 (% style="text-align:center" %) 2643 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]] 2644 2644 2645 2645 The following figure shows the changes of each parameter 2646 2646 2647 2647 (% style="text-align:center" %) 2648 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]] 2649 2649 2650 2650 **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration. 2651 2651
- image-20220921163523-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.2 KB - Content
- image-20220921163600-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.5 KB - Content
- image-20220921163619-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163641-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163737-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163754-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163843-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163904-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163935-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921163953-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921171331-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171348-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171411-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171433-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171529-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171628-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171639-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171703-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171735-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171807-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171852-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171930-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171956-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172054-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172134-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172159-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921172255-17.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172410-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172417-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172437-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172524-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172550-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172606-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172617-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content