Last modified by Mora Zhou on 2024/08/08 14:35

From version 11.2
edited by Stone Wu
on 2022/09/21 17:25
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 12:57
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -PLC Editor2.WebHome
1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -1,5 +1,7 @@
1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** =
1 += **High-speed pulse output instruction** =
2 2  
3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** ==
4 +
3 3  **ZRN/DZRN**
4 4  
5 5  This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions.
... ... @@ -9,33 +9,33 @@
9 9  **{{id name="OLE_LINK392"/}}Content, range and data type**
10 10  
11 11  (% class="table-bordered" %)
12 -|**Parameter**|(% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**
13 -|(s1)|(% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((
14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
15 +|(s1)|The speed when the origin return starts|(((
14 14  1 to 32767
15 15  
16 16  1 to 200000
17 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
18 -|(s2)|(% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((
19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
20 +|(s2)|Crawl speed|(((
19 19  1 to 32767
20 20  
21 21  1 to 200000
22 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
23 -|(s3)|(% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 -|(d)|(% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
25 25  
26 26  **Device used**
27 27  
28 -(% class="table-bordered" style="width:1049px" %)
29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px" %)**Parameter**|(% colspan="14" style="width:617px" %)**Devices**|(% style="width:138px" %)**Offset modification**|(((
30 +(% class="table-bordered" %)
31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
30 30  **Pulse**
31 31  
32 32  **extension**
33 33  )))
34 -|(% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**
35 -|(% rowspan="4" %)ZRN|(% style="width:133px" %)Parameter 1|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
36 -|(% style="width:133px" %)Parameter 2|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
37 -|(% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
38 -|(% style="width:133px" %)Parameter 4|(% style="width:3px" %) |●| | | | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
39 +|Parameter 3|●|●|●|●| | | | | | | | | | | |
40 +|Parameter 4| |●| | | | | | | | | | | | | |
39 39  
40 40  **Features**
41 41  
... ... @@ -44,7 +44,7 @@
44 44  .
45 45  
46 46  (% style="text-align:center" %)
47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]
49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]]
48 48  
49 49  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000)
50 50  
... ... @@ -59,7 +59,7 @@
59 59  • The pulse frequency could be modified during operation.
60 60  
61 61  (% style="text-align:center" %)
62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]
64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]]
63 63  
64 64  **{{id name="OLE_LINK84"/}}✎Note:**
65 65  
... ... @@ -70,7 +70,7 @@
70 70  Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed.
71 71  
72 72  (% style="text-align:center" %)
73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]
75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]]
74 74  
75 75  Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
76 76  
... ... @@ -85,11 +85,11 @@
85 85  **Example**
86 86  
87 87  (% style="text-align:center" %)
88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]
90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]]
89 89  
90 90  {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
91 91  
92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** =
94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** ==
93 93  
94 94  **{{id name="OLE_LINK390"/}}DSZR/DDSZR**
95 95  
... ... @@ -100,35 +100,35 @@
100 100  **Content, range and data type**
101 101  
102 102  (% class="table-bordered" %)
103 -|**Parameter**|(% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**
104 -|(s1)|(% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((
105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
106 +|(s1)|The speed when the origin return starts|(((
105 105  1 to 32767
106 106  
107 107  1 to 200000
108 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
109 -|(s2)|(% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((
110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
111 +|(s2)|Crawling speed|(((
110 110  1 to 32767
111 111  
112 112  1 to 200000
113 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
114 -|(s3)|(% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
115 -|(d1)|(% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
116 -|(d2)|(% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(% style="width:124px" %) |(% style="width:226px" %) |(% style="width:180px" %)
115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | |
117 117  
118 118  **Device used**
119 119  
120 -(% class="table-bordered" style="width:1022px" %)
121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px" %)**Parameter**|(% colspan="15" style="width:630.359px" %)**Devices**|(% style="width:128px" %)**Offset modification**|(((
122 +(% class="table-bordered" %)
123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
122 122  **Pulse**
123 123  
124 124  **extension**
125 125  )))
126 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**
127 -|(% rowspan="5" %)DSZR|(% style="width:133.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
128 -|(% style="width:133.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
129 -|(% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
130 -|(% style="width:133.641px" %)Parameter 4|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
131 -|(% style="width:133.641px" %)Parameter 5|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | |
132 +|Parameter 4| |●| | | | | | | | | | | | | | |
133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | |
132 132  
133 133  **Features**
134 134  
... ... @@ -135,7 +135,7 @@
135 135  The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions.
136 136  
137 137  (% style="text-align:center" %)
138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]
140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]]
139 139  
140 140  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000)
141 141  
... ... @@ -152,7 +152,7 @@
152 152  • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}}
153 153  
154 154  (% style="text-align:center" %)
155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]
157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]]
156 156  
157 157  **✎Note:**
158 158  
... ... @@ -165,7 +165,7 @@
165 165  {{id name="OLE_LINK399"/}}
166 166  
167 167  (% style="text-align:center" %)
168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]
170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]]
169 169  
170 170   Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
171 171  
... ... @@ -184,7 +184,7 @@
184 184  
185 185  Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
186 186  
187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** =
189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** ==
188 188  
189 189  **DVIT/DDVIT**
190 190  
... ... @@ -221,17 +221,17 @@
221 221  **Device used**
222 222  
223 223  (% class="table-bordered" %)
224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px" %)**Parameter**|(% colspan="15" style="width:628.359px" %)**Devices**|(% style="width:129px" %)**Offset modification**|(((
226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
225 225  **Pulse**
226 226  
227 227  **extension**
228 228  )))
229 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**
230 -|(% rowspan="5" %)DVIT|(% style="width:134.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
231 -|(% style="width:134.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
232 -|(% style="width:134.641px" %)Parameter 3|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
233 -|(% style="width:134.641px" %)Parameter 4|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
234 -|(% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
234 +|Parameter 3| |●| | | | | | | | | | | | | | |
235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | |
236 +|Parameter 5|●| |●|●| | | | | | | | | | | | |
235 235  
236 236  **Features**
237 237  
... ... @@ -248,7 +248,7 @@
248 248  • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified.
249 249  
250 250  (% style="text-align:center" %)
251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]
253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]]
252 252  
253 253  **✎Note:**
254 254  
... ... @@ -278,9 +278,9 @@
278 278  Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal.
279 279  
280 280  (% style="text-align:center" %)
281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]
283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]]
282 282  
283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** =
285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** ==
284 284  
285 285  **DRVI/DDRVI**
286 286  
... ... @@ -331,17 +331,17 @@
331 331  
332 332  **Device used**
333 333  
334 -(% class="table-bordered" style="width:1046px" %)
335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px" %)**Parameter**|(% colspan="14" style="width:603.125px" %)**Devices**|(% style="width:125px" %)**Offset modification**|(((
336 +(% class="table-bordered" %)
337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
336 336  **Pulse**
337 337  
338 338  **extension**
339 339  )))
340 -|(% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**
341 -|(% rowspan="4" %)DRVI|(% style="width:132.875px" %)Parameter 1|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
342 -|(% style="width:132.875px" %)Parameter 2|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
343 -|(% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
344 -|(% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
345 +|Parameter 3|●| | | | | | | | | | | | | | |
346 +|Parameter 4|●|●|●|●| | | | | | | | | | | |
345 345  
346 346  **Features**
347 347  
... ... @@ -350,7 +350,7 @@
350 350  With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning.
351 351  
352 352  (% style="text-align:center" %)
353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]
355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]]
354 354  
355 355  • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647)
356 356  
... ... @@ -363,7 +363,7 @@
363 363  • The pulse frequency and pulse position could be modified during the operation of this instruction.
364 364  
365 365  (% style="text-align:center" %)
366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]
368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]]
367 367  
368 368  **✎Note:**
369 369  
... ... @@ -384,7 +384,7 @@
384 384  
385 385  {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K.
386 386  
387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** =
389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** ==
388 388  
389 389  **DRVA/DDRVA**
390 390  
... ... @@ -450,7 +450,7 @@
450 450  {{id name="OLE_LINK365"/}}
451 451  
452 452  (% style="text-align:center" %)
453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]
455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]]
454 454  
455 455  • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647)
456 456  
... ... @@ -463,7 +463,7 @@
463 463  • The pulse frequency and pulse position could be modified during the operation of this instruction.
464 464  
465 465  (% style="text-align:center" %)
466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]
468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]]
467 467  
468 468  **✎Note:**
469 469  
... ... @@ -484,7 +484,7 @@
484 484  
485 485  Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000
486 486  
487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** =
489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** ==
488 488  
489 489  **PLSR/DPLSR**
490 490  
... ... @@ -564,7 +564,7 @@
564 564  • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified.
565 565  
566 566  (% style="text-align:center" %)
567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]
569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]]
568 568  
569 569  **✎Note:**
570 570  
... ... @@ -585,7 +585,7 @@
585 585  
586 586  Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K.
587 587  
588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** =
590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** ==
589 589  
590 590  **PLSR2**
591 591  
... ... @@ -738,7 +738,7 @@
738 738  The waveform diagram is as follows:
739 739  
740 740  (% style="text-align:center" %)
741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]
743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]]
742 742  
743 743  2) Waiting time
744 744  
... ... @@ -762,7 +762,7 @@
762 762  The waveform diagram is as follows:
763 763  
764 764  (% style="text-align:center" %)
765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]
767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]]
766 766  
767 767  3) Waiting signal
768 768  
... ... @@ -786,7 +786,7 @@
786 786  If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation)
787 787  
788 788  (% style="text-align:center" %)
789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]
791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]]
790 790  
791 791  4)** **Trigger signal
792 792  
... ... @@ -812,7 +812,7 @@
812 812  The pulse waveform diagram is as follows:
813 813  
814 814  (% style="text-align:center" %)
815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]
817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]]
816 816  
817 817  If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency.
818 818  
... ... @@ -826,7 +826,7 @@
826 826  |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range
827 827  |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started.
828 828  
829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** =
831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** ==
830 830  
831 831  **PLSV/DPLSV**
832 832  
... ... @@ -868,7 +868,7 @@
868 868  • The pulse frequency could be modified while the instruction is running.
869 869  
870 870  (% style="text-align:center" %)
871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]
873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]]
872 872  
873 873  **✎Note:**
874 874  
... ... @@ -896,9 +896,9 @@
896 896  The sending pulse is as follows:
897 897  
898 898  (% style="text-align:center" %)
899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]
901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]]
900 900  
901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** =
903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** ==
902 902  
903 903  **PLSY/DPLSY**
904 904  
... ... @@ -940,7 +940,7 @@
940 940  • The instruction pulse output has no acceleration/deceleration process.
941 941  
942 942  (% style="text-align:center" %)
943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]
945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]]
944 944  
945 945  **✎Note:**
946 946  
... ... @@ -964,7 +964,7 @@
964 964  [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]]
965 965  
966 966  (% style="text-align:center" %)
967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
968 968  
969 969  **(2) Pulse output: positioning address (operand (n))> 0**
970 970  
... ... @@ -973,9 +973,9 @@
973 973  [[image:08_html_87bd5854f06006b0.png]]
974 974  
975 975  (% style="text-align:center" %)
976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
977 977  
978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** =
980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** ==
979 979  
980 980  **PWM**
981 981  
... ... @@ -1020,7 +1020,7 @@
1020 1020  • The pulse width and pulse period can be modified during pulse sending.
1021 1021  
1022 1022  (% style="text-align:center" %)
1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]
1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]]
1024 1024  )))
1025 1025  
1026 1026  **✎Note:**
... ... @@ -1051,9 +1051,9 @@
1051 1051  The waveform diagram is shown as right.
1052 1052  
1053 1053  (% style="text-align:center" %)
1054 -[[image:08_html_f38f59f98fdc96c0.png||height="213" width="600" class="img-thumbnail"]]
1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]]
1055 1055  
1056 -= **PWM/PWM perimeter mode** =
1058 +== **PWM/PWM perimeter mode** ==
1057 1057  
1058 1058  **PWM**
1059 1059  
... ... @@ -1143,7 +1143,7 @@
1143 1143  (% style="text-align:center" %)
1144 1144  [[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]]
1145 1145  
1146 -= **G90G01 Absolute position line interpolation instruction** =
1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** ==
1147 1147  
1148 1148  **G90G01**
1149 1149  
... ... @@ -1183,7 +1183,7 @@
1183 1183  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation.
1184 1184  
1185 1185  (% style="text-align:center" %)
1186 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]
1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]]
1187 1187  
1188 1188  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1189 1189  
... ... @@ -1208,8 +1208,11 @@
1208 1208  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1209 1209  
1210 1210  (% style="text-align:center" %)
1211 -[[image:image-20220921172417-2.png]]
1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1212 1212  
1215 +(% style="text-align:center" %)
1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1217 +
1213 1213  **{{id name="_Toc32765"/}}Error Codes**
1214 1214  
1215 1215  (% class="table-bordered" %)
... ... @@ -1218,16 +1218,16 @@
1218 1218  |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
1219 1219  |4088H|The same pulse output axis (d1) is used and has been started.
1220 1220  
1221 -**Example**
1226 +**{{id name="_Toc29603"/}}Example**
1222 1222  
1223 1223  (% style="text-align:center" %)
1224 -[[image:image-20220921163523-1.jpeg||class="img-thumbnail"]]
1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1225 1225  
1226 1226  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1227 1227  
1228 -= **G91G01 Relative position line interpolation instruction** =
1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** ==
1229 1229  
1230 -**G91G01**
1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01**
1231 1231  
1232 1232  Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode.
1233 1233  
... ... @@ -1265,7 +1265,7 @@
1265 1265  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position.
1266 1266  
1267 1267  (% style="text-align:center" %)
1268 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]
1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]]
1269 1269  
1270 1270  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647.
1271 1271  
... ... @@ -1288,10 +1288,13 @@
1288 1288  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1289 1289  
1290 1290  (% style="text-align:center" %)
1291 -[[image:image-20220921172437-3.png]]
1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1292 1292  
1293 -**Error Codes**
1298 +(% style="text-align:center" %)
1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1294 1294  
1301 +**{{id name="_Toc8461"/}}Error Codes**
1302 +
1295 1295  (% class="table-bordered" %)
1296 1296  |**Error Codes**|**Contents**
1297 1297  |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1300,11 +1300,12 @@
1300 1300  
1301 1301  **{{id name="_Toc16441"/}}Example**
1302 1302  
1303 -[[image:image-20220921163600-2.png]]
1311 +(% style="text-align:center" %)
1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1304 1304  
1305 1305  {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1306 1306  
1307 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** =
1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** ==
1308 1308  
1309 1309  **G90G02**
1310 1310  
... ... @@ -1342,7 +1342,7 @@
1342 1342  {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point.
1343 1343  
1344 1344  (% style="text-align:center" %)
1345 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]
1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]]
1346 1346  
1347 1347  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1348 1348  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1365,10 +1365,13 @@
1365 1365  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1366 1366  
1367 1367  (% style="text-align:center" %)
1368 -[[image:image-20220921172524-4.png]]
1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1369 1369  
1370 -**Error Codes**
1379 +(% style="text-align:center" %)
1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1371 1371  
1382 + **Error Codes**
1383 +
1372 1372  (% class="table-bordered" %)
1373 1373  |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents**
1374 1374  |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1384,11 +1384,11 @@
1384 1384  **{{id name="OLE_LINK268"/}}Example**
1385 1385  
1386 1386  (% style="text-align:center" %)
1387 -[[image:image-20220921163619-3.png||class="img-thumbnail"]]
1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1388 1388  
1389 1389  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1390 1390  
1391 -= **G91G02 Relative position clockwise circular interpolation instruction** =
1403 +== **G91G02 Relative position clockwise circular interpolation instruction** ==
1392 1392  
1393 1393  **G91G02**
1394 1394  
... ... @@ -1430,7 +1430,7 @@
1430 1430  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position.
1431 1431  
1432 1432  (% style="text-align:center" %)
1433 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]
1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]]
1434 1434  
1435 1435  * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647.
1436 1436  * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1453,8 +1453,11 @@
1453 1453  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1454 1454  
1455 1455  (% style="text-align:center" %)
1456 -[[image:image-20220921172550-5.png]]
1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1457 1457  
1470 +(% style="text-align:center" %)
1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1472 +
1458 1458  **Error Codes**
1459 1459  
1460 1460  (% class="table-bordered" %)
... ... @@ -1472,11 +1472,11 @@
1472 1472  **Example**{{id name="OLE_LINK22"/}}
1473 1473  
1474 1474  (% style="text-align:center" %)
1475 -[[image:image-20220921163641-4.png||class="img-thumbnail"]]
1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1476 1476  
1477 1477  {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1478 1478  
1479 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** =
1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** ==
1480 1480  
1481 1481  G90G03
1482 1482  
... ... @@ -1518,7 +1518,7 @@
1518 1518  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point.
1519 1519  
1520 1520  (% style="text-align:center" %)
1521 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]
1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]]
1522 1522  
1523 1523  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1524 1524  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1541,8 +1541,11 @@
1541 1541  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1542 1542  
1543 1543  (% style="text-align:center" %)
1544 -[[image:image-20220921172606-6.png]]
1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1545 1545  
1561 +(% style="text-align:center" %)
1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1563 +
1546 1546  **Error Codes**
1547 1547  
1548 1548  (% class="table-bordered" %)
... ... @@ -1560,11 +1560,11 @@
1560 1560  **Example**
1561 1561  
1562 1562  (% style="text-align:center" %)
1563 -[[image:image-20220921163737-5.png||class="img-thumbnail"]]
1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1564 1564  
1565 1565  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1566 1566  
1567 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** =
1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** ==
1568 1568  
1569 1569  **G91G03**
1570 1570  
... ... @@ -1606,7 +1606,7 @@
1606 1606  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position.
1607 1607  
1608 1608  (% style="text-align:center" %)
1609 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]
1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]]
1610 1610  
1611 1611  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1612 1612  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1629,8 +1629,11 @@
1629 1629  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1630 1630  
1631 1631  (% style="text-align:center" %)
1632 -[[image:image-20220921172617-7.png]]
1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1633 1633  
1652 +(% style="text-align:center" %)
1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1654 +
1634 1634  **Error Codes**
1635 1635  
1636 1636  (% class="table-bordered" %)
... ... @@ -1648,11 +1648,11 @@
1648 1648  **Example**
1649 1649  
1650 1650  (% style="text-align:center" %)
1651 -[[image:image-20220921163754-6.png]]
1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1652 1652  
1653 1653  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1654 1654  
1655 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** =
1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** ==
1656 1656  
1657 1657  **G90G02H**
1658 1658  
... ... @@ -1696,7 +1696,7 @@
1696 1696  (% style="text-align:center" %)
1697 1697  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1698 1698  
1699 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is [[image:image-20220921171331-1.png||height="31" width="113"]],, ,,.(The range is -2147483648 to +2147483647.)
1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1700 1700  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1701 1701  
1702 1702  * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1716,7 +1716,7 @@
1716 1716  
1717 1717  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1718 1718  
1719 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian [[image:image-20220921171348-2.png||height="47" width="90"]],,),,
1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1720 1720  
1721 1721  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1722 1722  
... ... @@ -1728,16 +1728,15 @@
1728 1728  (% style="text-align:center" %)
1729 1729  [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1730 1730  
1731 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1732 1732  
1733 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.
1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1734 1734  
1735 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes  (Xe',Ye') ,, ,,may not be equal to the set  (Xe,Ye), but it must pass through the set point (Xe,Ye), in the whole circle.
1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1736 1736  
1737 -(% style="text-align:center" %)
1738 -[[image:image-20220921171411-3.png||height="62" width="312"]]
1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1739 1739  
1740 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0), the end point coordinate (0,0,Ze).
1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1741 1741  
1742 1742  (% class="table-bordered" %)
1743 1743  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
... ... @@ -1758,16 +1758,16 @@
1758 1758  |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1759 1759  |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1760 1760  |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0.
1761 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead,, ,,[[image:image-20220921171529-5.png||height="32" width="69"]],, ,,)
1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1762 1762  
1763 1763  **{{id name="_Toc12418"/}}Example**
1764 1764  
1765 1765  (% style="text-align:center" %)
1766 -[[image:image-20220921163843-7.png||class="img-thumbnail"]]
1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1767 1767  
1768 1768  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1769 1769  
1770 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** =
1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** ==
1771 1771  
1772 1772  **G91G02H**
1773 1773  
... ... @@ -1811,7 +1811,7 @@
1811 1811  (% style="text-align:center" %)
1812 1812  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1813 1813  
1814 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]]. (The range is -2147483648 to +2147483647.)
1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1815 1815  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1816 1816  
1817 1817  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1831,10 +1831,8 @@
1831 1831  
1832 1832  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1833 1833  
1834 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1835 1835  
1836 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),,
1837 -
1838 1838  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1839 1839  
1840 1840  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
... ... @@ -1845,16 +1845,15 @@
1845 1845  (% style="text-align:center" %)
1846 1846  [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1847 1847  
1848 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1849 1849  
1850 -The starting point coordinate of helical interpolation is (0,0,0), set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates (Xe‘,Ye’) of X axis and Y axis according to the number of turns of interpolation.
1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1851 1851  
1852 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe‘,Ye’) ,, ,,may not be equal to the set (Xe,Ye) ,, ,,, but it must pass through the set poin (Xe,Ye) ,, ,,in the whole circle.
1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1853 1853  
1854 -(% style="text-align:center" %)
1855 -[[image:image-20220921171703-8.png||height="58" width="291"]]
1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1856 1856  
1857 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,.
1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
1858 1858  
1859 1859  (% class="table-bordered" %)
1860 1860  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
... ... @@ -1875,16 +1875,16 @@
1875 1875  |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1876 1876  |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1877 1877  |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0.
1878 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image:image-20220921171735-9.png||height="28" width="59"]])
1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1879 1879  
1880 1880  **{{id name="_Toc28830"/}}Example**
1881 1881  
1882 1882  (% style="text-align:center" %)
1883 -[[image:image-20220921163904-8.png]]
1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1884 1884  
1885 1885  Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1886 1886  
1887 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** =
1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** ==
1888 1888  
1889 1889  **G90G03H**
1890 1890  
... ... @@ -1928,8 +1928,7 @@
1928 1928  (% style="text-align:center" %)
1929 1929  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1930 1930  
1931 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis.
1932 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.)
1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1933 1933  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1934 1934  
1935 1935  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1949,10 +1949,8 @@
1949 1949  
1950 1950  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1951 1951  
1952 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1953 1953  
1954 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]]
1955 -
1956 1956  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1957 1957  
1958 1958  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
... ... @@ -1963,16 +1963,15 @@
1963 1963  (% style="text-align:center" %)
1964 1964  [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1965 1965  
1966 -(9) Exact match pitch of screws (lead) K and Ze
1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1967 1967  
1968 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1969 1969  
1970 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye),, ,,, but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1971 1971  
1972 -(% style="text-align:center" %)
1973 -[[image:image-20220921171930-12.png||height="74" width="370"]]
1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1974 1974  
1975 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,).
1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1976 1976  
1977 1977  (% class="table-bordered" %)
1978 1978  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
... ... @@ -1993,16 +1993,16 @@
1993 1993  |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1994 1994  |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1995 1995  |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0.
1996 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image:image-20220921171956-13.png||height="29" width="61"]])
2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1997 1997  
1998 1998  **{{id name="_Toc18584"/}}Example**
1999 1999  
2000 2000  (% style="text-align:center" %)
2001 -[[image:image-20220921163935-9.png||class="img-thumbnail"]]
2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
2002 2002  
2003 2003  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
2004 2004  
2005 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** =
2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** ==
2006 2006  
2007 2007  **G91G03H**
2008 2008  
... ... @@ -2066,10 +2066,8 @@
2066 2066  
2067 2067  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
2068 2068  
2069 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
2070 2070  
2071 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]]
2072 -
2073 2073  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
2074 2074  
2075 2075  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
... ... @@ -2080,16 +2080,15 @@
2080 2080  (% style="text-align:center" %)
2081 2081  [[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
2082 2082  
2083 -(9) Exact match pitch of screws (lead) K and Ze
2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
2084 2084  
2085 -The start point coordinate of helical interpolation is(0,0,0), set the end point coordinate to (Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2086 2086  
2087 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye), but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
2088 2088  
2089 -(% style="text-align:center" %)
2090 -[[image:image-20220921172159-16.png||height="72" width="362"]]
2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
2091 2091  
2092 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate (0,0,0), the end point coordinate (0,0,Ze).
2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
2093 2093  
2094 2094  (% class="table-bordered" %)
2095 2095  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
... ... @@ -2110,12 +2110,12 @@
2110 2110  |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
2111 2111  |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
2112 2112  |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0.
2113 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead [[image:image-20220921172255-17.png||height="29" width="62"]],, ,,)
2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
2114 2114  
2115 2115  **{{id name="_Toc11997"/}}Example**
2116 2116  
2117 2117  (% style="text-align:center" %)
2118 -[[image:image-20220921163953-10.png||class="img-thumbnail"]]
2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
2119 2119  
2120 2120  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}}
2121 2121  
... ... @@ -2265,7 +2265,7 @@
2265 2265  When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle.
2266 2266  
2267 2267  (% style="text-align:center" %)
2268 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]
2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]]
2269 2269  
2270 2270  **(9) Not scanned**
2271 2271  
... ... @@ -2516,7 +2516,7 @@
2516 2516  [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement.
2517 2517  
2518 2518  (% style="text-align:center" %)
2519 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]
2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]]
2520 2520  
2521 2521  **(8) Direction delay**
2522 2522  
... ... @@ -2529,7 +2529,7 @@
2529 2529  |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325
2530 2530  
2531 2531  (% style="text-align:center" %)
2532 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]
2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]]
2533 2533  
2534 2534  **(9) External start signal**
2535 2535  
... ... @@ -2561,12 +2561,12 @@
2561 2561  ①Reachable frequency
2562 2562  
2563 2563  (% style="text-align:center" %)
2564 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]
2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]]
2565 2565  
2566 2566  ②Unreachable frequency
2567 2567  
2568 2568  (% style="text-align:center" %)
2569 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]
2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]]
2570 2570  
2571 2571  2) Modify the number of pulses:
2572 2572  
... ... @@ -2573,12 +2573,12 @@
2573 2573  ①Modify to the number of reachable pulses
2574 2574  
2575 2575  (% style="text-align:center" %)
2576 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]
2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]]
2577 2577  
2578 2578  ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending)
2579 2579  
2580 2580  (% style="text-align:center" %)
2581 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]
2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]]
2582 2582  
2583 2583  **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range**
2584 2584  
... ... @@ -2635,17 +2635,17 @@
2635 2635  Time-minute ladder acceleration and deceleration
2636 2636  
2637 2637  (% style="text-align:center" %)
2638 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]
2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]]
2639 2639  
2640 2640  Time-minute S-type acceleration and deceleration
2641 2641  
2642 2642  (% style="text-align:center" %)
2643 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]
2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]]
2644 2644  
2645 2645  The following figure shows the changes of each parameter
2646 2646  
2647 2647  (% style="text-align:center" %)
2648 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]
2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]]
2649 2649  
2650 2650  **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration.
2651 2651  
image-20220921163523-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -61.2 KB
Content
image-20220921163600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -12.5 KB
Content
image-20220921163619-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163641-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163737-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163754-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163843-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163904-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163935-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921163953-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921171331-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171348-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171411-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171433-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171529-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171628-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171639-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171703-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171735-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171807-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171852-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171930-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171956-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172054-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172134-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172159-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921172255-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172410-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172417-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172437-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172524-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172550-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172606-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172617-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content