Changes for page 08 High-speed pulse output
Last modified by Mora Zhou on 2024/08/08 14:35
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 38 removed)
- image-20220921163523-1.jpeg
- image-20220921163600-2.png
- image-20220921163619-3.png
- image-20220921163641-4.png
- image-20220921163737-5.png
- image-20220921163754-6.png
- image-20220921163843-7.png
- image-20220921163904-8.png
- image-20220921163935-9.png
- image-20220921163953-10.png
- image-20220921171331-1.png
- image-20220921171348-2.png
- image-20220921171411-3.png
- image-20220921171433-4.png
- image-20220921171529-5.png
- image-20220921171628-6.png
- image-20220921171639-7.png
- image-20220921171703-8.png
- image-20220921171735-9.png
- image-20220921171807-10.png
- image-20220921171852-11.png
- image-20220921171930-12.png
- image-20220921171956-13.png
- image-20220921172054-14.png
- image-20220921172134-15.png
- image-20220921172159-16.png
- image-20220921172255-17.png
- image-20220921172410-1.png
- image-20220921172417-2.png
- image-20220921172437-3.png
- image-20220921172524-4.png
- image-20220921172550-5.png
- image-20220921172606-6.png
- image-20220921172617-7.png
- image-20220921172637-8.png
- image-20220921172651-9.png
- image-20220921172744-10.png
- image-20220921172803-11.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.admin - Content
-
... ... @@ -1,5 +1,7 @@ 1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Originreturn** =1 += **High-speed pulse output instruction** = 2 2 3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** == 4 + 3 3 **ZRN/DZRN** 4 4 5 5 This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions. ... ... @@ -9,33 +9,33 @@ 9 9 **{{id name="OLE_LINK392"/}}Content, range and data type** 10 10 11 11 (% class="table-bordered" %) 12 -|**Parameter**| (% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**13 -|(s1)| (% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 15 +|(s1)|The speed when the origin return starts|((( 14 14 1 to 32767 15 15 16 16 1 to 200000 17 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S18 -|(s2)| (% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 20 +|(s2)|Crawl speed|((( 19 19 1 to 32767 20 20 21 21 1 to 200000 22 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S23 -|(s3)| (% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 -|(d)| (% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 25 25 26 26 **Device used** 27 27 28 -(% class="table-bordered" style="width:1049px"%)29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px"%)**Parameter**|(% colspan="14"style="width:617px"%)**Devices**|(% style="width:138px" %)**Offset modification**|(((30 +(% class="table-bordered" %) 31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 30 30 **Pulse** 31 31 32 32 **extension** 33 33 ))) 34 -| (% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**35 -|(% rowspan="4" %)ZRN| (% style="width:133px" %)Parameter 1|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|36 -| (% style="width:133px" %)Parameter 2|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|37 -| (% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|38 -| (% style="width:133px" %)Parameter 4|(%style="width:3px" %)|●| | | | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 39 +|Parameter 3|●|●|●|●| | | | | | | | | | | | 40 +|Parameter 4| |●| | | | | | | | | | | | | | 39 39 40 40 **Features** 41 41 ... ... @@ -44,7 +44,7 @@ 44 44 . 45 45 46 46 (% style="text-align:center" %) 47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]] 48 48 49 49 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000) 50 50 ... ... @@ -59,7 +59,7 @@ 59 59 • The pulse frequency could be modified during operation. 60 60 61 61 (% style="text-align:center" %) 62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]] 63 63 64 64 **{{id name="OLE_LINK84"/}}✎Note:** 65 65 ... ... @@ -70,7 +70,7 @@ 70 70 Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed. 71 71 72 72 (% style="text-align:center" %) 73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]] 74 74 75 75 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 76 76 ... ... @@ -85,11 +85,11 @@ 85 85 **Example** 86 86 87 87 (% style="text-align:center" %) 88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]] 89 89 90 90 {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 91 91 92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** = 94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** == 93 93 94 94 **{{id name="OLE_LINK390"/}}DSZR/DDSZR** 95 95 ... ... @@ -100,35 +100,35 @@ 100 100 **Content, range and data type** 101 101 102 102 (% class="table-bordered" %) 103 -|**Parameter**| (% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**104 -|(s1)| (% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 106 +|(s1)|The speed when the origin return starts|((( 105 105 1 to 32767 106 106 107 107 1 to 200000 108 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S109 -|(s2)| (% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 111 +|(s2)|Crawling speed|((( 110 110 1 to 32767 111 111 112 112 1 to 200000 113 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S114 -|(s3)| (% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL115 -|(d1)| (% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL116 -|(d2)| (% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(%style="width:124px" %)|(%style="width:226px" %)|(%style="width:180px" %)115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | | 117 117 118 118 **Device used** 119 119 120 -(% class="table-bordered" style="width:1022px"%)121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px"%)**Parameter**|(% colspan="15"style="width:630.359px"%)**Devices**|(% style="width:128px" %)**Offset modification**|(((122 +(% class="table-bordered" %) 123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 122 122 **Pulse** 123 123 124 124 **extension** 125 125 ))) 126 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**127 -|(% rowspan="5" %)DSZR| (% style="width:133.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|128 -| (% style="width:133.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|129 -| (% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|130 -| (% style="width:133.641px" %)Parameter 4|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|131 -| (% style="width:133.641px" %)Parameter 5|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | | 132 +|Parameter 4| |●| | | | | | | | | | | | | | | 133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | | 132 132 133 133 **Features** 134 134 ... ... @@ -135,7 +135,7 @@ 135 135 The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions. 136 136 137 137 (% style="text-align:center" %) 138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]] 139 139 140 140 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000) 141 141 ... ... @@ -152,7 +152,7 @@ 152 152 • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}} 153 153 154 154 (% style="text-align:center" %) 155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]] 156 156 157 157 **✎Note:** 158 158 ... ... @@ -165,7 +165,7 @@ 165 165 {{id name="OLE_LINK399"/}} 166 166 167 167 (% style="text-align:center" %) 168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]] 169 169 170 170 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 171 171 ... ... @@ -184,7 +184,7 @@ 184 184 185 185 Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 186 186 187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** = 189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** == 188 188 189 189 **DVIT/DDVIT** 190 190 ... ... @@ -221,17 +221,17 @@ 221 221 **Device used** 222 222 223 223 (% class="table-bordered" %) 224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px"%)**Parameter**|(% colspan="15"style="width:628.359px"%)**Devices**|(% style="width:129px" %)**Offset modification**|(((226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 225 225 **Pulse** 226 226 227 227 **extension** 228 228 ))) 229 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**230 -|(% rowspan="5" %)DVIT| (% style="width:134.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|231 -| (% style="width:134.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|232 -| (% style="width:134.641px" %)Parameter 3|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|233 -| (% style="width:134.641px" %)Parameter 4|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|234 -| (% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 234 +|Parameter 3| |●| | | | | | | | | | | | | | | 235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | | 236 +|Parameter 5|●| |●|●| | | | | | | | | | | | | 235 235 236 236 **Features** 237 237 ... ... @@ -248,7 +248,7 @@ 248 248 • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified. 249 249 250 250 (% style="text-align:center" %) 251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]] 252 252 253 253 **✎Note:** 254 254 ... ... @@ -278,9 +278,9 @@ 278 278 Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal. 279 279 280 280 (% style="text-align:center" %) 281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]] 282 282 283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** = 285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** == 284 284 285 285 **DRVI/DDRVI** 286 286 ... ... @@ -331,17 +331,17 @@ 331 331 332 332 **Device used** 333 333 334 -(% class="table-bordered" style="width:1046px"%)335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px"%)**Parameter**|(% colspan="14"style="width:603.125px"%)**Devices**|(% style="width:125px" %)**Offset modification**|(((336 +(% class="table-bordered" %) 337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 336 336 **Pulse** 337 337 338 338 **extension** 339 339 ))) 340 -| (% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**341 -|(% rowspan="4" %)DRVI| (% style="width:132.875px" %)Parameter 1|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|342 -| (% style="width:132.875px" %)Parameter 2|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|343 -| (% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|344 -| (% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 345 +|Parameter 3|●| | | | | | | | | | | | | | | 346 +|Parameter 4|●|●|●|●| | | | | | | | | | | | 345 345 346 346 **Features** 347 347 ... ... @@ -350,7 +350,7 @@ 350 350 With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning. 351 351 352 352 (% style="text-align:center" %) 353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]] 354 354 355 355 • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647) 356 356 ... ... @@ -363,7 +363,7 @@ 363 363 • The pulse frequency and pulse position could be modified during the operation of this instruction. 364 364 365 365 (% style="text-align:center" %) 366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]] 367 367 368 368 **✎Note:** 369 369 ... ... @@ -384,7 +384,7 @@ 384 384 385 385 {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K. 386 386 387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** = 389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** == 388 388 389 389 **DRVA/DDRVA** 390 390 ... ... @@ -450,7 +450,7 @@ 450 450 {{id name="OLE_LINK365"/}} 451 451 452 452 (% style="text-align:center" %) 453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]] 454 454 455 455 • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647) 456 456 ... ... @@ -463,7 +463,7 @@ 463 463 • The pulse frequency and pulse position could be modified during the operation of this instruction. 464 464 465 465 (% style="text-align:center" %) 466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]] 467 467 468 468 **✎Note:** 469 469 ... ... @@ -484,7 +484,7 @@ 484 484 485 485 Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000 486 486 487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** = 489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** == 488 488 489 489 **PLSR/DPLSR** 490 490 ... ... @@ -564,7 +564,7 @@ 564 564 • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified. 565 565 566 566 (% style="text-align:center" %) 567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]] 568 568 569 569 **✎Note:** 570 570 ... ... @@ -585,7 +585,7 @@ 585 585 586 586 Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K. 587 587 588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** = 590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** == 589 589 590 590 **PLSR2** 591 591 ... ... @@ -738,7 +738,7 @@ 738 738 The waveform diagram is as follows: 739 739 740 740 (% style="text-align:center" %) 741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]] 742 742 743 743 2) Waiting time 744 744 ... ... @@ -762,7 +762,7 @@ 762 762 The waveform diagram is as follows: 763 763 764 764 (% style="text-align:center" %) 765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]] 766 766 767 767 3) Waiting signal 768 768 ... ... @@ -786,7 +786,7 @@ 786 786 If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation) 787 787 788 788 (% style="text-align:center" %) 789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]] 790 790 791 791 4)** **Trigger signal 792 792 ... ... @@ -812,7 +812,7 @@ 812 812 The pulse waveform diagram is as follows: 813 813 814 814 (% style="text-align:center" %) 815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]] 816 816 817 817 If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency. 818 818 ... ... @@ -826,7 +826,7 @@ 826 826 |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range 827 827 |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started. 828 828 829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** = 831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** == 830 830 831 831 **PLSV/DPLSV** 832 832 ... ... @@ -868,7 +868,7 @@ 868 868 • The pulse frequency could be modified while the instruction is running. 869 869 870 870 (% style="text-align:center" %) 871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]] 872 872 873 873 **✎Note:** 874 874 ... ... @@ -896,9 +896,9 @@ 896 896 The sending pulse is as follows: 897 897 898 898 (% style="text-align:center" %) 899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]] 900 900 901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** = 903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** == 902 902 903 903 **PLSY/DPLSY** 904 904 ... ... @@ -940,7 +940,7 @@ 940 940 • The instruction pulse output has no acceleration/deceleration process. 941 941 942 942 (% style="text-align:center" %) 943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]] 944 944 945 945 **✎Note:** 946 946 ... ... @@ -964,7 +964,7 @@ 964 964 [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]] 965 965 966 966 (% style="text-align:center" %) 967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 968 968 969 969 **(2) Pulse output: positioning address (operand (n))> 0** 970 970 ... ... @@ -973,9 +973,9 @@ 973 973 [[image:08_html_87bd5854f06006b0.png]] 974 974 975 975 (% style="text-align:center" %) 976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 977 977 978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** = 980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** == 979 979 980 980 **PWM** 981 981 ... ... @@ -986,10 +986,10 @@ 986 986 **Content, range and data type** 987 987 988 988 (% class="table-bordered" %) 989 -|**Parameter**|(% style="width: 636px" %)**Content**|(% style="width:120px" %)**Range**|(% style="width:130px" %)**Data type**|(% style="width:103px" %)**Data type (label)**990 -|(s1)|(% style="width: 636px" %)The ON time or the device number storing the ON time|(% style="width:120px" %)0 to 32,767|(% style="width:130px" %)Signed BIN16|(% style="width:103px" %)ANY16_S991 -|(s2)|(% style="width: 636px" %)Cycle or the device number storing the cycle|(% style="width:120px" %)1 to 32,767|(% style="width:130px" %)Signed BIN16|(% style="width:103px" %)ANY16_S992 -|(d)|(% style="width: 636px" %)The channel number and device number that pulse outputs|(% style="width:120px" %)-|(% style="width:130px" %)Bit|(% style="width:103px" %)ANY_BOOL991 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)** 992 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S 993 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S 994 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL 993 993 994 994 **Device used** 995 995 ... ... @@ -1020,7 +1020,7 @@ 1020 1020 • The pulse width and pulse period can be modified during pulse sending. 1021 1021 1022 1022 (% style="text-align:center" %) 1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]] 1024 1024 ))) 1025 1025 1026 1026 **✎Note:** ... ... @@ -1035,10 +1035,6 @@ 1035 1035 |**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1036 1036 |Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1037 1037 1038 -|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1039 -|PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1040 -|(% colspan="9" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1041 - 1042 1042 **Error code** 1043 1043 1044 1044 (% class="table-bordered" %) ... ... @@ -1052,12 +1052,12 @@ 1052 1052 (% style="text-align:center" %) 1053 1053 [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]] 1054 1054 1055 -The waveform diagram is shown as below.1053 +The waveform diagram is shown as right. 1056 1056 1057 1057 (% style="text-align:center" %) 1058 -[[image:08_html_f38f59f98fdc96c0.png|| height="174" width="477"class="img-thumbnail"]]1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]] 1059 1059 1060 -= **PWM/PWM perimeter mode** = 1058 +== **PWM/PWM perimeter mode** == 1061 1061 1062 1062 **PWM** 1063 1063 ... ... @@ -1147,7 +1147,7 @@ 1147 1147 (% style="text-align:center" %) 1148 1148 [[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]] 1149 1149 1150 -= **G90G01 Absolute position line interpolation instruction** = 1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** == 1151 1151 1152 1152 **G90G01** 1153 1153 ... ... @@ -1187,7 +1187,7 @@ 1187 1187 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation. 1188 1188 1189 1189 (% style="text-align:center" %) 1190 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]] 1191 1191 1192 1192 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1193 1193 ... ... @@ -1212,8 +1212,11 @@ 1212 1212 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1213 1213 1214 1214 (% style="text-align:center" %) 1215 -[[image: image-20220921172417-2.png]]1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1216 1216 1215 +(% style="text-align:center" %) 1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1217 + 1217 1217 **{{id name="_Toc32765"/}}Error Codes** 1218 1218 1219 1219 (% class="table-bordered" %) ... ... @@ -1222,16 +1222,16 @@ 1222 1222 |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range 1223 1223 |4088H|The same pulse output axis (d1) is used and has been started. 1224 1224 1225 -**Example** 1226 +**{{id name="_Toc29603"/}}Example** 1226 1226 1227 1227 (% style="text-align:center" %) 1228 -[[image: image-20220921163523-1.jpeg||class="img-thumbnail"]]1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1229 1229 1230 1230 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1231 1231 1232 -= **G91G01 Relative position line interpolation instruction** = 1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** == 1233 1233 1234 -**G91G01** 1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01** 1235 1235 1236 1236 Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode. 1237 1237 ... ... @@ -1269,7 +1269,7 @@ 1269 1269 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position. 1270 1270 1271 1271 (% style="text-align:center" %) 1272 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]] 1273 1273 1274 1274 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647. 1275 1275 ... ... @@ -1292,10 +1292,13 @@ 1292 1292 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1293 1293 1294 1294 (% style="text-align:center" %) 1295 -[[image: image-20220921172437-3.png]]1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1296 1296 1297 -**Error Codes** 1298 +(% style="text-align:center" %) 1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1298 1298 1301 +**{{id name="_Toc8461"/}}Error Codes** 1302 + 1299 1299 (% class="table-bordered" %) 1300 1300 |**Error Codes**|**Contents** 1301 1301 |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1304,11 +1304,12 @@ 1304 1304 1305 1305 **{{id name="_Toc16441"/}}Example** 1306 1306 1307 -[[image:image-20220921163600-2.png]] 1311 +(% style="text-align:center" %) 1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1308 1308 1309 1309 {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1310 1310 1311 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** = 1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** == 1312 1312 1313 1313 **G90G02** 1314 1314 ... ... @@ -1346,7 +1346,7 @@ 1346 1346 {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point. 1347 1347 1348 1348 (% style="text-align:center" %) 1349 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]] 1350 1350 1351 1351 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1352 1352 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1369,10 +1369,13 @@ 1369 1369 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1370 1370 1371 1371 (% style="text-align:center" %) 1372 -[[image: image-20220921172524-4.png]]1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1373 1373 1374 -**Error Codes** 1379 +(% style="text-align:center" %) 1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1375 1375 1382 + **Error Codes** 1383 + 1376 1376 (% class="table-bordered" %) 1377 1377 |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents** 1378 1378 |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1388,11 +1388,11 @@ 1388 1388 **{{id name="OLE_LINK268"/}}Example** 1389 1389 1390 1390 (% style="text-align:center" %) 1391 -[[image: image-20220921163619-3.png||class="img-thumbnail"]]1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1392 1392 1393 1393 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1394 1394 1395 -= **G91G02 Relative position clockwise circular interpolation instruction** = 1403 +== **G91G02 Relative position clockwise circular interpolation instruction** == 1396 1396 1397 1397 **G91G02** 1398 1398 ... ... @@ -1434,7 +1434,7 @@ 1434 1434 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position. 1435 1435 1436 1436 (% style="text-align:center" %) 1437 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]] 1438 1438 1439 1439 * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647. 1440 1440 * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1457,8 +1457,11 @@ 1457 1457 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1458 1458 1459 1459 (% style="text-align:center" %) 1460 -[[image: image-20220921172550-5.png]]1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1461 1461 1470 +(% style="text-align:center" %) 1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1472 + 1462 1462 **Error Codes** 1463 1463 1464 1464 (% class="table-bordered" %) ... ... @@ -1476,11 +1476,11 @@ 1476 1476 **Example**{{id name="OLE_LINK22"/}} 1477 1477 1478 1478 (% style="text-align:center" %) 1479 -[[image: image-20220921163641-4.png||class="img-thumbnail"]]1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1480 1480 1481 1481 {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1482 1482 1483 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** = 1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** == 1484 1484 1485 1485 G90G03 1486 1486 ... ... @@ -1522,7 +1522,7 @@ 1522 1522 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point. 1523 1523 1524 1524 (% style="text-align:center" %) 1525 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]] 1526 1526 1527 1527 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1528 1528 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1545,8 +1545,11 @@ 1545 1545 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1546 1546 1547 1547 (% style="text-align:center" %) 1548 -[[image: image-20220921172606-6.png]]1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1549 1549 1561 +(% style="text-align:center" %) 1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1563 + 1550 1550 **Error Codes** 1551 1551 1552 1552 (% class="table-bordered" %) ... ... @@ -1564,11 +1564,11 @@ 1564 1564 **Example** 1565 1565 1566 1566 (% style="text-align:center" %) 1567 -[[image: image-20220921163737-5.png||class="img-thumbnail"]]1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1568 1568 1569 1569 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1570 1570 1571 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** = 1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** == 1572 1572 1573 1573 **G91G03** 1574 1574 ... ... @@ -1610,7 +1610,7 @@ 1610 1610 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position. 1611 1611 1612 1612 (% style="text-align:center" %) 1613 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]] 1614 1614 1615 1615 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1616 1616 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1633,8 +1633,11 @@ 1633 1633 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1634 1634 1635 1635 (% style="text-align:center" %) 1636 -[[image: image-20220921172617-7.png]]1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1637 1637 1652 +(% style="text-align:center" %) 1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1654 + 1638 1638 **Error Codes** 1639 1639 1640 1640 (% class="table-bordered" %) ... ... @@ -1652,11 +1652,11 @@ 1652 1652 **Example** 1653 1653 1654 1654 (% style="text-align:center" %) 1655 -[[image: image-20220921163754-6.png]]1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1656 1656 1657 1657 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1658 1658 1659 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** = 1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** == 1660 1660 1661 1661 **G90G02H** 1662 1662 ... ... @@ -1700,7 +1700,7 @@ 1700 1700 (% style="text-align:center" %) 1701 1701 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1702 1702 1703 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is image-20220921171331-1.png||height="31" width="113"]],,,,.(The range is -2147483648 to +2147483647.)1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1704 1704 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1705 1705 1706 1706 * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1720,7 +1720,7 @@ 1720 1720 1721 1721 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1722 1722 1723 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian image-20220921171348-2.png||height="47" width="90"]],,),,1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1724 1724 1725 1725 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1726 1726 ... ... @@ -1727,19 +1727,21 @@ 1727 1727 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1728 1728 1729 1729 (% style="text-align:center" %) 1730 -[[image: image-20220921172637-8.png]]1747 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1731 1731 1732 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1749 +(% style="text-align:center" %) 1750 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1733 1733 1734 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]]is determined by formula (1),and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1735 1735 1736 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,maynotbeequalotheset (Xe,Ye),but itmustpassthroughthesetpoint(Xe,Ye), inthe wholecircle.1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1737 1737 1738 -(% style="text-align:center" %) 1739 -[[image:image-20220921171411-3.png||height="62" width="312"]] 1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1740 1740 1741 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1742 1742 1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1761 + 1743 1743 (% class="table-bordered" %) 1744 1744 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1745 1745 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1759,16 +1759,16 @@ 1759 1759 |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1760 1760 |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1761 1761 |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0. 1762 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,,,[[image:image-20220921171529-5.png||height="32" width="69"]],,,,)1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1763 1763 1764 1764 **{{id name="_Toc12418"/}}Example** 1765 1765 1766 1766 (% style="text-align:center" %) 1767 -[[image: image-20220921163843-7.png||class="img-thumbnail"]]1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1768 1768 1769 1769 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1770 1770 1771 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** = 1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** == 1772 1772 1773 1773 **G91G02H** 1774 1774 ... ... @@ -1812,7 +1812,7 @@ 1812 1812 (% style="text-align:center" %) 1813 1813 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1814 1814 1815 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]].(The range is -2147483648 to +2147483647.)1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1816 1816 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1817 1817 1818 1818 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1832,28 +1832,28 @@ 1832 1832 1833 1833 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1834 1834 1835 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1836 1836 1837 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),, 1838 - 1839 1839 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1840 1840 1841 1841 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1842 1842 1843 1843 (% style="text-align:center" %) 1844 -[[image: image-20220921172651-9.png]]1861 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1845 1845 1846 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1863 +(% style="text-align:center" %) 1864 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1847 1847 1848 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates(Xe‘,Ye’) of X axisand Y axis accordingo the number of turns of interpolation.1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1849 1849 1850 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe‘,Ye’),,,maynotbeequalotheset (Xe,Ye),, ,,, but itmustpassthroughthesetpoin(Xe,Ye),,,,inhewhole circle.1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1851 1851 1852 -(% style="text-align:center" %) 1853 -[[image:image-20220921171703-8.png||height="58" width="291"]] 1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1854 1854 1855 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,.1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1856 1856 1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 1875 + 1857 1857 (% class="table-bordered" %) 1858 1858 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1859 1859 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1873,16 +1873,16 @@ 1873 1873 |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1874 1874 |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1875 1875 |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0. 1876 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image: image-20220921171735-9.png||height="28" width="59"]])1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1877 1877 1878 1878 **{{id name="_Toc28830"/}}Example** 1879 1879 1880 1880 (% style="text-align:center" %) 1881 -[[image: image-20220921163904-8.png]]1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1882 1882 1883 1883 Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1884 1884 1885 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** = 1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** == 1886 1886 1887 1887 **G90G03H** 1888 1888 ... ... @@ -1926,8 +1926,7 @@ 1926 1926 (% style="text-align:center" %) 1927 1927 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1928 1928 1929 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. 1930 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.) 1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1931 1931 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1932 1932 1933 1933 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1947,28 +1947,28 @@ 1947 1947 1948 1948 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1949 1949 1950 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1951 1951 1952 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]] 1953 - 1954 1954 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1955 1955 1956 1956 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1957 1957 1958 1958 (% style="text-align:center" %) 1959 -[[image: image-20220921172744-10.png]]1975 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1960 1960 1961 -(9) Exact match pitch of screws (lead) K and Ze 1977 +(% style="text-align:center" %) 1978 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1962 1962 1963 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1964 1964 1965 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset (Xe,Ye),,,,, but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1966 1966 1967 -(% style="text-align:center" %) 1968 -[[image:image-20220921171930-12.png||height="74" width="370"]] 1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1969 1969 1970 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,).1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1971 1971 1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1989 + 1972 1972 (% class="table-bordered" %) 1973 1973 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1974 1974 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1988,16 +1988,16 @@ 1988 1988 |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1989 1989 |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1990 1990 |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0. 1991 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image: image-20220921171956-13.png||height="29" width="61"]])2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1992 1992 1993 1993 **{{id name="_Toc18584"/}}Example** 1994 1994 1995 1995 (% style="text-align:center" %) 1996 -[[image: image-20220921163935-9.png||class="img-thumbnail"]]2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1997 1997 1998 1998 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1999 1999 2000 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** = 2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** == 2001 2001 2002 2002 **G91G03H** 2003 2003 ... ... @@ -2061,28 +2061,28 @@ 2061 2061 2062 2062 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 2063 2063 2064 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 2065 2065 2066 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]] 2067 - 2068 2068 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 2069 2069 2070 2070 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 2071 2071 2072 2072 (% style="text-align:center" %) 2073 -[[image: image-20220921172803-11.png]]2089 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 2074 2074 2075 -(9) Exact match pitch of screws (lead) K and Ze 2091 +(% style="text-align:center" %) 2092 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 2076 2076 2077 - Thestartpoint coordinate of helicalinterpolation is(0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumberof turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 2078 2078 2079 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset(Xe,Ye), but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 2080 2080 2081 -(% style="text-align:center" %) 2082 -[[image:image-20220921172159-16.png||height="72" width="362"]] 2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 2083 2083 2084 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestart pointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 2085 2085 2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 2103 + 2086 2086 (% class="table-bordered" %) 2087 2087 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 2088 2088 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -2102,12 +2102,12 @@ 2102 2102 |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 2103 2103 |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 2104 2104 |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0. 2105 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead image-20220921172255-17.png||height="29" width="62"]],,,,)2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 2106 2106 2107 2107 **{{id name="_Toc11997"/}}Example** 2108 2108 2109 2109 (% style="text-align:center" %) 2110 -[[image: image-20220921163953-10.png||class="img-thumbnail"]]2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2111 2111 2112 2112 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}} 2113 2113 ... ... @@ -2257,7 +2257,7 @@ 2257 2257 When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle. 2258 2258 2259 2259 (% style="text-align:center" %) 2260 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]] 2261 2261 2262 2262 **(9) Not scanned** 2263 2263 ... ... @@ -2508,7 +2508,7 @@ 2508 2508 [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement. 2509 2509 2510 2510 (% style="text-align:center" %) 2511 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]] 2512 2512 2513 2513 **(8) Direction delay** 2514 2514 ... ... @@ -2521,7 +2521,7 @@ 2521 2521 |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325 2522 2522 2523 2523 (% style="text-align:center" %) 2524 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]] 2525 2525 2526 2526 **(9) External start signal** 2527 2527 ... ... @@ -2553,12 +2553,12 @@ 2553 2553 ①Reachable frequency 2554 2554 2555 2555 (% style="text-align:center" %) 2556 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]] 2557 2557 2558 2558 ②Unreachable frequency 2559 2559 2560 2560 (% style="text-align:center" %) 2561 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]] 2562 2562 2563 2563 2) Modify the number of pulses: 2564 2564 ... ... @@ -2565,12 +2565,12 @@ 2565 2565 ①Modify to the number of reachable pulses 2566 2566 2567 2567 (% style="text-align:center" %) 2568 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]] 2569 2569 2570 2570 ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending) 2571 2571 2572 2572 (% style="text-align:center" %) 2573 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]] 2574 2574 2575 2575 **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range** 2576 2576 ... ... @@ -2627,17 +2627,17 @@ 2627 2627 Time-minute ladder acceleration and deceleration 2628 2628 2629 2629 (% style="text-align:center" %) 2630 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]] 2631 2631 2632 2632 Time-minute S-type acceleration and deceleration 2633 2633 2634 2634 (% style="text-align:center" %) 2635 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]] 2636 2636 2637 2637 The following figure shows the changes of each parameter 2638 2638 2639 2639 (% style="text-align:center" %) 2640 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]] 2641 2641 2642 2642 **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration. 2643 2643
- image-20220921163523-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.2 KB - Content
- image-20220921163600-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.5 KB - Content
- image-20220921163619-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163641-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163737-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163754-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163843-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163904-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163935-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921163953-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921171331-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171348-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171411-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171433-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171529-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171628-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171639-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171703-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171735-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171807-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171852-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171930-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171956-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172054-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172134-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172159-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921172255-17.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172410-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172417-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172437-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172524-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172550-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172606-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172617-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172637-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172651-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172744-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172803-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content