Last modified by Mora Zhou on 2024/08/08 14:35

From version 19.1
edited by Stone Wu
on 2022/09/26 09:56
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 12:57
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -PLC Editor2.WebHome
1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -1,5 +1,7 @@
1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** =
1 += **High-speed pulse output instruction** =
2 2  
3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** ==
4 +
3 3  **ZRN/DZRN**
4 4  
5 5  This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions.
... ... @@ -9,33 +9,33 @@
9 9  **{{id name="OLE_LINK392"/}}Content, range and data type**
10 10  
11 11  (% class="table-bordered" %)
12 -|**Parameter**|(% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**
13 -|(s1)|(% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((
14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
15 +|(s1)|The speed when the origin return starts|(((
14 14  1 to 32767
15 15  
16 16  1 to 200000
17 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
18 -|(s2)|(% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((
19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
20 +|(s2)|Crawl speed|(((
19 19  1 to 32767
20 20  
21 21  1 to 200000
22 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
23 -|(s3)|(% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 -|(d)|(% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
25 25  
26 26  **Device used**
27 27  
28 -(% class="table-bordered" style="width:1049px" %)
29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px" %)**Parameter**|(% colspan="14" style="width:617px" %)**Devices**|(% style="width:138px" %)**Offset modification**|(((
30 +(% class="table-bordered" %)
31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
30 30  **Pulse**
31 31  
32 32  **extension**
33 33  )))
34 -|(% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**
35 -|(% rowspan="4" %)ZRN|(% style="width:133px" %)Parameter 1|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
36 -|(% style="width:133px" %)Parameter 2|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
37 -|(% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
38 -|(% style="width:133px" %)Parameter 4|(% style="width:3px" %) |●| | | | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
39 +|Parameter 3|●|●|●|●| | | | | | | | | | | |
40 +|Parameter 4| |●| | | | | | | | | | | | | |
39 39  
40 40  **Features**
41 41  
... ... @@ -44,7 +44,7 @@
44 44  .
45 45  
46 46  (% style="text-align:center" %)
47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]
49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]]
48 48  
49 49  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000)
50 50  
... ... @@ -59,7 +59,7 @@
59 59  • The pulse frequency could be modified during operation.
60 60  
61 61  (% style="text-align:center" %)
62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]
64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]]
63 63  
64 64  **{{id name="OLE_LINK84"/}}✎Note:**
65 65  
... ... @@ -70,7 +70,7 @@
70 70  Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed.
71 71  
72 72  (% style="text-align:center" %)
73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]
75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]]
74 74  
75 75  Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
76 76  
... ... @@ -85,11 +85,11 @@
85 85  **Example**
86 86  
87 87  (% style="text-align:center" %)
88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]
90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]]
89 89  
90 90  {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
91 91  
92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** =
94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** ==
93 93  
94 94  **{{id name="OLE_LINK390"/}}DSZR/DDSZR**
95 95  
... ... @@ -100,35 +100,35 @@
100 100  **Content, range and data type**
101 101  
102 102  (% class="table-bordered" %)
103 -|**Parameter**|(% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**
104 -|(s1)|(% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((
105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
106 +|(s1)|The speed when the origin return starts|(((
105 105  1 to 32767
106 106  
107 107  1 to 200000
108 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
109 -|(s2)|(% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((
110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
111 +|(s2)|Crawling speed|(((
110 110  1 to 32767
111 111  
112 112  1 to 200000
113 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
114 -|(s3)|(% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
115 -|(d1)|(% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
116 -|(d2)|(% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(% style="width:124px" %) |(% style="width:226px" %) |(% style="width:180px" %)
115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | |
117 117  
118 118  **Device used**
119 119  
120 -(% class="table-bordered" style="width:1022px" %)
121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px" %)**Parameter**|(% colspan="15" style="width:630.359px" %)**Devices**|(% style="width:128px" %)**Offset modification**|(((
122 +(% class="table-bordered" %)
123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
122 122  **Pulse**
123 123  
124 124  **extension**
125 125  )))
126 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**
127 -|(% rowspan="5" %)DSZR|(% style="width:133.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
128 -|(% style="width:133.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
129 -|(% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
130 -|(% style="width:133.641px" %)Parameter 4|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
131 -|(% style="width:133.641px" %)Parameter 5|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | |
132 +|Parameter 4| |●| | | | | | | | | | | | | | |
133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | |
132 132  
133 133  **Features**
134 134  
... ... @@ -135,7 +135,7 @@
135 135  The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions.
136 136  
137 137  (% style="text-align:center" %)
138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]
140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]]
139 139  
140 140  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000)
141 141  
... ... @@ -152,7 +152,7 @@
152 152  • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}}
153 153  
154 154  (% style="text-align:center" %)
155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]
157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]]
156 156  
157 157  **✎Note:**
158 158  
... ... @@ -165,7 +165,7 @@
165 165  {{id name="OLE_LINK399"/}}
166 166  
167 167  (% style="text-align:center" %)
168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]
170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]]
169 169  
170 170   Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
171 171  
... ... @@ -184,7 +184,7 @@
184 184  
185 185  Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
186 186  
187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** =
189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** ==
188 188  
189 189  **DVIT/DDVIT**
190 190  
... ... @@ -221,17 +221,17 @@
221 221  **Device used**
222 222  
223 223  (% class="table-bordered" %)
224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px" %)**Parameter**|(% colspan="15" style="width:628.359px" %)**Devices**|(% style="width:129px" %)**Offset modification**|(((
226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
225 225  **Pulse**
226 226  
227 227  **extension**
228 228  )))
229 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**
230 -|(% rowspan="5" %)DVIT|(% style="width:134.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
231 -|(% style="width:134.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
232 -|(% style="width:134.641px" %)Parameter 3|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
233 -|(% style="width:134.641px" %)Parameter 4|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
234 -|(% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
234 +|Parameter 3| |●| | | | | | | | | | | | | | |
235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | |
236 +|Parameter 5|●| |●|●| | | | | | | | | | | | |
235 235  
236 236  **Features**
237 237  
... ... @@ -248,7 +248,7 @@
248 248  • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified.
249 249  
250 250  (% style="text-align:center" %)
251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]
253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]]
252 252  
253 253  **✎Note:**
254 254  
... ... @@ -278,9 +278,9 @@
278 278  Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal.
279 279  
280 280  (% style="text-align:center" %)
281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]
283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]]
282 282  
283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** =
285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** ==
284 284  
285 285  **DRVI/DDRVI**
286 286  
... ... @@ -331,17 +331,17 @@
331 331  
332 332  **Device used**
333 333  
334 -(% class="table-bordered" style="width:1046px" %)
335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px" %)**Parameter**|(% colspan="14" style="width:603.125px" %)**Devices**|(% style="width:125px" %)**Offset modification**|(((
336 +(% class="table-bordered" %)
337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
336 336  **Pulse**
337 337  
338 338  **extension**
339 339  )))
340 -|(% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**
341 -|(% rowspan="4" %)DRVI|(% style="width:132.875px" %)Parameter 1|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
342 -|(% style="width:132.875px" %)Parameter 2|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
343 -|(% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
344 -|(% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
345 +|Parameter 3|●| | | | | | | | | | | | | | |
346 +|Parameter 4|●|●|●|●| | | | | | | | | | | |
345 345  
346 346  **Features**
347 347  
... ... @@ -350,7 +350,7 @@
350 350  With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning.
351 351  
352 352  (% style="text-align:center" %)
353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]
355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]]
354 354  
355 355  • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647)
356 356  
... ... @@ -363,7 +363,7 @@
363 363  • The pulse frequency and pulse position could be modified during the operation of this instruction.
364 364  
365 365  (% style="text-align:center" %)
366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]
368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]]
367 367  
368 368  **✎Note:**
369 369  
... ... @@ -384,7 +384,7 @@
384 384  
385 385  {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K.
386 386  
387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** =
389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** ==
388 388  
389 389  **DRVA/DDRVA**
390 390  
... ... @@ -450,7 +450,7 @@
450 450  {{id name="OLE_LINK365"/}}
451 451  
452 452  (% style="text-align:center" %)
453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]
455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]]
454 454  
455 455  • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647)
456 456  
... ... @@ -463,7 +463,7 @@
463 463  • The pulse frequency and pulse position could be modified during the operation of this instruction.
464 464  
465 465  (% style="text-align:center" %)
466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]
468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]]
467 467  
468 468  **✎Note:**
469 469  
... ... @@ -484,7 +484,7 @@
484 484  
485 485  Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000
486 486  
487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** =
489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** ==
488 488  
489 489  **PLSR/DPLSR**
490 490  
... ... @@ -564,7 +564,7 @@
564 564  • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified.
565 565  
566 566  (% style="text-align:center" %)
567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]
569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]]
568 568  
569 569  **✎Note:**
570 570  
... ... @@ -585,7 +585,7 @@
585 585  
586 586  Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K.
587 587  
588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** =
590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** ==
589 589  
590 590  **PLSR2**
591 591  
... ... @@ -738,7 +738,7 @@
738 738  The waveform diagram is as follows:
739 739  
740 740  (% style="text-align:center" %)
741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]
743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]]
742 742  
743 743  2) Waiting time
744 744  
... ... @@ -762,7 +762,7 @@
762 762  The waveform diagram is as follows:
763 763  
764 764  (% style="text-align:center" %)
765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]
767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]]
766 766  
767 767  3) Waiting signal
768 768  
... ... @@ -786,7 +786,7 @@
786 786  If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation)
787 787  
788 788  (% style="text-align:center" %)
789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]
791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]]
790 790  
791 791  4)** **Trigger signal
792 792  
... ... @@ -812,7 +812,7 @@
812 812  The pulse waveform diagram is as follows:
813 813  
814 814  (% style="text-align:center" %)
815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]
817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]]
816 816  
817 817  If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency.
818 818  
... ... @@ -826,7 +826,7 @@
826 826  |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range
827 827  |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started.
828 828  
829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** =
831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** ==
830 830  
831 831  **PLSV/DPLSV**
832 832  
... ... @@ -868,7 +868,7 @@
868 868  • The pulse frequency could be modified while the instruction is running.
869 869  
870 870  (% style="text-align:center" %)
871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]
873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]]
872 872  
873 873  **✎Note:**
874 874  
... ... @@ -896,9 +896,9 @@
896 896  The sending pulse is as follows:
897 897  
898 898  (% style="text-align:center" %)
899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]
901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]]
900 900  
901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** =
903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** ==
902 902  
903 903  **PLSY/DPLSY**
904 904  
... ... @@ -940,7 +940,7 @@
940 940  • The instruction pulse output has no acceleration/deceleration process.
941 941  
942 942  (% style="text-align:center" %)
943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]
945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]]
944 944  
945 945  **✎Note:**
946 946  
... ... @@ -964,7 +964,7 @@
964 964  [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]]
965 965  
966 966  (% style="text-align:center" %)
967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
968 968  
969 969  **(2) Pulse output: positioning address (operand (n))> 0**
970 970  
... ... @@ -973,9 +973,9 @@
973 973  [[image:08_html_87bd5854f06006b0.png]]
974 974  
975 975  (% style="text-align:center" %)
976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
977 977  
978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** =
980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** ==
979 979  
980 980  **PWM**
981 981  
... ... @@ -986,10 +986,10 @@
986 986  **Content, range and data type**
987 987  
988 988  (% class="table-bordered" %)
989 -|**Parameter**|(% style="width:636px" %)**Content**|(% style="width:120px" %)**Range**|(% style="width:130px" %)**Data type**|(% style="width:103px" %)**Data type (label)**
990 -|(s1)|(% style="width:636px" %)The ON time or the device number storing the ON time|(% style="width:120px" %)0 to 32,767|(% style="width:130px" %)Signed BIN16|(% style="width:103px" %)ANY16_S
991 -|(s2)|(% style="width:636px" %)Cycle or the device number storing the cycle|(% style="width:120px" %)1 to 32,767|(% style="width:130px" %)Signed BIN16|(% style="width:103px" %)ANY16_S
992 -|(d)|(% style="width:636px" %)The channel number and device number that pulse outputs|(% style="width:120px" %)-|(% style="width:130px" %)Bit|(% style="width:103px" %)ANY_BOOL
991 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)**
992 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S
993 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S
994 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL
993 993  
994 994  **Device used**
995 995  
... ... @@ -1020,7 +1020,7 @@
1020 1020  • The pulse width and pulse period can be modified during pulse sending.
1021 1021  
1022 1022  (% style="text-align:center" %)
1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]
1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]]
1024 1024  )))
1025 1025  
1026 1026  **✎Note:**
... ... @@ -1035,10 +1035,6 @@
1035 1035  |**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1036 1036  |Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1037 1037  
1038 -|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1039 -|PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322
1040 -|(% colspan="9" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us".
1041 -
1042 1042  **Error code**
1043 1043  
1044 1044  (% class="table-bordered" %)
... ... @@ -1052,12 +1052,12 @@
1052 1052  (% style="text-align:center" %)
1053 1053  [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]]
1054 1054  
1055 -The waveform diagram is shown as below.
1053 +The waveform diagram is shown as right.
1056 1056  
1057 1057  (% style="text-align:center" %)
1058 -[[image:08_html_f38f59f98fdc96c0.png||height="174" width="477" class="img-thumbnail"]]
1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]]
1059 1059  
1060 -= **PWM/PWM perimeter mode** =
1058 +== **PWM/PWM perimeter mode** ==
1061 1061  
1062 1062  **PWM**
1063 1063  
... ... @@ -1147,7 +1147,7 @@
1147 1147  (% style="text-align:center" %)
1148 1148  [[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]]
1149 1149  
1150 -= **G90G01 Absolute position line interpolation instruction** =
1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** ==
1151 1151  
1152 1152  **G90G01**
1153 1153  
... ... @@ -1187,7 +1187,7 @@
1187 1187  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation.
1188 1188  
1189 1189  (% style="text-align:center" %)
1190 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]
1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]]
1191 1191  
1192 1192  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1193 1193  
... ... @@ -1212,8 +1212,11 @@
1212 1212  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1213 1213  
1214 1214  (% style="text-align:center" %)
1215 -[[image:image-20220921172417-2.png]]
1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1216 1216  
1215 +(% style="text-align:center" %)
1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1217 +
1217 1217  **{{id name="_Toc32765"/}}Error Codes**
1218 1218  
1219 1219  (% class="table-bordered" %)
... ... @@ -1222,16 +1222,16 @@
1222 1222  |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
1223 1223  |4088H|The same pulse output axis (d1) is used and has been started.
1224 1224  
1225 -**Example**
1226 +**{{id name="_Toc29603"/}}Example**
1226 1226  
1227 1227  (% style="text-align:center" %)
1228 -[[image:image-20220921163523-1.jpeg||class="img-thumbnail"]]
1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1229 1229  
1230 1230  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1231 1231  
1232 -= **G91G01 Relative position line interpolation instruction** =
1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** ==
1233 1233  
1234 -**G91G01**
1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01**
1235 1235  
1236 1236  Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode.
1237 1237  
... ... @@ -1269,7 +1269,7 @@
1269 1269  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position.
1270 1270  
1271 1271  (% style="text-align:center" %)
1272 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]
1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]]
1273 1273  
1274 1274  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647.
1275 1275  
... ... @@ -1292,10 +1292,13 @@
1292 1292  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1293 1293  
1294 1294  (% style="text-align:center" %)
1295 -[[image:image-20220921172437-3.png]]
1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1296 1296  
1297 -**Error Codes**
1298 +(% style="text-align:center" %)
1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1298 1298  
1301 +**{{id name="_Toc8461"/}}Error Codes**
1302 +
1299 1299  (% class="table-bordered" %)
1300 1300  |**Error Codes**|**Contents**
1301 1301  |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1304,11 +1304,12 @@
1304 1304  
1305 1305  **{{id name="_Toc16441"/}}Example**
1306 1306  
1307 -[[image:image-20220921163600-2.png]]
1311 +(% style="text-align:center" %)
1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1308 1308  
1309 1309  {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1310 1310  
1311 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** =
1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** ==
1312 1312  
1313 1313  **G90G02**
1314 1314  
... ... @@ -1346,7 +1346,7 @@
1346 1346  {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point.
1347 1347  
1348 1348  (% style="text-align:center" %)
1349 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]
1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]]
1350 1350  
1351 1351  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1352 1352  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1369,10 +1369,13 @@
1369 1369  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1370 1370  
1371 1371  (% style="text-align:center" %)
1372 -[[image:image-20220921172524-4.png]]
1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1373 1373  
1374 -**Error Codes**
1379 +(% style="text-align:center" %)
1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1375 1375  
1382 + **Error Codes**
1383 +
1376 1376  (% class="table-bordered" %)
1377 1377  |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents**
1378 1378  |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1388,11 +1388,11 @@
1388 1388  **{{id name="OLE_LINK268"/}}Example**
1389 1389  
1390 1390  (% style="text-align:center" %)
1391 -[[image:image-20220921163619-3.png||class="img-thumbnail"]]
1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1392 1392  
1393 1393  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1394 1394  
1395 -= **G91G02 Relative position clockwise circular interpolation instruction** =
1403 +== **G91G02 Relative position clockwise circular interpolation instruction** ==
1396 1396  
1397 1397  **G91G02**
1398 1398  
... ... @@ -1434,7 +1434,7 @@
1434 1434  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position.
1435 1435  
1436 1436  (% style="text-align:center" %)
1437 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]
1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]]
1438 1438  
1439 1439  * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647.
1440 1440  * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1457,8 +1457,11 @@
1457 1457  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1458 1458  
1459 1459  (% style="text-align:center" %)
1460 -[[image:image-20220921172550-5.png]]
1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1461 1461  
1470 +(% style="text-align:center" %)
1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1472 +
1462 1462  **Error Codes**
1463 1463  
1464 1464  (% class="table-bordered" %)
... ... @@ -1476,11 +1476,11 @@
1476 1476  **Example**{{id name="OLE_LINK22"/}}
1477 1477  
1478 1478  (% style="text-align:center" %)
1479 -[[image:image-20220921163641-4.png||class="img-thumbnail"]]
1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1480 1480  
1481 1481  {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1482 1482  
1483 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** =
1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** ==
1484 1484  
1485 1485  G90G03
1486 1486  
... ... @@ -1522,7 +1522,7 @@
1522 1522  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point.
1523 1523  
1524 1524  (% style="text-align:center" %)
1525 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]
1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]]
1526 1526  
1527 1527  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1528 1528  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1545,8 +1545,11 @@
1545 1545  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1546 1546  
1547 1547  (% style="text-align:center" %)
1548 -[[image:image-20220921172606-6.png]]
1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1549 1549  
1561 +(% style="text-align:center" %)
1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1563 +
1550 1550  **Error Codes**
1551 1551  
1552 1552  (% class="table-bordered" %)
... ... @@ -1564,11 +1564,11 @@
1564 1564  **Example**
1565 1565  
1566 1566  (% style="text-align:center" %)
1567 -[[image:image-20220921163737-5.png||class="img-thumbnail"]]
1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1568 1568  
1569 1569  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1570 1570  
1571 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** =
1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** ==
1572 1572  
1573 1573  **G91G03**
1574 1574  
... ... @@ -1610,7 +1610,7 @@
1610 1610  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position.
1611 1611  
1612 1612  (% style="text-align:center" %)
1613 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]
1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]]
1614 1614  
1615 1615  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1616 1616  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1633,8 +1633,11 @@
1633 1633  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1634 1634  
1635 1635  (% style="text-align:center" %)
1636 -[[image:image-20220921172617-7.png]]
1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1637 1637  
1652 +(% style="text-align:center" %)
1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1654 +
1638 1638  **Error Codes**
1639 1639  
1640 1640  (% class="table-bordered" %)
... ... @@ -1652,11 +1652,11 @@
1652 1652  **Example**
1653 1653  
1654 1654  (% style="text-align:center" %)
1655 -[[image:image-20220921163754-6.png]]
1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1656 1656  
1657 1657  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1658 1658  
1659 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** =
1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** ==
1660 1660  
1661 1661  **G90G02H**
1662 1662  
... ... @@ -1700,7 +1700,7 @@
1700 1700  (% style="text-align:center" %)
1701 1701  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1702 1702  
1703 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is [[image:image-20220921171331-1.png||height="31" width="113"]],, ,,.(The range is -2147483648 to +2147483647.)
1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1704 1704  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1705 1705  
1706 1706  * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1720,7 +1720,7 @@
1720 1720  
1721 1721  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1722 1722  
1723 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian [[image:image-20220921171348-2.png||height="47" width="90"]],,),,
1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1724 1724  
1725 1725  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1726 1726  
... ... @@ -1727,19 +1727,21 @@
1727 1727  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1728 1728  
1729 1729  (% style="text-align:center" %)
1730 -[[image:image-20220921172637-8.png]]
1747 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1731 1731  
1732 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1749 +(% style="text-align:center" %)
1750 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1733 1733  
1734 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.
1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1735 1735  
1736 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes  (Xe',Ye') ,, ,,may not be equal to the set  (Xe,Ye), but it must pass through the set point (Xe,Ye), in the whole circle.
1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1737 1737  
1738 -(% style="text-align:center" %)
1739 -[[image:image-20220921171411-3.png||height="62" width="312"]]
1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1740 1740  
1741 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0), the end point coordinate (0,0,Ze).
1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1742 1742  
1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1761 +
1743 1743  (% class="table-bordered" %)
1744 1744  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1745 1745  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1759,16 +1759,16 @@
1759 1759  |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1760 1760  |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1761 1761  |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0.
1762 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead,, ,,[[image:image-20220921171529-5.png||height="32" width="69"]],, ,,)
1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1763 1763  
1764 1764  **{{id name="_Toc12418"/}}Example**
1765 1765  
1766 1766  (% style="text-align:center" %)
1767 -[[image:image-20220921163843-7.png||class="img-thumbnail"]]
1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1768 1768  
1769 1769  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1770 1770  
1771 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** =
1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** ==
1772 1772  
1773 1773  **G91G02H**
1774 1774  
... ... @@ -1812,7 +1812,7 @@
1812 1812  (% style="text-align:center" %)
1813 1813  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1814 1814  
1815 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]]. (The range is -2147483648 to +2147483647.)
1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1816 1816  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1817 1817  
1818 1818  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1832,28 +1832,28 @@
1832 1832  
1833 1833  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1834 1834  
1835 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1836 1836  
1837 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),,
1838 -
1839 1839  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1840 1840  
1841 1841  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1842 1842  
1843 1843  (% style="text-align:center" %)
1844 -[[image:image-20220921172651-9.png]]
1861 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1845 1845  
1846 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1863 +(% style="text-align:center" %)
1864 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1847 1847  
1848 -The starting point coordinate of helical interpolation is (0,0,0), set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates (Xe‘,Ye’) of X axis and Y axis according to the number of turns of interpolation.
1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1849 1849  
1850 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe‘,Ye’) ,, ,,may not be equal to the set (Xe,Ye) ,, ,,, but it must pass through the set poin (Xe,Ye) ,, ,,in the whole circle.
1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1851 1851  
1852 -(% style="text-align:center" %)
1853 -[[image:image-20220921171703-8.png||height="58" width="291"]]
1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1854 1854  
1855 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,.
1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1856 1856  
1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
1875 +
1857 1857  (% class="table-bordered" %)
1858 1858  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1859 1859  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1873,16 +1873,16 @@
1873 1873  |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1874 1874  |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1875 1875  |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0.
1876 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image:image-20220921171735-9.png||height="28" width="59"]])
1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1877 1877  
1878 1878  **{{id name="_Toc28830"/}}Example**
1879 1879  
1880 1880  (% style="text-align:center" %)
1881 -[[image:image-20220921163904-8.png]]
1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1882 1882  
1883 1883  Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1884 1884  
1885 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** =
1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** ==
1886 1886  
1887 1887  **G90G03H**
1888 1888  
... ... @@ -1926,8 +1926,7 @@
1926 1926  (% style="text-align:center" %)
1927 1927  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1928 1928  
1929 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis.
1930 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.)
1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1931 1931  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1932 1932  
1933 1933  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1947,28 +1947,28 @@
1947 1947  
1948 1948  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1949 1949  
1950 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1951 1951  
1952 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]]
1953 -
1954 1954  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1955 1955  
1956 1956  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1957 1957  
1958 1958  (% style="text-align:center" %)
1959 -[[image:image-20220921172744-10.png]]
1975 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1960 1960  
1961 -(9) Exact match pitch of screws (lead) K and Ze
1977 +(% style="text-align:center" %)
1978 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1962 1962  
1963 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1964 1964  
1965 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye),, ,,, but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1966 1966  
1967 -(% style="text-align:center" %)
1968 -[[image:image-20220921171930-12.png||height="74" width="370"]]
1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1969 1969  
1970 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,).
1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1971 1971  
1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1989 +
1972 1972  (% class="table-bordered" %)
1973 1973  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1974 1974  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1988,16 +1988,16 @@
1988 1988  |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1989 1989  |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1990 1990  |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0.
1991 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image:image-20220921171956-13.png||height="29" width="61"]])
2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1992 1992  
1993 1993  **{{id name="_Toc18584"/}}Example**
1994 1994  
1995 1995  (% style="text-align:center" %)
1996 -[[image:image-20220921163935-9.png||class="img-thumbnail"]]
2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1997 1997  
1998 1998  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1999 1999  
2000 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** =
2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** ==
2001 2001  
2002 2002  **G91G03H**
2003 2003  
... ... @@ -2061,28 +2061,28 @@
2061 2061  
2062 2062  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
2063 2063  
2064 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
2065 2065  
2066 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]]
2067 -
2068 2068  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
2069 2069  
2070 2070  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
2071 2071  
2072 2072  (% style="text-align:center" %)
2073 -[[image:image-20220921172803-11.png]]
2089 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
2074 2074  
2075 -(9) Exact match pitch of screws (lead) K and Ze
2091 +(% style="text-align:center" %)
2092 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
2076 2076  
2077 -The start point coordinate of helical interpolation is(0,0,0), set the end point coordinate to (Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
2078 2078  
2079 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye), but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2080 2080  
2081 -(% style="text-align:center" %)
2082 -[[image:image-20220921172159-16.png||height="72" width="362"]]
2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
2083 2083  
2084 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate (0,0,0), the end point coordinate (0,0,Ze).
2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
2085 2085  
2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
2103 +
2086 2086  (% class="table-bordered" %)
2087 2087  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
2088 2088  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -2102,12 +2102,12 @@
2102 2102  |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
2103 2103  |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
2104 2104  |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0.
2105 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead [[image:image-20220921172255-17.png||height="29" width="62"]],, ,,)
2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
2106 2106  
2107 2107  **{{id name="_Toc11997"/}}Example**
2108 2108  
2109 2109  (% style="text-align:center" %)
2110 -[[image:image-20220921163953-10.png||class="img-thumbnail"]]
2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
2111 2111  
2112 2112  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}}
2113 2113  
... ... @@ -2257,7 +2257,7 @@
2257 2257  When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle.
2258 2258  
2259 2259  (% style="text-align:center" %)
2260 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]
2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]]
2261 2261  
2262 2262  **(9) Not scanned**
2263 2263  
... ... @@ -2508,7 +2508,7 @@
2508 2508  [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement.
2509 2509  
2510 2510  (% style="text-align:center" %)
2511 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]
2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]]
2512 2512  
2513 2513  **(8) Direction delay**
2514 2514  
... ... @@ -2521,7 +2521,7 @@
2521 2521  |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325
2522 2522  
2523 2523  (% style="text-align:center" %)
2524 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]
2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]]
2525 2525  
2526 2526  **(9) External start signal**
2527 2527  
... ... @@ -2553,12 +2553,12 @@
2553 2553  ①Reachable frequency
2554 2554  
2555 2555  (% style="text-align:center" %)
2556 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]
2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]]
2557 2557  
2558 2558  ②Unreachable frequency
2559 2559  
2560 2560  (% style="text-align:center" %)
2561 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]
2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]]
2562 2562  
2563 2563  2) Modify the number of pulses:
2564 2564  
... ... @@ -2565,12 +2565,12 @@
2565 2565  ①Modify to the number of reachable pulses
2566 2566  
2567 2567  (% style="text-align:center" %)
2568 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]
2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]]
2569 2569  
2570 2570  ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending)
2571 2571  
2572 2572  (% style="text-align:center" %)
2573 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]
2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]]
2574 2574  
2575 2575  **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range**
2576 2576  
... ... @@ -2627,17 +2627,17 @@
2627 2627  Time-minute ladder acceleration and deceleration
2628 2628  
2629 2629  (% style="text-align:center" %)
2630 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]
2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]]
2631 2631  
2632 2632  Time-minute S-type acceleration and deceleration
2633 2633  
2634 2634  (% style="text-align:center" %)
2635 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]
2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]]
2636 2636  
2637 2637  The following figure shows the changes of each parameter
2638 2638  
2639 2639  (% style="text-align:center" %)
2640 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]
2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]]
2641 2641  
2642 2642  **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration.
2643 2643  
image-20220921163523-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -61.2 KB
Content
image-20220921163600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -12.5 KB
Content
image-20220921163619-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163641-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163737-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163754-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163843-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163904-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163935-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921163953-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921171331-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171348-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171411-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171433-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171529-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171628-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171639-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171703-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171735-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171807-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171852-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171930-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171956-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172054-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172134-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172159-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921172255-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172410-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172417-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172437-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172524-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172550-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172606-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172617-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172637-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172651-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172744-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172803-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content