Last modified by Mora Zhou on 2024/08/08 14:35

From version 25.3
edited by Stone Wu
on 2022/09/26 10:23
Change comment: There is no comment for this version
To version 1.1
edited by Leo Wei
on 2022/06/08 12:57
Change comment: Imported from XAR

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -PLC Editor2.WebHome
1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Stone
1 +XWiki.admin
Content
... ... @@ -1,5 +1,7 @@
1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** =
1 += **High-speed pulse output instruction** =
2 2  
3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** ==
4 +
3 3  **ZRN/DZRN**
4 4  
5 5  This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions.
... ... @@ -9,33 +9,33 @@
9 9  **{{id name="OLE_LINK392"/}}Content, range and data type**
10 10  
11 11  (% class="table-bordered" %)
12 -|**Parameter**|(% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**
13 -|(s1)|(% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((
14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
15 +|(s1)|The speed when the origin return starts|(((
14 14  1 to 32767
15 15  
16 16  1 to 200000
17 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
18 -|(s2)|(% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((
19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
20 +|(s2)|Crawl speed|(((
19 19  1 to 32767
20 20  
21 21  1 to 200000
22 -)))|(% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S
23 -|(s3)|(% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 -|(d)|(% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL
24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
25 25  
26 26  **Device used**
27 27  
28 -(% class="table-bordered" style="width:1049px" %)
29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px" %)**Parameter**|(% colspan="14" style="width:617px" %)**Devices**|(% style="width:138px" %)**Offset modification**|(((
30 +(% class="table-bordered" %)
31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
30 30  **Pulse**
31 31  
32 32  **extension**
33 33  )))
34 -|(% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**
35 -|(% rowspan="4" %)ZRN|(% style="width:133px" %)Parameter 1|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
36 -|(% style="width:133px" %)Parameter 2|(% style="width:3px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|
37 -|(% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
38 -|(% style="width:133px" %)Parameter 4|(% style="width:3px" %) |●| | | | | | | | | | | |(% style="width:75px" %) |(% style="width:138px" %) |
36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
39 +|Parameter 3|●|●|●|●| | | | | | | | | | | |
40 +|Parameter 4| |●| | | | | | | | | | | | | |
39 39  
40 40  **Features**
41 41  
... ... @@ -44,7 +44,7 @@
44 44  .
45 45  
46 46  (% style="text-align:center" %)
47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]
49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]]
48 48  
49 49  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000)
50 50  
... ... @@ -59,7 +59,7 @@
59 59  • The pulse frequency could be modified during operation.
60 60  
61 61  (% style="text-align:center" %)
62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]
64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]]
63 63  
64 64  **{{id name="OLE_LINK84"/}}✎Note:**
65 65  
... ... @@ -70,7 +70,7 @@
70 70  Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed.
71 71  
72 72  (% style="text-align:center" %)
73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]
75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]]
74 74  
75 75  Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
76 76  
... ... @@ -85,11 +85,11 @@
85 85  **Example**
86 86  
87 87  (% style="text-align:center" %)
88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]
90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]]
89 89  
90 90  {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
91 91  
92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** =
94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** ==
93 93  
94 94  **{{id name="OLE_LINK390"/}}DSZR/DDSZR**
95 95  
... ... @@ -100,35 +100,35 @@
100 100  **Content, range and data type**
101 101  
102 102  (% class="table-bordered" %)
103 -|**Parameter**|(% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**
104 -|(s1)|(% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((
105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
106 +|(s1)|The speed when the origin return starts|(((
105 105  1 to 32767
106 106  
107 107  1 to 200000
108 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
109 -|(s2)|(% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((
110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
111 +|(s2)|Crawling speed|(((
110 110  1 to 32767
111 111  
112 112  1 to 200000
113 -)))|(% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S
114 -|(s3)|(% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
115 -|(d1)|(% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL
116 -|(d2)|(% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(% style="width:124px" %) |(% style="width:226px" %) |(% style="width:180px" %)
115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S
116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL
117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL
118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | |
117 117  
118 118  **Device used**
119 119  
120 -(% class="table-bordered" style="width:1022px" %)
121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px" %)**Parameter**|(% colspan="15" style="width:630.359px" %)**Devices**|(% style="width:128px" %)**Offset modification**|(((
122 +(% class="table-bordered" %)
123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
122 122  **Pulse**
123 123  
124 124  **extension**
125 125  )))
126 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**
127 -|(% rowspan="5" %)DSZR|(% style="width:133.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
128 -|(% style="width:133.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|
129 -|(% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
130 -|(% style="width:133.641px" %)Parameter 4|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
131 -|(% style="width:133.641px" %)Parameter 5|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:76px" %) |(% style="width:128px" %) |
128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | |
132 +|Parameter 4| |●| | | | | | | | | | | | | | |
133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | |
132 132  
133 133  **Features**
134 134  
... ... @@ -135,7 +135,7 @@
135 135  The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions.
136 136  
137 137  (% style="text-align:center" %)
138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]
140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]]
139 139  
140 140  • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000)
141 141  
... ... @@ -152,7 +152,7 @@
152 152  • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}}
153 153  
154 154  (% style="text-align:center" %)
155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]
157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]]
156 156  
157 157  **✎Note:**
158 158  
... ... @@ -165,7 +165,7 @@
165 165  {{id name="OLE_LINK399"/}}
166 166  
167 167  (% style="text-align:center" %)
168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]
170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]]
169 169  
170 170   Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia.
171 171  
... ... @@ -184,7 +184,7 @@
184 184  
185 185  Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.
186 186  
187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** =
189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** ==
188 188  
189 189  **DVIT/DDVIT**
190 190  
... ... @@ -221,17 +221,17 @@
221 221  **Device used**
222 222  
223 223  (% class="table-bordered" %)
224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px" %)**Parameter**|(% colspan="15" style="width:628.359px" %)**Devices**|(% style="width:129px" %)**Offset modification**|(((
226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|(((
225 225  **Pulse**
226 226  
227 227  **extension**
228 228  )))
229 -|(% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**
230 -|(% rowspan="5" %)DVIT|(% style="width:134.641px" %)Parameter 1|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
231 -|(% style="width:134.641px" %)Parameter 2|(% style="width:1px" %) | | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|
232 -|(% style="width:134.641px" %)Parameter 3|(% style="width:1px" %) |●| | | | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
233 -|(% style="width:134.641px" %)Parameter 4|(% style="width:1px" %) |●|●|●|●| | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
234 -|(% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(% style="width:75px" %) |(% style="width:129px" %) |
231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●|
233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●|
234 +|Parameter 3| |●| | | | | | | | | | | | | | |
235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | |
236 +|Parameter 5|●| |●|●| | | | | | | | | | | | |
235 235  
236 236  **Features**
237 237  
... ... @@ -248,7 +248,7 @@
248 248  • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified.
249 249  
250 250  (% style="text-align:center" %)
251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]
253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]]
252 252  
253 253  **✎Note:**
254 254  
... ... @@ -278,9 +278,9 @@
278 278  Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal.
279 279  
280 280  (% style="text-align:center" %)
281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]
283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]]
282 282  
283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** =
285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** ==
284 284  
285 285  **DRVI/DDRVI**
286 286  
... ... @@ -331,17 +331,17 @@
331 331  
332 332  **Device used**
333 333  
334 -(% class="table-bordered" style="width:1046px" %)
335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px" %)**Parameter**|(% colspan="14" style="width:603.125px" %)**Devices**|(% style="width:125px" %)**Offset modification**|(((
336 +(% class="table-bordered" %)
337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|(((
336 336  **Pulse**
337 337  
338 338  **extension**
339 339  )))
340 -|(% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**
341 -|(% rowspan="4" %)DRVI|(% style="width:132.875px" %)Parameter 1|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
342 -|(% style="width:132.875px" %)Parameter 2|(% style="width:1px" %) | | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|
343 -|(% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
344 -|(% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(% style="width:79px" %) |(% style="width:125px" %) |
342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●|
344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●|
345 +|Parameter 3|●| | | | | | | | | | | | | | |
346 +|Parameter 4|●|●|●|●| | | | | | | | | | | |
345 345  
346 346  **Features**
347 347  
... ... @@ -350,7 +350,7 @@
350 350  With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning.
351 351  
352 352  (% style="text-align:center" %)
353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]
355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]]
354 354  
355 355  • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647)
356 356  
... ... @@ -363,7 +363,7 @@
363 363  • The pulse frequency and pulse position could be modified during the operation of this instruction.
364 364  
365 365  (% style="text-align:center" %)
366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]
368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]]
367 367  
368 368  **✎Note:**
369 369  
... ... @@ -384,7 +384,7 @@
384 384  
385 385  {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K.
386 386  
387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** =
389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** ==
388 388  
389 389  **DRVA/DDRVA**
390 390  
... ... @@ -450,7 +450,7 @@
450 450  {{id name="OLE_LINK365"/}}
451 451  
452 452  (% style="text-align:center" %)
453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]
455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]]
454 454  
455 455  • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647)
456 456  
... ... @@ -463,7 +463,7 @@
463 463  • The pulse frequency and pulse position could be modified during the operation of this instruction.
464 464  
465 465  (% style="text-align:center" %)
466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]
468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]]
467 467  
468 468  **✎Note:**
469 469  
... ... @@ -484,7 +484,7 @@
484 484  
485 485  Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000
486 486  
487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** =
489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** ==
488 488  
489 489  **PLSR/DPLSR**
490 490  
... ... @@ -564,7 +564,7 @@
564 564  • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified.
565 565  
566 566  (% style="text-align:center" %)
567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]
569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]]
568 568  
569 569  **✎Note:**
570 570  
... ... @@ -585,7 +585,7 @@
585 585  
586 586  Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K.
587 587  
588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** =
590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** ==
589 589  
590 590  **PLSR2**
591 591  
... ... @@ -738,7 +738,7 @@
738 738  The waveform diagram is as follows:
739 739  
740 740  (% style="text-align:center" %)
741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]
743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]]
742 742  
743 743  2) Waiting time
744 744  
... ... @@ -762,7 +762,7 @@
762 762  The waveform diagram is as follows:
763 763  
764 764  (% style="text-align:center" %)
765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]
767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]]
766 766  
767 767  3) Waiting signal
768 768  
... ... @@ -786,7 +786,7 @@
786 786  If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation)
787 787  
788 788  (% style="text-align:center" %)
789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]
791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]]
790 790  
791 791  4)** **Trigger signal
792 792  
... ... @@ -812,7 +812,7 @@
812 812  The pulse waveform diagram is as follows:
813 813  
814 814  (% style="text-align:center" %)
815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]
817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]]
816 816  
817 817  If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency.
818 818  
... ... @@ -826,7 +826,7 @@
826 826  |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range
827 827  |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started.
828 828  
829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** =
831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** ==
830 830  
831 831  **PLSV/DPLSV**
832 832  
... ... @@ -868,7 +868,7 @@
868 868  • The pulse frequency could be modified while the instruction is running.
869 869  
870 870  (% style="text-align:center" %)
871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]
873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]]
872 872  
873 873  **✎Note:**
874 874  
... ... @@ -896,9 +896,9 @@
896 896  The sending pulse is as follows:
897 897  
898 898  (% style="text-align:center" %)
899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]
901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]]
900 900  
901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** =
903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** ==
902 902  
903 903  **PLSY/DPLSY**
904 904  
... ... @@ -940,7 +940,7 @@
940 940  • The instruction pulse output has no acceleration/deceleration process.
941 941  
942 942  (% style="text-align:center" %)
943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]
945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]]
944 944  
945 945  **✎Note:**
946 946  
... ... @@ -964,7 +964,7 @@
964 964  [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]]
965 965  
966 966  (% style="text-align:center" %)
967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
968 968  
969 969  **(2) Pulse output: positioning address (operand (n))> 0**
970 970  
... ... @@ -973,9 +973,9 @@
973 973  [[image:08_html_87bd5854f06006b0.png]]
974 974  
975 975  (% style="text-align:center" %)
976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]
978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]]
977 977  
978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** =
980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** ==
979 979  
980 980  **PWM**
981 981  
... ... @@ -986,21 +986,21 @@
986 986  **Content, range and data type**
987 987  
988 988  (% class="table-bordered" %)
989 -|=(% scope="row" %)**Parameter**|=(% style="width: 618px;" %)**Content**|=(% style="width: 121px;" %)**Range**|=(% style="width: 132px;" %)**Data type**|=(% style="width: 118px;" %)**Data type (label)**
990 -|=(s1)|(% style="width:618px" %)The ON time or the device number storing the ON time|(% style="width:121px" %)0 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S
991 -|=(s2)|(% style="width:618px" %)Cycle or the device number storing the cycle|(% style="width:121px" %)1 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S
992 -|=(d)|(% style="width:618px" %)The channel number and device number that pulse outputs|(% style="width:121px" %)-|(% style="width:132px" %)Bit|(% style="width:118px" %)ANY_BOOL
991 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)**
992 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S
993 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S
994 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL
993 993  
994 994  **Device used**
995 995  
996 996  (% class="table-bordered" %)
997 -|=(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((
999 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|(((
998 998  **Pulse**
999 999  
1000 1000  **extension**
1001 1001  )))
1002 -|=**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**
1003 -|=(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|
1004 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
1005 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|
1004 1004  |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●|
1005 1005  |Parameter 3|●| | | | | | | | | | | |
1006 1006  
... ... @@ -1011,9 +1011,9 @@
1011 1011  • Output the ON time specified in (s1) and the cycle pulse specified in (s2) to the output destination specified in (d).
1012 1012  
1013 1013  (((
1014 -• Specify the output pulse width in (s1). (The setting range is 0 to 32,767)
1016 +• Specify the output pulse width in (s1). (The setting range is 0 to 32,767ms)
1015 1015  
1016 -• Specify the output pulse period in (s2). (The setting range is 1 to 32,767)
1018 +• Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms)
1017 1017  
1018 1018  • Specify the device that outputs pulses in (d). Only Y devices with positioning parameters can be specified.
1019 1019  
... ... @@ -1020,7 +1020,7 @@
1020 1020  • The pulse width and pulse period can be modified during pulse sending.
1021 1021  
1022 1022  (% style="text-align:center" %)
1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]
1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]]
1024 1024  )))
1025 1025  
1026 1026  **✎Note:**
... ... @@ -1032,20 +1032,16 @@
1032 1032  **Related device**
1033 1033  
1034 1034  (% class="table-bordered" %)
1035 -|=(% scope="row" style="width: 233px;" %)**Output shaft**|(% scope="col" style="width:81px" %)**Y0**|(% scope="col" style="width:104px" %)**Y1**|(% scope="col" style="width:111px" %)**Y2**|(% scope="col" style="width:107px" %)**Y3**|(% scope="col" style="width:108px" %)**Y4**|(% scope="col" style="width:108px" %)**Y5**|(% scope="col" style="width:115px" %)**Y6**|(% scope="col" %)**Y7**
1036 -|=(% style="width: 233px;" %)Percentage mode sign|(% style="width:81px" %)SM897|(% style="width:104px" %)SM957|(% style="width:111px" %)SM1017|(% style="width:107px" %)SM1077|(% style="width:108px" %)SM1137|(% style="width:108px" %)SM1197|(% style="width:115px" %)SM1257|SM1317
1037 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1038 +|Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1037 1037  
1038 -|=(% scope="row" style="width: 217px;" %)**Output shaft**|(% scope="col" style="width:105px" %)**Y0**|(% scope="col" %)**Y1**|(% scope="col" %)**Y2**|(% scope="col" %)**Y3**|(% scope="col" %)**Y4**|(% scope="col" %)**Y5**|(% scope="col" %)**Y6**|(% scope="col" %)**Y7**
1039 -|=(% style="width: 217px;" %)PWM unit selection|(% style="width:105px" %)SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322
1040 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us".
1041 -
1042 1042  **Error code**
1043 1043  
1044 1044  (% class="table-bordered" %)
1045 -|=(% scope="row" %)**Error code**|=**Content**
1046 -|=4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)
1047 -|=4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range
1048 -|=4088H|The same pulse output axis (d) is used and has been started.
1043 +|**Error code**|**Content**
1044 +|4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)
1045 +|4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range
1046 +|4088H|The same pulse output axis (d) is used and has been started.
1049 1049  
1050 1050  **Example**
1051 1051  
... ... @@ -1052,16 +1052,16 @@
1052 1052  (% style="text-align:center" %)
1053 1053  [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]]
1054 1054  
1055 -The waveform diagram is shown as below.
1053 +The waveform diagram is shown as right.
1056 1056  
1057 1057  (% style="text-align:center" %)
1058 -[[image:08_html_f38f59f98fdc96c0.png||height="174" width="477" class="img-thumbnail"]]
1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]]
1059 1059  
1060 -= **PWM/PWM permil mode** =
1058 +== **PWM/PWM perimeter mode** ==
1061 1061  
1062 1062  **PWM**
1063 1063  
1064 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).
1062 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d).
1065 1065  
1066 1066  -[PWM (s1) (s2) (d)]
1067 1067  
... ... @@ -1068,37 +1068,37 @@
1068 1068  **Content, range and data type**
1069 1069  
1070 1070  (% class="table-bordered" %)
1071 -|=(% scope="row" %)**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**
1072 -|=(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S
1073 -|=(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S
1074 -|=(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL
1069 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
1070 +|(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S
1071 +|(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S
1072 +|(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL
1075 1075  
1076 1076  **Device used**
1077 1077  
1078 1078  (% class="table-bordered" %)
1079 -|=(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((
1077 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|(((
1080 1080  **Pulse**
1081 1081  
1082 1082  **extension**
1083 1083  )))
1084 -|=**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**
1085 -|=(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|
1082 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP**
1083 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|
1086 1086  |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●|
1087 1087  |Parameter 3|●| | | | | | | | | | | |
1088 1088  
1089 1089  **Features**
1090 1090  
1091 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).
1089 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d).
1092 1092  
1093 -It is necessary to turn on the permil mode of the PWM instruction, and the corresponding related device:
1091 +It is necessary to turn on the millimetric ratio mode of the PWM instruction, and the corresponding related device:
1094 1094  
1095 1095  (% class="table-bordered" %)
1096 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1097 -|=Permil mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1094 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1095 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1098 1098  
1099 1099  Specify the output pulse duty ratio in (s1). (The setting range is 0 to 1000)
1100 1100  
1101 -Specify the output pulse period in (s2). (The setting range is 1 to 32,767)
1099 +Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms)
1102 1102  
1103 1103  Specify the device that outputs the pulse in (d). Only Y devices with positioning parameters can be specified.
1104 1104  
... ... @@ -1106,7 +1106,7 @@
1106 1106  
1107 1107  High level time (ms) = set cycle time (ms) x duty cycle / 1000
1108 1108  
1109 -Low level time (ms) = period (ms) - high level time (ms)
1107 +Low level time (ms) = period (ms)-high level time (ms)
1110 1110  
1111 1111  That is, the period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; If it is set to 900, the output will be high for 90ms and low for 10ms. The fractional part of the calculated pulse output time is output by rounding.
1112 1112  
... ... @@ -1115,20 +1115,18 @@
1115 1115  **✎Note:**
1116 1116  
1117 1117  1. Please be careful not to overlap with other control devices.
1118 -1. About pulse output: This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.
1116 +1. About pulse output
1119 1119  
1118 +This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.
1119 +
1120 1120  **Related device**
1121 1121  
1122 1122  • Percentage mode flag
1123 1123  
1124 1124  (% class="table-bordered" %)
1125 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1126 -|=Permil mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1125 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1126 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317
1127 1127  
1128 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**
1129 -|=PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322
1130 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us".
1131 -
1132 1132  **Error code**
1133 1133  
1134 1134  (% class="table-bordered" %)
... ... @@ -1142,14 +1142,14 @@
1142 1142  The period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; duty cycle If it is set to 900, then the output is high for 90ms and low for 10ms;
1143 1143  
1144 1144  (% style="text-align:center" %)
1145 -[[image:08_html_ace0b444319fb8c4.png||height="155" width="905" class="img-thumbnail"]]
1141 +[[image:08_html_ace0b444319fb8c4.png||class="img-thumbnail"]]
1146 1146  
1147 1147  The waveform diagram is as follows, the period is 300ms, the duty cycle is 100, and the output is 30ms high level and 270ms low level:
1148 1148  
1149 1149  (% style="text-align:center" %)
1150 -[[image:08_html_13acf8747e8703ff.png||height="221" width="625" class="img-thumbnail"]]
1146 +[[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]]
1151 1151  
1152 -= **G90G01 Absolute position line interpolation instruction** =
1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** ==
1153 1153  
1154 1154  **G90G01**
1155 1155  
... ... @@ -1189,7 +1189,7 @@
1189 1189  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation.
1190 1190  
1191 1191  (% style="text-align:center" %)
1192 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]
1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]]
1193 1193  
1194 1194  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1195 1195  
... ... @@ -1214,8 +1214,11 @@
1214 1214  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1215 1215  
1216 1216  (% style="text-align:center" %)
1217 -[[image:image-20220921172417-2.png]]
1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1218 1218  
1215 +(% style="text-align:center" %)
1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1217 +
1219 1219  **{{id name="_Toc32765"/}}Error Codes**
1220 1220  
1221 1221  (% class="table-bordered" %)
... ... @@ -1224,16 +1224,16 @@
1224 1224  |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range
1225 1225  |4088H|The same pulse output axis (d1) is used and has been started.
1226 1226  
1227 -**Example**
1226 +**{{id name="_Toc29603"/}}Example**
1228 1228  
1229 1229  (% style="text-align:center" %)
1230 -[[image:image-20220921163523-1.jpeg||class="img-thumbnail"]]
1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1231 1231  
1232 1232  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1233 1233  
1234 -= **G91G01 Relative position line interpolation instruction** =
1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** ==
1235 1235  
1236 -**G91G01**
1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01**
1237 1237  
1238 1238  Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode.
1239 1239  
... ... @@ -1271,7 +1271,7 @@
1271 1271  This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position.
1272 1272  
1273 1273  (% style="text-align:center" %)
1274 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]
1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]]
1275 1275  
1276 1276  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647.
1277 1277  
... ... @@ -1294,10 +1294,13 @@
1294 1294  1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1295 1295  
1296 1296  (% style="text-align:center" %)
1297 -[[image:image-20220921172437-3.png]]
1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1298 1298  
1299 -**Error Codes**
1298 +(% style="text-align:center" %)
1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1300 1300  
1301 +**{{id name="_Toc8461"/}}Error Codes**
1302 +
1301 1301  (% class="table-bordered" %)
1302 1302  |**Error Codes**|**Contents**
1303 1303  |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1306,11 +1306,12 @@
1306 1306  
1307 1307  **{{id name="_Toc16441"/}}Example**
1308 1308  
1309 -[[image:image-20220921163600-2.png]]
1311 +(% style="text-align:center" %)
1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1310 1310  
1311 1311  {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000.
1312 1312  
1313 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** =
1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** ==
1314 1314  
1315 1315  **G90G02**
1316 1316  
... ... @@ -1348,7 +1348,7 @@
1348 1348  {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point.
1349 1349  
1350 1350  (% style="text-align:center" %)
1351 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]
1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]]
1352 1352  
1353 1353  * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647.
1354 1354  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1371,10 +1371,13 @@
1371 1371  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1372 1372  
1373 1373  (% style="text-align:center" %)
1374 -[[image:image-20220921172524-4.png]]
1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1375 1375  
1376 -**Error Codes**
1379 +(% style="text-align:center" %)
1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1377 1377  
1382 + **Error Codes**
1383 +
1378 1378  (% class="table-bordered" %)
1379 1379  |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents**
1380 1380  |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range
... ... @@ -1390,11 +1390,11 @@
1390 1390  **{{id name="OLE_LINK268"/}}Example**
1391 1391  
1392 1392  (% style="text-align:center" %)
1393 -[[image:image-20220921163619-3.png||class="img-thumbnail"]]
1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1394 1394  
1395 1395  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1396 1396  
1397 -= **G91G02 Relative position clockwise circular interpolation instruction** =
1403 +== **G91G02 Relative position clockwise circular interpolation instruction** ==
1398 1398  
1399 1399  **G91G02**
1400 1400  
... ... @@ -1436,7 +1436,7 @@
1436 1436  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position.
1437 1437  
1438 1438  (% style="text-align:center" %)
1439 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]
1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]]
1440 1440  
1441 1441  * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647.
1442 1442  * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1459,8 +1459,11 @@
1459 1459  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1460 1460  
1461 1461  (% style="text-align:center" %)
1462 -[[image:image-20220921172550-5.png]]
1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1463 1463  
1470 +(% style="text-align:center" %)
1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1472 +
1464 1464  **Error Codes**
1465 1465  
1466 1466  (% class="table-bordered" %)
... ... @@ -1478,11 +1478,11 @@
1478 1478  **Example**{{id name="OLE_LINK22"/}}
1479 1479  
1480 1480  (% style="text-align:center" %)
1481 -[[image:image-20220921163641-4.png||class="img-thumbnail"]]
1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1482 1482  
1483 1483  {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1484 1484  
1485 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** =
1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** ==
1486 1486  
1487 1487  G90G03
1488 1488  
... ... @@ -1524,7 +1524,7 @@
1524 1524  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point.
1525 1525  
1526 1526  (% style="text-align:center" %)
1527 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]
1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]]
1528 1528  
1529 1529  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1530 1530  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1547,8 +1547,11 @@
1547 1547  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1548 1548  
1549 1549  (% style="text-align:center" %)
1550 -[[image:image-20220921172606-6.png]]
1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1551 1551  
1561 +(% style="text-align:center" %)
1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1563 +
1552 1552  **Error Codes**
1553 1553  
1554 1554  (% class="table-bordered" %)
... ... @@ -1566,11 +1566,11 @@
1566 1566  **Example**
1567 1567  
1568 1568  (% style="text-align:center" %)
1569 -[[image:image-20220921163737-5.png||class="img-thumbnail"]]
1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1570 1570  
1571 1571  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1572 1572  
1573 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** =
1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** ==
1574 1574  
1575 1575  **G91G03**
1576 1576  
... ... @@ -1612,7 +1612,7 @@
1612 1612  This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position.
1613 1613  
1614 1614  (% style="text-align:center" %)
1615 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]
1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]]
1616 1616  
1617 1617  * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647.
1618 1618  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
... ... @@ -1635,8 +1635,11 @@
1635 1635  1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1636 1636  
1637 1637  (% style="text-align:center" %)
1638 -[[image:image-20220921172617-7.png]]
1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1639 1639  
1652 +(% style="text-align:center" %)
1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1654 +
1640 1640  **Error Codes**
1641 1641  
1642 1642  (% class="table-bordered" %)
... ... @@ -1654,11 +1654,11 @@
1654 1654  **Example**
1655 1655  
1656 1656  (% style="text-align:center" %)
1657 -[[image:image-20220921163754-6.png]]
1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]]
1658 1658  
1659 1659  Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000.
1660 1660  
1661 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** =
1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** ==
1662 1662  
1663 1663  **G90G02H**
1664 1664  
... ... @@ -1702,7 +1702,7 @@
1702 1702  (% style="text-align:center" %)
1703 1703  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1704 1704  
1705 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is [[image:image-20220921171331-1.png||height="31" width="113"]],, ,,.(The range is -2147483648 to +2147483647.)
1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1706 1706  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1707 1707  
1708 1708  * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1722,7 +1722,7 @@
1722 1722  
1723 1723  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1724 1724  
1725 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian [[image:image-20220921171348-2.png||height="47" width="90"]],,),,
1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1726 1726  
1727 1727  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1728 1728  
... ... @@ -1729,19 +1729,21 @@
1729 1729  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1730 1730  
1731 1731  (% style="text-align:center" %)
1732 -[[image:image-20220921172637-8.png]]
1747 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1733 1733  
1734 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1749 +(% style="text-align:center" %)
1750 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1735 1735  
1736 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.
1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1737 1737  
1738 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes  (Xe',Ye') ,, ,,may not be equal to the set  (Xe,Ye), but it must pass through the set point (Xe,Ye), in the whole circle.
1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1739 1739  
1740 -(% style="text-align:center" %)
1741 -[[image:image-20220921171411-3.png||height="62" width="312"]]
1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1742 1742  
1743 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0), the end point coordinate (0,0,Ze).
1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1744 1744  
1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1761 +
1745 1745  (% class="table-bordered" %)
1746 1746  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1747 1747  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1761,16 +1761,16 @@
1761 1761  |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1762 1762  |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1763 1763  |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0.
1764 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead,, ,,[[image:image-20220921171529-5.png||height="32" width="69"]],, ,,)
1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1765 1765  
1766 1766  **{{id name="_Toc12418"/}}Example**
1767 1767  
1768 1768  (% style="text-align:center" %)
1769 -[[image:image-20220921163843-7.png||class="img-thumbnail"]]
1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1770 1770  
1771 1771  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1772 1772  
1773 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** =
1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** ==
1774 1774  
1775 1775  **G91G02H**
1776 1776  
... ... @@ -1814,7 +1814,7 @@
1814 1814  (% style="text-align:center" %)
1815 1815  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1816 1816  
1817 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]]. (The range is -2147483648 to +2147483647.)
1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1818 1818  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1819 1819  
1820 1820  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1834,28 +1834,28 @@
1834 1834  
1835 1835  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1836 1836  
1837 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1838 1838  
1839 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),,
1840 -
1841 1841  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1842 1842  
1843 1843  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1844 1844  
1845 1845  (% style="text-align:center" %)
1846 -[[image:image-20220921172651-9.png]]
1861 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1847 1847  
1848 -(9) Exact match pitch of screws (lead) K and Ze,,.,,
1863 +(% style="text-align:center" %)
1864 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1849 1849  
1850 -The starting point coordinate of helical interpolation is (0,0,0), set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates (Xe‘,Ye’) of X axis and Y axis according to the number of turns of interpolation.
1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1851 1851  
1852 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe‘,Ye’) ,, ,,may not be equal to the set (Xe,Ye) ,, ,,, but it must pass through the set poin (Xe,Ye) ,, ,,in the whole circle.
1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1853 1853  
1854 -(% style="text-align:center" %)
1855 -[[image:image-20220921171703-8.png||height="58" width="291"]]
1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1856 1856  
1857 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,.
1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1858 1858  
1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
1875 +
1859 1859  (% class="table-bordered" %)
1860 1860  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1861 1861  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1875,16 +1875,16 @@
1875 1875  |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1876 1876  |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1877 1877  |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0.
1878 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image:image-20220921171735-9.png||height="28" width="59"]])
1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1879 1879  
1880 1880  **{{id name="_Toc28830"/}}Example**
1881 1881  
1882 1882  (% style="text-align:center" %)
1883 -[[image:image-20220921163904-8.png]]
1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1884 1884  
1885 1885  Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
1886 1886  
1887 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** =
1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** ==
1888 1888  
1889 1889  **G90G03H**
1890 1890  
... ... @@ -1928,8 +1928,7 @@
1928 1928  (% style="text-align:center" %)
1929 1929  [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]]
1930 1930  
1931 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis.
1932 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.)
1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.)
1933 1933  * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421.
1934 1934  
1935 1935  * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency.
... ... @@ -1949,28 +1949,28 @@
1949 1949  
1950 1950  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
1951 1951  
1952 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
1953 1953  
1954 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]]
1955 -
1956 1956  (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
1957 1957  
1958 1958  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
1959 1959  
1960 1960  (% style="text-align:center" %)
1961 -[[image:image-20220921172744-10.png]]
1975 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
1962 1962  
1963 -(9) Exact match pitch of screws (lead) K and Ze
1977 +(% style="text-align:center" %)
1978 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
1964 1964  
1965 -The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
1966 1966  
1967 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye),, ,,, but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
1968 1968  
1969 -(% style="text-align:center" %)
1970 -[[image:image-20220921171930-12.png||height="74" width="370"]]
1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
1971 1971  
1972 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,).
1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
1973 1973  
1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,).
1989 +
1974 1974  (% class="table-bordered" %)
1975 1975  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
1976 1976  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -1990,16 +1990,16 @@
1990 1990  |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
1991 1991  |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
1992 1992  |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0.
1993 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image:image-20220921171956-13.png||height="29" width="61"]])
2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
1994 1994  
1995 1995  **{{id name="_Toc18584"/}}Example**
1996 1996  
1997 1997  (% style="text-align:center" %)
1998 -[[image:image-20220921163935-9.png||class="img-thumbnail"]]
2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
1999 1999  
2000 2000  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.
2001 2001  
2002 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** =
2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** ==
2003 2003  
2004 2004  **G91G03H**
2005 2005  
... ... @@ -2063,28 +2063,28 @@
2063 2063  
2064 2064  (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value.
2065 2065  
2066 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K.
2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,)
2067 2067  
2068 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]]
2069 -
2070 2070  (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0);
2071 2071  
2072 2072  (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows:
2073 2073  
2074 2074  (% style="text-align:center" %)
2075 -[[image:image-20220921172803-11.png]]
2089 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]]
2076 2076  
2077 -(9) Exact match pitch of screws (lead) K and Ze
2091 +(% style="text-align:center" %)
2092 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]]
2078 2078  
2079 -The start point coordinate of helical interpolation is(0,0,0), set the end point coordinate to (Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,,
2080 2080  
2081 -The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye), but it must pass through the set point (Xe,Ye),, ,,in the whole circle.
2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation.
2082 2082  
2083 -(% style="text-align:center" %)
2084 -[[image:image-20220921172159-16.png||height="72" width="362"]]
2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle.
2085 2085  
2086 -(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate (0,0,0), the end point coordinate (0,0,Ze).
2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1)
2087 2087  
2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,).
2103 +
2088 2088  (% class="table-bordered" %)
2089 2089  |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**
2090 2090  |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R)
... ... @@ -2104,12 +2104,12 @@
2104 2104  |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse.
2105 2105  |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane)
2106 2106  |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0.
2107 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead [[image:image-20220921172255-17.png||height="29" width="62"]],, ,,)
2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,)
2108 2108  
2109 2109  **{{id name="_Toc11997"/}}Example**
2110 2110  
2111 2111  (% style="text-align:center" %)
2112 -[[image:image-20220921163953-10.png||class="img-thumbnail"]]
2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]]
2113 2113  
2114 2114  Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}}
2115 2115  
... ... @@ -2259,7 +2259,7 @@
2259 2259  When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle.
2260 2260  
2261 2261  (% style="text-align:center" %)
2262 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]
2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]]
2263 2263  
2264 2264  **(9) Not scanned**
2265 2265  
... ... @@ -2510,7 +2510,7 @@
2510 2510  [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement.
2511 2511  
2512 2512  (% style="text-align:center" %)
2513 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]
2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]]
2514 2514  
2515 2515  **(8) Direction delay**
2516 2516  
... ... @@ -2523,7 +2523,7 @@
2523 2523  |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325
2524 2524  
2525 2525  (% style="text-align:center" %)
2526 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]
2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]]
2527 2527  
2528 2528  **(9) External start signal**
2529 2529  
... ... @@ -2555,12 +2555,12 @@
2555 2555  ①Reachable frequency
2556 2556  
2557 2557  (% style="text-align:center" %)
2558 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]
2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]]
2559 2559  
2560 2560  ②Unreachable frequency
2561 2561  
2562 2562  (% style="text-align:center" %)
2563 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]
2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]]
2564 2564  
2565 2565  2) Modify the number of pulses:
2566 2566  
... ... @@ -2567,12 +2567,12 @@
2567 2567  ①Modify to the number of reachable pulses
2568 2568  
2569 2569  (% style="text-align:center" %)
2570 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]
2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]]
2571 2571  
2572 2572  ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending)
2573 2573  
2574 2574  (% style="text-align:center" %)
2575 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]
2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]]
2576 2576  
2577 2577  **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range**
2578 2578  
... ... @@ -2629,17 +2629,17 @@
2629 2629  Time-minute ladder acceleration and deceleration
2630 2630  
2631 2631  (% style="text-align:center" %)
2632 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]
2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]]
2633 2633  
2634 2634  Time-minute S-type acceleration and deceleration
2635 2635  
2636 2636  (% style="text-align:center" %)
2637 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]
2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]]
2638 2638  
2639 2639  The following figure shows the changes of each parameter
2640 2640  
2641 2641  (% style="text-align:center" %)
2642 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]
2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]]
2643 2643  
2644 2644  **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration.
2645 2645  
image-20220921163523-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -61.2 KB
Content
image-20220921163600-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -12.5 KB
Content
image-20220921163619-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163641-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -39.7 KB
Content
image-20220921163737-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163754-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -14.1 KB
Content
image-20220921163843-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163904-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -16.6 KB
Content
image-20220921163935-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921163953-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -17.1 KB
Content
image-20220921171331-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171348-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171411-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171433-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171529-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171628-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171639-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171703-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171735-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921171807-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.5 KB
Content
image-20220921171852-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921171930-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921171956-13.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172054-14.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172134-15.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -6.1 KB
Content
image-20220921172159-16.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -7.6 KB
Content
image-20220921172255-17.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172410-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -2.7 KB
Content
image-20220921172417-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172437-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172524-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172550-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172606-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172617-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172637-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172651-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172744-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content
image-20220921172803-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Stone
Size
... ... @@ -1,1 +1,0 @@
1 -9.1 KB
Content