Changes for page 08 High-speed pulse output
Last modified by Mora Zhou on 2024/08/08 14:35
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 38 removed)
- image-20220921163523-1.jpeg
- image-20220921163600-2.png
- image-20220921163619-3.png
- image-20220921163641-4.png
- image-20220921163737-5.png
- image-20220921163754-6.png
- image-20220921163843-7.png
- image-20220921163904-8.png
- image-20220921163935-9.png
- image-20220921163953-10.png
- image-20220921171331-1.png
- image-20220921171348-2.png
- image-20220921171411-3.png
- image-20220921171433-4.png
- image-20220921171529-5.png
- image-20220921171628-6.png
- image-20220921171639-7.png
- image-20220921171703-8.png
- image-20220921171735-9.png
- image-20220921171807-10.png
- image-20220921171852-11.png
- image-20220921171930-12.png
- image-20220921171956-13.png
- image-20220921172054-14.png
- image-20220921172134-15.png
- image-20220921172159-16.png
- image-20220921172255-17.png
- image-20220921172410-1.png
- image-20220921172417-2.png
- image-20220921172437-3.png
- image-20220921172524-4.png
- image-20220921172550-5.png
- image-20220921172606-6.png
- image-20220921172617-7.png
- image-20220921172637-8.png
- image-20220921172651-9.png
- image-20220921172744-10.png
- image-20220921172803-11.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.admin - Content
-
... ... @@ -1,5 +1,7 @@ 1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Originreturn** =1 += **High-speed pulse output instruction** = 2 2 3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** == 4 + 3 3 **ZRN/DZRN** 4 4 5 5 This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions. ... ... @@ -9,33 +9,33 @@ 9 9 **{{id name="OLE_LINK392"/}}Content, range and data type** 10 10 11 11 (% class="table-bordered" %) 12 -|**Parameter**| (% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**13 -|(s1)| (% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 15 +|(s1)|The speed when the origin return starts|((( 14 14 1 to 32767 15 15 16 16 1 to 200000 17 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S18 -|(s2)| (% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 20 +|(s2)|Crawl speed|((( 19 19 1 to 32767 20 20 21 21 1 to 200000 22 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S23 -|(s3)| (% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 -|(d)| (% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 25 25 26 26 **Device used** 27 27 28 -(% class="table-bordered" style="width:1049px"%)29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px"%)**Parameter**|(% colspan="14"style="width:617px"%)**Devices**|(% style="width:138px" %)**Offset modification**|(((30 +(% class="table-bordered" %) 31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 30 30 **Pulse** 31 31 32 32 **extension** 33 33 ))) 34 -| (% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**35 -|(% rowspan="4" %)ZRN| (% style="width:133px" %)Parameter 1|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|36 -| (% style="width:133px" %)Parameter 2|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|37 -| (% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|38 -| (% style="width:133px" %)Parameter 4|(%style="width:3px" %)|●| | | | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 39 +|Parameter 3|●|●|●|●| | | | | | | | | | | | 40 +|Parameter 4| |●| | | | | | | | | | | | | | 39 39 40 40 **Features** 41 41 ... ... @@ -44,7 +44,7 @@ 44 44 . 45 45 46 46 (% style="text-align:center" %) 47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]] 48 48 49 49 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000) 50 50 ... ... @@ -59,7 +59,7 @@ 59 59 • The pulse frequency could be modified during operation. 60 60 61 61 (% style="text-align:center" %) 62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]] 63 63 64 64 **{{id name="OLE_LINK84"/}}✎Note:** 65 65 ... ... @@ -70,7 +70,7 @@ 70 70 Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed. 71 71 72 72 (% style="text-align:center" %) 73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]] 74 74 75 75 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 76 76 ... ... @@ -85,11 +85,11 @@ 85 85 **Example** 86 86 87 87 (% style="text-align:center" %) 88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]] 89 89 90 90 {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 91 91 92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** = 94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** == 93 93 94 94 **{{id name="OLE_LINK390"/}}DSZR/DDSZR** 95 95 ... ... @@ -100,35 +100,35 @@ 100 100 **Content, range and data type** 101 101 102 102 (% class="table-bordered" %) 103 -|**Parameter**| (% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**104 -|(s1)| (% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 106 +|(s1)|The speed when the origin return starts|((( 105 105 1 to 32767 106 106 107 107 1 to 200000 108 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S109 -|(s2)| (% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 111 +|(s2)|Crawling speed|((( 110 110 1 to 32767 111 111 112 112 1 to 200000 113 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S114 -|(s3)| (% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL115 -|(d1)| (% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL116 -|(d2)| (% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(%style="width:124px" %)|(%style="width:226px" %)|(%style="width:180px" %)115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | | 117 117 118 118 **Device used** 119 119 120 -(% class="table-bordered" style="width:1022px"%)121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px"%)**Parameter**|(% colspan="15"style="width:630.359px"%)**Devices**|(% style="width:128px" %)**Offset modification**|(((122 +(% class="table-bordered" %) 123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 122 122 **Pulse** 123 123 124 124 **extension** 125 125 ))) 126 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**127 -|(% rowspan="5" %)DSZR| (% style="width:133.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|128 -| (% style="width:133.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|129 -| (% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|130 -| (% style="width:133.641px" %)Parameter 4|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|131 -| (% style="width:133.641px" %)Parameter 5|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | | 132 +|Parameter 4| |●| | | | | | | | | | | | | | | 133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | | 132 132 133 133 **Features** 134 134 ... ... @@ -135,7 +135,7 @@ 135 135 The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions. 136 136 137 137 (% style="text-align:center" %) 138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]] 139 139 140 140 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000) 141 141 ... ... @@ -152,7 +152,7 @@ 152 152 • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}} 153 153 154 154 (% style="text-align:center" %) 155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]] 156 156 157 157 **✎Note:** 158 158 ... ... @@ -165,7 +165,7 @@ 165 165 {{id name="OLE_LINK399"/}} 166 166 167 167 (% style="text-align:center" %) 168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]] 169 169 170 170 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 171 171 ... ... @@ -184,7 +184,7 @@ 184 184 185 185 Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 186 186 187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** = 189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** == 188 188 189 189 **DVIT/DDVIT** 190 190 ... ... @@ -221,17 +221,17 @@ 221 221 **Device used** 222 222 223 223 (% class="table-bordered" %) 224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px"%)**Parameter**|(% colspan="15"style="width:628.359px"%)**Devices**|(% style="width:129px" %)**Offset modification**|(((226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 225 225 **Pulse** 226 226 227 227 **extension** 228 228 ))) 229 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**230 -|(% rowspan="5" %)DVIT| (% style="width:134.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|231 -| (% style="width:134.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|232 -| (% style="width:134.641px" %)Parameter 3|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|233 -| (% style="width:134.641px" %)Parameter 4|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|234 -| (% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 234 +|Parameter 3| |●| | | | | | | | | | | | | | | 235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | | 236 +|Parameter 5|●| |●|●| | | | | | | | | | | | | 235 235 236 236 **Features** 237 237 ... ... @@ -248,7 +248,7 @@ 248 248 • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified. 249 249 250 250 (% style="text-align:center" %) 251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]] 252 252 253 253 **✎Note:** 254 254 ... ... @@ -278,9 +278,9 @@ 278 278 Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal. 279 279 280 280 (% style="text-align:center" %) 281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]] 282 282 283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** = 285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** == 284 284 285 285 **DRVI/DDRVI** 286 286 ... ... @@ -331,17 +331,17 @@ 331 331 332 332 **Device used** 333 333 334 -(% class="table-bordered" style="width:1046px"%)335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px"%)**Parameter**|(% colspan="14"style="width:603.125px"%)**Devices**|(% style="width:125px" %)**Offset modification**|(((336 +(% class="table-bordered" %) 337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 336 336 **Pulse** 337 337 338 338 **extension** 339 339 ))) 340 -| (% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**341 -|(% rowspan="4" %)DRVI| (% style="width:132.875px" %)Parameter 1|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|342 -| (% style="width:132.875px" %)Parameter 2|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|343 -| (% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|344 -| (% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 345 +|Parameter 3|●| | | | | | | | | | | | | | | 346 +|Parameter 4|●|●|●|●| | | | | | | | | | | | 345 345 346 346 **Features** 347 347 ... ... @@ -350,7 +350,7 @@ 350 350 With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning. 351 351 352 352 (% style="text-align:center" %) 353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]] 354 354 355 355 • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647) 356 356 ... ... @@ -363,7 +363,7 @@ 363 363 • The pulse frequency and pulse position could be modified during the operation of this instruction. 364 364 365 365 (% style="text-align:center" %) 366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]] 367 367 368 368 **✎Note:** 369 369 ... ... @@ -384,7 +384,7 @@ 384 384 385 385 {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K. 386 386 387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** = 389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** == 388 388 389 389 **DRVA/DDRVA** 390 390 ... ... @@ -450,7 +450,7 @@ 450 450 {{id name="OLE_LINK365"/}} 451 451 452 452 (% style="text-align:center" %) 453 -[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]]455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]] 454 454 455 455 • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647) 456 456 ... ... @@ -463,7 +463,7 @@ 463 463 • The pulse frequency and pulse position could be modified during the operation of this instruction. 464 464 465 465 (% style="text-align:center" %) 466 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]] 467 467 468 468 **✎Note:** 469 469 ... ... @@ -484,7 +484,7 @@ 484 484 485 485 Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000 486 486 487 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** = 489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** == 488 488 489 489 **PLSR/DPLSR** 490 490 ... ... @@ -564,7 +564,7 @@ 564 564 • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified. 565 565 566 566 (% style="text-align:center" %) 567 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]] 568 568 569 569 **✎Note:** 570 570 ... ... @@ -585,7 +585,7 @@ 585 585 586 586 Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K. 587 587 588 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** = 590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** == 589 589 590 590 **PLSR2** 591 591 ... ... @@ -738,7 +738,7 @@ 738 738 The waveform diagram is as follows: 739 739 740 740 (% style="text-align:center" %) 741 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]] 742 742 743 743 2) Waiting time 744 744 ... ... @@ -762,7 +762,7 @@ 762 762 The waveform diagram is as follows: 763 763 764 764 (% style="text-align:center" %) 765 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]] 766 766 767 767 3) Waiting signal 768 768 ... ... @@ -786,7 +786,7 @@ 786 786 If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation) 787 787 788 788 (% style="text-align:center" %) 789 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]] 790 790 791 791 4)** **Trigger signal 792 792 ... ... @@ -812,7 +812,7 @@ 812 812 The pulse waveform diagram is as follows: 813 813 814 814 (% style="text-align:center" %) 815 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]] 816 816 817 817 If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency. 818 818 ... ... @@ -826,7 +826,7 @@ 826 826 |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range 827 827 |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started. 828 828 829 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** = 831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** == 830 830 831 831 **PLSV/DPLSV** 832 832 ... ... @@ -868,7 +868,7 @@ 868 868 • The pulse frequency could be modified while the instruction is running. 869 869 870 870 (% style="text-align:center" %) 871 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]] 872 872 873 873 **✎Note:** 874 874 ... ... @@ -896,9 +896,9 @@ 896 896 The sending pulse is as follows: 897 897 898 898 (% style="text-align:center" %) 899 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]] 900 900 901 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** = 903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** == 902 902 903 903 **PLSY/DPLSY** 904 904 ... ... @@ -940,7 +940,7 @@ 940 940 • The instruction pulse output has no acceleration/deceleration process. 941 941 942 942 (% style="text-align:center" %) 943 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]] 944 944 945 945 **✎Note:** 946 946 ... ... @@ -964,7 +964,7 @@ 964 964 [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]] 965 965 966 966 (% style="text-align:center" %) 967 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 968 968 969 969 **(2) Pulse output: positioning address (operand (n))> 0** 970 970 ... ... @@ -973,9 +973,9 @@ 973 973 [[image:08_html_87bd5854f06006b0.png]] 974 974 975 975 (% style="text-align:center" %) 976 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 977 977 978 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** = 980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** == 979 979 980 980 **PWM** 981 981 ... ... @@ -986,21 +986,21 @@ 986 986 **Content, range and data type** 987 987 988 988 (% class="table-bordered" %) 989 -| =(% scope="row" %)**Parameter**|=(% style="width:618px;" %)**Content**|=(% style="width:21px;" %)**Range**|=(% style="width: 132px;" %)**Data type**|=(% style="width: 118px;" %)**Data type (label)**990 -| =(s1)|(% style="width:618px" %)The ON time or the device number storing the ON time|(% style="width:121px" %)0 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S991 -| =(s2)|(% style="width:618px" %)Cycle or the device number storing the cycle|(% style="width:121px" %)1 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S992 -| =(d)|(% style="width:618px" %)The channel number and device number that pulse outputs|(% style="width:121px" %)-|(% style="width:132px" %)Bit|(% style="width:118px" %)ANY_BOOL991 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)** 992 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S 993 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S 994 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL 993 993 994 994 **Device used** 995 995 996 996 (% class="table-bordered" %) 997 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((999 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 998 998 **Pulse** 999 999 1000 1000 **extension** 1001 1001 ))) 1002 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1003 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1004 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1005 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1004 1004 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1005 1005 |Parameter 3|●| | | | | | | | | | | | 1006 1006 ... ... @@ -1011,9 +1011,9 @@ 1011 1011 • Output the ON time specified in (s1) and the cycle pulse specified in (s2) to the output destination specified in (d). 1012 1012 1013 1013 ((( 1014 -• Specify the output pulse width in (s1). (The setting range is 0 to 32,767) 1016 +• Specify the output pulse width in (s1). (The setting range is 0 to 32,767ms) 1015 1015 1016 -• Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1018 +• Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1017 1017 1018 1018 • Specify the device that outputs pulses in (d). Only Y devices with positioning parameters can be specified. 1019 1019 ... ... @@ -1020,7 +1020,7 @@ 1020 1020 • The pulse width and pulse period can be modified during pulse sending. 1021 1021 1022 1022 (% style="text-align:center" %) 1023 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]] 1024 1024 ))) 1025 1025 1026 1026 **✎Note:** ... ... @@ -1032,20 +1032,16 @@ 1032 1032 **Related device** 1033 1033 1034 1034 (% class="table-bordered" %) 1035 -| =(% scope="row" style="width: 233px;" %)**Output shaft**|(% scope="col" style="width:81px" %)**Y0**|(% scope="col" style="width:104px" %)**Y1**|(% scope="col" style="width:111px" %)**Y2**|(% scope="col" style="width:107px" %)**Y3**|(% scope="col" style="width:108px" %)**Y4**|(% scope="col" style="width:108px" %)**Y5**|(% scope="col" style="width:115px" %)**Y6**|(% scope="col" %)**Y7**1036 -| =(% style="width: 233px;" %)Percentage mode sign|(% style="width:81px" %)SM897|(% style="width:104px" %)SM957|(% style="width:111px" %)SM1017|(% style="width:107px" %)SM1077|(% style="width:108px" %)SM1137|(% style="width:108px" %)SM1197|(% style="width:115px" %)SM1257|SM13171037 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1038 +|Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1037 1037 1038 -|=(% scope="row" style="width: 217px;" %)**Output shaft**|(% scope="col" style="width:105px" %)**Y0**|(% scope="col" %)**Y1**|(% scope="col" %)**Y2**|(% scope="col" %)**Y3**|(% scope="col" %)**Y4**|(% scope="col" %)**Y5**|(% scope="col" %)**Y6**|(% scope="col" %)**Y7** 1039 -|=(% style="width: 217px;" %)PWM unit selection|(% style="width:105px" %)SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1040 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1041 - 1042 1042 **Error code** 1043 1043 1044 1044 (% class="table-bordered" %) 1045 -| =(% scope="row" %)**Error code**|=**Content**1046 -| =4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)1047 -| =4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range1048 -| =4088H|The same pulse output axis (d) is used and has been started.1043 +|**Error code**|**Content** 1044 +|4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2) 1045 +|4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range 1046 +|4088H|The same pulse output axis (d) is used and has been started. 1049 1049 1050 1050 **Example** 1051 1051 ... ... @@ -1052,16 +1052,16 @@ 1052 1052 (% style="text-align:center" %) 1053 1053 [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]] 1054 1054 1055 -The waveform diagram is shown as below.1053 +The waveform diagram is shown as right. 1056 1056 1057 1057 (% style="text-align:center" %) 1058 -[[image:08_html_f38f59f98fdc96c0.png|| height="174" width="477"class="img-thumbnail"]]1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]] 1059 1059 1060 -= **PWM/PWM per milmode** =1058 +== **PWM/PWM perimeter mode** == 1061 1061 1062 1062 **PWM** 1063 1063 1064 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1062 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1065 1065 1066 1066 -[PWM (s1) (s2) (d)] 1067 1067 ... ... @@ -1068,37 +1068,37 @@ 1068 1068 **Content, range and data type** 1069 1069 1070 1070 (% class="table-bordered" %) 1071 -| =(% scope="row" %)**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**1072 -| =(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S1073 -| =(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S1074 -| =(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL1069 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 1070 +|(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S 1071 +|(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S 1072 +|(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL 1075 1075 1076 1076 **Device used** 1077 1077 1078 1078 (% class="table-bordered" %) 1079 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((1077 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 1080 1080 **Pulse** 1081 1081 1082 1082 **extension** 1083 1083 ))) 1084 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1085 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1082 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1083 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1086 1086 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1087 1087 |Parameter 3|●| | | | | | | | | | | | 1088 1088 1089 1089 **Features** 1090 1090 1091 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1089 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1092 1092 1093 -It is necessary to turn on the permil mode of the PWM instruction, and the corresponding related device:1091 +It is necessary to turn on the millimetric ratio mode of the PWM instruction, and the corresponding related device: 1094 1094 1095 1095 (% class="table-bordered" %) 1096 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1097 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171094 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1095 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1098 1098 1099 1099 Specify the output pulse duty ratio in (s1). (The setting range is 0 to 1000) 1100 1100 1101 -Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1099 +Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1102 1102 1103 1103 Specify the device that outputs the pulse in (d). Only Y devices with positioning parameters can be specified. 1104 1104 ... ... @@ -1106,7 +1106,7 @@ 1106 1106 1107 1107 High level time (ms) = set cycle time (ms) x duty cycle / 1000 1108 1108 1109 -Low level time (ms) = period (ms) 1107 +Low level time (ms) = period (ms)-high level time (ms) 1110 1110 1111 1111 That is, the period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; If it is set to 900, the output will be high for 90ms and low for 10ms. The fractional part of the calculated pulse output time is output by rounding. 1112 1112 ... ... @@ -1115,20 +1115,18 @@ 1115 1115 **✎Note:** 1116 1116 1117 1117 1. Please be careful not to overlap with other control devices. 1118 -1. About pulse output : This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.1116 +1. About pulse output 1119 1119 1118 +This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped. 1119 + 1120 1120 **Related device** 1121 1121 1122 -• Per milmode flag1122 +• Percentage mode flag 1123 1123 1124 1124 (% class="table-bordered" %) 1125 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1126 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171125 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1126 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1127 1127 1128 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1129 -|=PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1130 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1131 - 1132 1132 **Error code** 1133 1133 1134 1134 (% class="table-bordered" %) ... ... @@ -1142,14 +1142,14 @@ 1142 1142 The period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; duty cycle If it is set to 900, then the output is high for 90ms and low for 10ms; 1143 1143 1144 1144 (% style="text-align:center" %) 1145 -[[image:08_html_ace0b444319fb8c4.png|| height="155" width="905"class="img-thumbnail"]]1141 +[[image:08_html_ace0b444319fb8c4.png||class="img-thumbnail"]] 1146 1146 1147 1147 The waveform diagram is as follows, the period is 300ms, the duty cycle is 100, and the output is 30ms high level and 270ms low level: 1148 1148 1149 1149 (% style="text-align:center" %) 1150 -[[image:08_html_13acf8747e8703ff.png|| height="221" width="625"class="img-thumbnail"]]1146 +[[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]] 1151 1151 1152 -= **G90G01 Absolute position line interpolation instruction** = 1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** == 1153 1153 1154 1154 **G90G01** 1155 1155 ... ... @@ -1189,7 +1189,7 @@ 1189 1189 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation. 1190 1190 1191 1191 (% style="text-align:center" %) 1192 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]] 1193 1193 1194 1194 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1195 1195 ... ... @@ -1214,8 +1214,11 @@ 1214 1214 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1215 1215 1216 1216 (% style="text-align:center" %) 1217 -[[image: image-20220921172417-2.png]]1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1218 1218 1215 +(% style="text-align:center" %) 1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1217 + 1219 1219 **{{id name="_Toc32765"/}}Error Codes** 1220 1220 1221 1221 (% class="table-bordered" %) ... ... @@ -1224,16 +1224,16 @@ 1224 1224 |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range 1225 1225 |4088H|The same pulse output axis (d1) is used and has been started. 1226 1226 1227 -**Example** 1226 +**{{id name="_Toc29603"/}}Example** 1228 1228 1229 1229 (% style="text-align:center" %) 1230 -[[image: image-20220921163523-1.jpeg||class="img-thumbnail"]]1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1231 1231 1232 1232 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1233 1233 1234 -= **G91G01 Relative position line interpolation instruction** = 1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** == 1235 1235 1236 -**G91G01** 1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01** 1237 1237 1238 1238 Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode. 1239 1239 ... ... @@ -1271,7 +1271,7 @@ 1271 1271 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position. 1272 1272 1273 1273 (% style="text-align:center" %) 1274 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]] 1275 1275 1276 1276 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647. 1277 1277 ... ... @@ -1294,10 +1294,13 @@ 1294 1294 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1295 1295 1296 1296 (% style="text-align:center" %) 1297 -[[image: image-20220921172437-3.png]]1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1298 1298 1299 -**Error Codes** 1298 +(% style="text-align:center" %) 1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1300 1300 1301 +**{{id name="_Toc8461"/}}Error Codes** 1302 + 1301 1301 (% class="table-bordered" %) 1302 1302 |**Error Codes**|**Contents** 1303 1303 |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1306,11 +1306,12 @@ 1306 1306 1307 1307 **{{id name="_Toc16441"/}}Example** 1308 1308 1309 -[[image:image-20220921163600-2.png]] 1311 +(% style="text-align:center" %) 1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1310 1310 1311 1311 {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1312 1312 1313 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** = 1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** == 1314 1314 1315 1315 **G90G02** 1316 1316 ... ... @@ -1348,7 +1348,7 @@ 1348 1348 {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point. 1349 1349 1350 1350 (% style="text-align:center" %) 1351 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]] 1352 1352 1353 1353 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1354 1354 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1371,10 +1371,13 @@ 1371 1371 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1372 1372 1373 1373 (% style="text-align:center" %) 1374 -[[image: image-20220921172524-4.png]]1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1375 1375 1376 -**Error Codes** 1379 +(% style="text-align:center" %) 1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1377 1377 1382 + **Error Codes** 1383 + 1378 1378 (% class="table-bordered" %) 1379 1379 |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents** 1380 1380 |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1390,11 +1390,11 @@ 1390 1390 **{{id name="OLE_LINK268"/}}Example** 1391 1391 1392 1392 (% style="text-align:center" %) 1393 -[[image: image-20220921163619-3.png||class="img-thumbnail"]]1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1394 1394 1395 1395 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1396 1396 1397 -= **G91G02 Relative position clockwise circular interpolation instruction** = 1403 +== **G91G02 Relative position clockwise circular interpolation instruction** == 1398 1398 1399 1399 **G91G02** 1400 1400 ... ... @@ -1436,7 +1436,7 @@ 1436 1436 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position. 1437 1437 1438 1438 (% style="text-align:center" %) 1439 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]] 1440 1440 1441 1441 * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647. 1442 1442 * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1459,8 +1459,11 @@ 1459 1459 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1460 1460 1461 1461 (% style="text-align:center" %) 1462 -[[image: image-20220921172550-5.png]]1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1463 1463 1470 +(% style="text-align:center" %) 1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1472 + 1464 1464 **Error Codes** 1465 1465 1466 1466 (% class="table-bordered" %) ... ... @@ -1478,11 +1478,11 @@ 1478 1478 **Example**{{id name="OLE_LINK22"/}} 1479 1479 1480 1480 (% style="text-align:center" %) 1481 -[[image: image-20220921163641-4.png||class="img-thumbnail"]]1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1482 1482 1483 1483 {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1484 1484 1485 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** = 1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** == 1486 1486 1487 1487 G90G03 1488 1488 ... ... @@ -1524,7 +1524,7 @@ 1524 1524 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point. 1525 1525 1526 1526 (% style="text-align:center" %) 1527 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]] 1528 1528 1529 1529 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1530 1530 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1547,8 +1547,11 @@ 1547 1547 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1548 1548 1549 1549 (% style="text-align:center" %) 1550 -[[image: image-20220921172606-6.png]]1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1551 1551 1561 +(% style="text-align:center" %) 1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1563 + 1552 1552 **Error Codes** 1553 1553 1554 1554 (% class="table-bordered" %) ... ... @@ -1566,11 +1566,11 @@ 1566 1566 **Example** 1567 1567 1568 1568 (% style="text-align:center" %) 1569 -[[image: image-20220921163737-5.png||class="img-thumbnail"]]1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1570 1570 1571 1571 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1572 1572 1573 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** = 1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** == 1574 1574 1575 1575 **G91G03** 1576 1576 ... ... @@ -1612,7 +1612,7 @@ 1612 1612 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position. 1613 1613 1614 1614 (% style="text-align:center" %) 1615 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]] 1616 1616 1617 1617 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1618 1618 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1635,8 +1635,11 @@ 1635 1635 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1636 1636 1637 1637 (% style="text-align:center" %) 1638 -[[image: image-20220921172617-7.png]]1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1639 1639 1652 +(% style="text-align:center" %) 1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1654 + 1640 1640 **Error Codes** 1641 1641 1642 1642 (% class="table-bordered" %) ... ... @@ -1654,11 +1654,11 @@ 1654 1654 **Example** 1655 1655 1656 1656 (% style="text-align:center" %) 1657 -[[image: image-20220921163754-6.png]]1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1658 1658 1659 1659 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1660 1660 1661 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** = 1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** == 1662 1662 1663 1663 **G90G02H** 1664 1664 ... ... @@ -1702,7 +1702,7 @@ 1702 1702 (% style="text-align:center" %) 1703 1703 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1704 1704 1705 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is image-20220921171331-1.png||height="31" width="113"]],,,,.(The range is -2147483648 to +2147483647.)1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1706 1706 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1707 1707 1708 1708 * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1722,7 +1722,7 @@ 1722 1722 1723 1723 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1724 1724 1725 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian image-20220921171348-2.png||height="47" width="90"]],,),,1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1726 1726 1727 1727 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1728 1728 ... ... @@ -1729,19 +1729,21 @@ 1729 1729 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1730 1730 1731 1731 (% style="text-align:center" %) 1732 -[[image: image-20220921172637-8.png]]1747 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1733 1733 1734 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1749 +(% style="text-align:center" %) 1750 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1735 1735 1736 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]]is determined by formula (1),and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1737 1737 1738 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,maynotbeequalotheset (Xe,Ye),but itmustpassthroughthesetpoint(Xe,Ye), inthe wholecircle.1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1739 1739 1740 -(% style="text-align:center" %) 1741 -[[image:image-20220921171411-3.png||height="62" width="312"]] 1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1742 1742 1743 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1744 1744 1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1761 + 1745 1745 (% class="table-bordered" %) 1746 1746 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1747 1747 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1761,16 +1761,16 @@ 1761 1761 |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1762 1762 |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1763 1763 |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0. 1764 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,,,[[image:image-20220921171529-5.png||height="32" width="69"]],,,,)1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1765 1765 1766 1766 **{{id name="_Toc12418"/}}Example** 1767 1767 1768 1768 (% style="text-align:center" %) 1769 -[[image: image-20220921163843-7.png||class="img-thumbnail"]]1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1770 1770 1771 1771 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1772 1772 1773 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** = 1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** == 1774 1774 1775 1775 **G91G02H** 1776 1776 ... ... @@ -1814,7 +1814,7 @@ 1814 1814 (% style="text-align:center" %) 1815 1815 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1816 1816 1817 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]].(The range is -2147483648 to +2147483647.)1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1818 1818 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1819 1819 1820 1820 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1834,28 +1834,28 @@ 1834 1834 1835 1835 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1836 1836 1837 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1838 1838 1839 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),, 1840 - 1841 1841 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1842 1842 1843 1843 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1844 1844 1845 1845 (% style="text-align:center" %) 1846 -[[image: image-20220921172651-9.png]]1861 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1847 1847 1848 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1863 +(% style="text-align:center" %) 1864 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1849 1849 1850 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates(Xe‘,Ye’) of X axisand Y axis accordingo the number of turns of interpolation.1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1851 1851 1852 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe‘,Ye’),,,maynotbeequalotheset (Xe,Ye),, ,,, but itmustpassthroughthesetpoin(Xe,Ye),,,,inhewhole circle.1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1853 1853 1854 -(% style="text-align:center" %) 1855 -[[image:image-20220921171703-8.png||height="58" width="291"]] 1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1856 1856 1857 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,.1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1858 1858 1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 1875 + 1859 1859 (% class="table-bordered" %) 1860 1860 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1861 1861 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1875,16 +1875,16 @@ 1875 1875 |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1876 1876 |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1877 1877 |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0. 1878 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image: image-20220921171735-9.png||height="28" width="59"]])1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1879 1879 1880 1880 **{{id name="_Toc28830"/}}Example** 1881 1881 1882 1882 (% style="text-align:center" %) 1883 -[[image: image-20220921163904-8.png]]1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1884 1884 1885 1885 Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1886 1886 1887 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** = 1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** == 1888 1888 1889 1889 **G90G03H** 1890 1890 ... ... @@ -1928,8 +1928,7 @@ 1928 1928 (% style="text-align:center" %) 1929 1929 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1930 1930 1931 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. 1932 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.) 1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1933 1933 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1934 1934 1935 1935 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1949,28 +1949,28 @@ 1949 1949 1950 1950 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1951 1951 1952 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1953 1953 1954 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]] 1955 - 1956 1956 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1957 1957 1958 1958 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1959 1959 1960 1960 (% style="text-align:center" %) 1961 -[[image: image-20220921172744-10.png]]1975 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1962 1962 1963 -(9) Exact match pitch of screws (lead) K and Ze 1977 +(% style="text-align:center" %) 1978 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1964 1964 1965 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1966 1966 1967 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset (Xe,Ye),,,,, but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1968 1968 1969 -(% style="text-align:center" %) 1970 -[[image:image-20220921171930-12.png||height="74" width="370"]] 1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1971 1971 1972 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,).1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1973 1973 1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1989 + 1974 1974 (% class="table-bordered" %) 1975 1975 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1976 1976 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1990,16 +1990,16 @@ 1990 1990 |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1991 1991 |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1992 1992 |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0. 1993 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image: image-20220921171956-13.png||height="29" width="61"]])2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1994 1994 1995 1995 **{{id name="_Toc18584"/}}Example** 1996 1996 1997 1997 (% style="text-align:center" %) 1998 -[[image: image-20220921163935-9.png||class="img-thumbnail"]]2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1999 1999 2000 2000 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 2001 2001 2002 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** = 2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** == 2003 2003 2004 2004 **G91G03H** 2005 2005 ... ... @@ -2063,28 +2063,28 @@ 2063 2063 2064 2064 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 2065 2065 2066 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 2067 2067 2068 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]] 2069 - 2070 2070 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 2071 2071 2072 2072 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 2073 2073 2074 2074 (% style="text-align:center" %) 2075 -[[image: image-20220921172803-11.png]]2089 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 2076 2076 2077 -(9) Exact match pitch of screws (lead) K and Ze 2091 +(% style="text-align:center" %) 2092 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 2078 2078 2079 - Thestartpoint coordinate of helicalinterpolation is(0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumberof turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 2080 2080 2081 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset(Xe,Ye), but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 2082 2082 2083 -(% style="text-align:center" %) 2084 -[[image:image-20220921172159-16.png||height="72" width="362"]] 2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 2085 2085 2086 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestart pointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 2087 2087 2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 2103 + 2088 2088 (% class="table-bordered" %) 2089 2089 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 2090 2090 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -2104,12 +2104,12 @@ 2104 2104 |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 2105 2105 |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 2106 2106 |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0. 2107 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead image-20220921172255-17.png||height="29" width="62"]],,,,)2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 2108 2108 2109 2109 **{{id name="_Toc11997"/}}Example** 2110 2110 2111 2111 (% style="text-align:center" %) 2112 -[[image: image-20220921163953-10.png||class="img-thumbnail"]]2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2113 2113 2114 2114 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}} 2115 2115 ... ... @@ -2259,7 +2259,7 @@ 2259 2259 When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle. 2260 2260 2261 2261 (% style="text-align:center" %) 2262 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]] 2263 2263 2264 2264 **(9) Not scanned** 2265 2265 ... ... @@ -2510,7 +2510,7 @@ 2510 2510 [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement. 2511 2511 2512 2512 (% style="text-align:center" %) 2513 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]] 2514 2514 2515 2515 **(8) Direction delay** 2516 2516 ... ... @@ -2523,7 +2523,7 @@ 2523 2523 |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325 2524 2524 2525 2525 (% style="text-align:center" %) 2526 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]] 2527 2527 2528 2528 **(9) External start signal** 2529 2529 ... ... @@ -2555,12 +2555,12 @@ 2555 2555 ①Reachable frequency 2556 2556 2557 2557 (% style="text-align:center" %) 2558 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]] 2559 2559 2560 2560 ②Unreachable frequency 2561 2561 2562 2562 (% style="text-align:center" %) 2563 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]] 2564 2564 2565 2565 2) Modify the number of pulses: 2566 2566 ... ... @@ -2567,12 +2567,12 @@ 2567 2567 ①Modify to the number of reachable pulses 2568 2568 2569 2569 (% style="text-align:center" %) 2570 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]] 2571 2571 2572 2572 ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending) 2573 2573 2574 2574 (% style="text-align:center" %) 2575 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]] 2576 2576 2577 2577 **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range** 2578 2578 ... ... @@ -2629,17 +2629,17 @@ 2629 2629 Time-minute ladder acceleration and deceleration 2630 2630 2631 2631 (% style="text-align:center" %) 2632 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]] 2633 2633 2634 2634 Time-minute S-type acceleration and deceleration 2635 2635 2636 2636 (% style="text-align:center" %) 2637 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]] 2638 2638 2639 2639 The following figure shows the changes of each parameter 2640 2640 2641 2641 (% style="text-align:center" %) 2642 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]] 2643 2643 2644 2644 **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration. 2645 2645
- image-20220921163523-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.2 KB - Content
- image-20220921163600-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.5 KB - Content
- image-20220921163619-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163641-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163737-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163754-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163843-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163904-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163935-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921163953-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921171331-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171348-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171411-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171433-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171529-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171628-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171639-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171703-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171735-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171807-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171852-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171930-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171956-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172054-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172134-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172159-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921172255-17.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172410-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172417-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172437-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172524-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172550-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172606-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172617-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172637-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172651-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172744-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172803-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content