Changes for page 08 High-speed pulse output
Last modified by Mora Zhou on 2024/08/08 14:35
From version 30.1
edited by Devin Chen
on 2023/10/27 16:40
on 2023/10/27 16:40
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 39 removed)
- 3q3.png
- image-20220921163523-1.jpeg
- image-20220921163600-2.png
- image-20220921163619-3.png
- image-20220921163641-4.png
- image-20220921163737-5.png
- image-20220921163754-6.png
- image-20220921163843-7.png
- image-20220921163904-8.png
- image-20220921163935-9.png
- image-20220921163953-10.png
- image-20220921171331-1.png
- image-20220921171348-2.png
- image-20220921171411-3.png
- image-20220921171433-4.png
- image-20220921171529-5.png
- image-20220921171628-6.png
- image-20220921171639-7.png
- image-20220921171703-8.png
- image-20220921171735-9.png
- image-20220921171807-10.png
- image-20220921171852-11.png
- image-20220921171930-12.png
- image-20220921171956-13.png
- image-20220921172054-14.png
- image-20220921172134-15.png
- image-20220921172159-16.png
- image-20220921172255-17.png
- image-20220921172410-1.png
- image-20220921172417-2.png
- image-20220921172437-3.png
- image-20220921172524-4.png
- image-20220921172550-5.png
- image-20220921172606-6.png
- image-20220921172617-7.png
- image-20220921172637-8.png
- image-20220921172651-9.png
- image-20220921172744-10.png
- image-20220921172803-11.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -PLC Editor2.WebHome 1 +PLC Editor2.1 User manual.2\.1 LX5V user manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. DevinChen1 +XWiki.admin - Content
-
... ... @@ -1,5 +1,7 @@ 1 -= {{id name="_Toc23711"/}}**ZRN/DZRN/Originreturn** =1 += **High-speed pulse output instruction** = 2 2 3 +== {{id name="_Toc23711"/}}**ZRN/DZRN/Origin return** == 4 + 3 3 **ZRN/DZRN** 4 4 5 5 This instruction is to use the specified pulse speed and pulse output port to make the actuator move to the origin of action (DOG) when the PLC and the servo drive work together, until the origin signal meets the conditions. ... ... @@ -9,33 +9,33 @@ 9 9 **{{id name="OLE_LINK392"/}}Content, range and data type** 10 10 11 11 (% class="table-bordered" %) 12 -|**Parameter**| (% style="width:392px" %)**Content**|(% style="width:155px" %)**Range**|(% style="width:236px" %)**Data type**|(% style="width:204px" %)**Data type (label)**13 -|(s1)| (% style="width:392px" %)The speed when the origin return starts|(% style="width:155px" %)(((14 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 15 +|(s1)|The speed when the origin return starts|((( 14 14 1 to 32767 15 15 16 16 1 to 200000 17 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S18 -|(s2)| (% style="width:392px" %)Crawl speed|(% style="width:155px" %)(((19 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 20 +|(s2)|Crawl speed|((( 19 19 1 to 32767 20 20 21 21 1 to 200000 22 -)))| (% style="width:236px" %)Signed BIN16/Signed BIN32|(% style="width:204px" %)ANY16_S/ANY32_S23 -|(s3)| (% style="width:392px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 -|(d)| (% style="width:392px" %)The device number (Y) that outputs pulse|(% style="width:155px" %)-|(% style="width:236px" %)Bit|(% style="width:204px" %)ANY_BOOL24 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 25 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 26 +|(d)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 25 25 26 26 **Device used** 27 27 28 -(% class="table-bordered" style="width:1049px"%)29 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133px"%)**Parameter**|(% colspan="14"style="width:617px"%)**Devices**|(% style="width:138px" %)**Offset modification**|(((30 +(% class="table-bordered" %) 31 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 30 30 **Pulse** 31 31 32 32 **extension** 33 33 ))) 34 -| (% style="width:3px" %)**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:138px" %)**[D]**|**XXP**35 -|(% rowspan="4" %)ZRN| (% style="width:133px" %)Parameter 1|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|36 -| (% style="width:133px" %)Parameter 2|(%style="width:3px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:138px" %)●|37 -| (% style="width:133px" %)Parameter 3|(% style="width:3px" %)●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|38 -| (% style="width:133px" %)Parameter 4|(%style="width:3px" %)|●| | | | | | | | | | | |(%style="width:75px" %)|(%style="width:138px" %)|36 +|**X**|**Y**|**M**|**S**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 37 +|(% rowspan="4" %)ZRN|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 38 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 39 +|Parameter 3|●|●|●|●| | | | | | | | | | | | 40 +|Parameter 4| |●| | | | | | | | | | | | | | 39 39 40 40 **Features** 41 41 ... ... @@ -44,7 +44,7 @@ 44 44 . 45 45 46 46 (% style="text-align:center" %) 47 -[[image:08_html_abde218848583ae7.gif||height="352" width="700" class="img-thumbnail"]]49 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="352" width="700"]] 48 48 49 49 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200,000) 50 50 ... ... @@ -59,7 +59,7 @@ 59 59 • The pulse frequency could be modified during operation. 60 60 61 61 (% style="text-align:center" %) 62 -[[image:1652679761818-564.png||height="409" width="800" class="img-thumbnail"]]64 +[[image:1652679761818-564.png||class="img-thumbnail" height="409" width="800"]] 63 63 64 64 **{{id name="OLE_LINK84"/}}✎Note:** 65 65 ... ... @@ -70,7 +70,7 @@ 70 70 Please set the near-point DOG between the reverse limit 1 (LSR) and the forward limit 1 (LSF). When near-point DOG, reverse limit 1 (LSR), forward limit 1 (LSF) do not form the relationship shown in the figure below, the action may not be performed. 71 71 72 72 (% style="text-align:center" %) 73 -[[image:08_html_e424715fa5809765.png||height="129" width="800" class="img-thumbnail"]]75 +[[image:08_html_e424715fa5809765.png||class="img-thumbnail" height="129" width="800"]] 74 74 75 75 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 76 76 ... ... @@ -85,11 +85,11 @@ 85 85 **Example** 86 86 87 87 (% style="text-align:center" %) 88 -[[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]]90 +[[image:08_html_5398e9b5857a7283.png||class="img-thumbnail" height="366" width="700"]] 89 89 90 90 {{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 91 91 92 -= {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** = 94 +== {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** == 93 93 94 94 **{{id name="OLE_LINK390"/}}DSZR/DDSZR** 95 95 ... ... @@ -100,35 +100,35 @@ 100 100 **Content, range and data type** 101 101 102 102 (% class="table-bordered" %) 103 -|**Parameter**| (% style="width:457px" %)**Content**|(% style="width:124px" %)**Range**|(% style="width:226px" %)**Data type**|(% style="width:180px" %)**Data type (label)**104 -|(s1)| (% style="width:457px" %)The speed when the origin return starts|(% style="width:124px" %)(((105 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 106 +|(s1)|The speed when the origin return starts|((( 105 105 1 to 32767 106 106 107 107 1 to 200000 108 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S109 -|(s2)| (% style="width:457px" %)Crawling speed|(% style="width:124px" %)(((110 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 111 +|(s2)|Crawling speed|((( 110 110 1 to 32767 111 111 112 112 1 to 200000 113 -)))| (% style="width:226px" %)Signed BIN16/Signed BIN32|(% style="width:180px" %)ANY16_S/ANY32_S114 -|(s3)| (% style="width:457px" %)The device number of the input number of the near-point signal (DOG) to be input.|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL115 -|(d1)| (% style="width:457px" %)The device number (Y) that outputs pulse|(% style="width:124px" %)-|(% style="width:226px" %)Bit|(% style="width:180px" %)ANY_BOOL116 -|(d2)| (% style="width:457px" %){{id name="OLE_LINK393"/}}Operation direction output port or bit variable|(%style="width:124px" %)|(%style="width:226px" %)|(%style="width:180px" %)115 +)))|Signed BIN16/Signed BIN32|ANY16_S/ANY32_S 116 +|(s3)|The device number of the input number of the near-point signal (DOG) to be input.|-|Bit|ANY_BOOL 117 +|(d1)|The device number (Y) that outputs pulse|-|Bit|ANY_BOOL 118 +|(d2)|{{id name="OLE_LINK393"/}}Operation direction output port or bit variable| | | 117 117 118 118 **Device used** 119 119 120 -(% class="table-bordered" style="width:1022px"%)121 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:133.641px"%)**Parameter**|(% colspan="15"style="width:630.359px"%)**Devices**|(% style="width:128px" %)**Offset modification**|(((122 +(% class="table-bordered" %) 123 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 122 122 **Pulse** 123 123 124 124 **extension** 125 125 ))) 126 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:76px" %)**H**|(% style="width:128px" %)**[D]**|**XXP**127 -|(% rowspan="5" %)DSZR| (% style="width:133.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|128 -| (% style="width:133.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:76px" %)●|(% style="width:128px" %)●|129 -| (% style="width:133.641px" %)Parameter 3|(% style="width:1px" %)●|●|●|●| | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|130 -| (% style="width:133.641px" %)Parameter 4|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|131 -| (% style="width:133.641px" %)Parameter 5|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:76px" %)|(%style="width:128px" %)|128 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 129 +|(% rowspan="5" %)DSZR|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 130 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 131 +|Parameter 3|●|●|●|●| | | | | | | | | | | | | 132 +|Parameter 4| |●| | | | | | | | | | | | | | | 133 +|Parameter 5| |●|●|●|●| | | | | | | | | | | | 132 132 133 133 **Features** 134 134 ... ... @@ -135,7 +135,7 @@ 135 135 The instruction is that when the PLC works with the servo drive, it uses the specified pulse speed and pulse output port and the specified direction axis to move the actuator to the origin of the action (DOG) until the origin signal meets the conditions. 136 136 137 137 (% style="text-align:center" %) 138 -[[image:08_html_abde218848583ae7.gif||height="403" width="800" class="img-thumbnail"]]140 +[[image:08_html_abde218848583ae7.gif||class="img-thumbnail" height="403" width="800"]] 139 139 140 140 • Specify the speed at the start of origin return in (s1). (It should be in the range of 1 to 200000) 141 141 ... ... @@ -152,7 +152,7 @@ 152 152 • The pulse frequency could be modified during operation.{{id name="OLE_LINK398"/}} 153 153 154 154 (% style="text-align:center" %) 155 -[[image:1652679890567-504.png||height="406" width="800" class="img-thumbnail"]]157 +[[image:1652679890567-504.png||class="img-thumbnail" height="406" width="800"]] 156 156 157 157 **✎Note:** 158 158 ... ... @@ -165,7 +165,7 @@ 165 165 {{id name="OLE_LINK399"/}} 166 166 167 167 (% style="text-align:center" %) 168 -[[image:08_html_3152d1fc65e8de15.gif||height="128" width="900" class="img-thumbnail"]]170 +[[image:08_html_3152d1fc65e8de15.gif||class="img-thumbnail" height="128" width="900"]] 169 169 170 170 Please make the crawling speed slow enough. Since it does not decelerate to stop, if the crawling speed is too fast, the stop position will shift due to inertia. 171 171 ... ... @@ -184,7 +184,7 @@ 184 184 185 185 Set Y1 as the output axis and Y10 as the direction axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 186 186 187 -= **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** = 189 +== **{{id name="_Toc4674"/}}DVIT/DDVIT/16-bit data relative positioning** == 188 188 189 189 **DVIT/DDVIT** 190 190 ... ... @@ -221,17 +221,17 @@ 221 221 **Device used** 222 222 223 223 (% class="table-bordered" %) 224 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:134.641px"%)**Parameter**|(% colspan="15"style="width:628.359px"%)**Devices**|(% style="width:129px" %)**Offset modification**|(((226 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="15" %)**Devices**|**Offset modification**|((( 225 225 **Pulse** 226 226 227 227 **extension** 228 228 ))) 229 -| (% style="width:1px" %)**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:75px" %)**H**|(% style="width:129px" %)**[D]**|**XXP**230 -|(% rowspan="5" %)DVIT| (% style="width:134.641px" %)Parameter 1|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|231 -| (% style="width:134.641px" %)Parameter 2|(%style="width:1px" %)| | | | |●|●|●|●|●|●|●|●|●|(% style="width:75px" %)●|(% style="width:129px" %)●|232 -| (% style="width:134.641px" %)Parameter 3|(%style="width:1px" %)|●| | | | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|233 -| (% style="width:134.641px" %)Parameter 4|(%style="width:1px" %)|●|●|●|●| | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|234 -| (% style="width:134.641px" %)Parameter 5|(% style="width:1px" %)●| |●|●| | | | | | | | | | |(%style="width:75px" %)|(%style="width:129px" %)|231 +|**X**|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 232 +|(% rowspan="5" %)DVIT|Parameter 1| | | | | |●|●|●|●|●|●|●|●|●|●|●| 233 +|Parameter 2| | | | | |●|●|●|●|●|●|●|●|●|●|●| 234 +|Parameter 3| |●| | | | | | | | | | | | | | | 235 +|Parameter 4| |●|●|●|●| | | | | | | | | | | | 236 +|Parameter 5|●| |●|●| | | | | | | | | | | | | 235 235 236 236 **Features** 237 237 ... ... @@ -248,7 +248,7 @@ 248 248 • Specify the bit device of the interrupt signal in (d3). Only the devices and general outputs specified in the parameters could be specified. 249 249 250 250 (% style="text-align:center" %) 251 -[[image:08_html_5f96163eb153efdb.gif||height="428" width="800" class="img-thumbnail"]]253 +[[image:08_html_5f96163eb153efdb.gif||class="img-thumbnail" height="428" width="800"]] 252 252 253 253 **✎Note:** 254 254 ... ... @@ -278,9 +278,9 @@ 278 278 Set Y0 as the output axis and Y1 as the direction axis with the maximum speed of 200K, the offset speed of 500, and the acceleration/deceleration time of 100ms, and run at a frequency of 200,000, and send 200,000 pulses after receiving the X0 signal. 279 279 280 280 (% style="text-align:center" %) 281 -[[image:08_html_cbfdbddb08628e8c.gif||height="419" width="800" class="img-thumbnail"]]283 +[[image:08_html_cbfdbddb08628e8c.gif||class="img-thumbnail" height="419" width="800"]] 282 282 283 -= {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** = 285 +== {{id name="_Toc22468"/}}**DRVI/DDRVI/Relative positioning** == 284 284 285 285 **DRVI/DDRVI** 286 286 ... ... @@ -331,17 +331,17 @@ 331 331 332 332 **Device used** 333 333 334 -(% class="table-bordered" style="width:1046px"%)335 -|(% rowspan="2" %)**Instruction**|(% rowspan="2" style="width:132.875px"%)**Parameter**|(% colspan="14"style="width:603.125px"%)**Devices**|(% style="width:125px" %)**Offset modification**|(((336 +(% class="table-bordered" %) 337 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="14" %)**Devices**|**Offset modification**|((( 336 336 **Pulse** 337 337 338 338 **extension** 339 339 ))) 340 -| (% style="width:1px" %)**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|(% style="width:79px" %)**H**|(% style="width:125px" %)**[D]**|**XXP**341 -|(% rowspan="4" %)DRVI| (% style="width:132.875px" %)Parameter 1|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|342 -| (% style="width:132.875px" %)Parameter 2|(%style="width:1px" %)| | | |●|●|●|●|●|●|●|●|●|(% style="width:79px" %)●|(% style="width:125px" %)●|343 -| (% style="width:132.875px" %)Parameter 3|(% style="width:1px" %)●| | | | | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|344 -| (% style="width:132.875px" %)Parameter 4|(% style="width:1px" %)●|●|●|●| | | | | | | | | |(%style="width:79px" %)|(%style="width:125px" %)|342 +|**Y**|**M**|**S**|**D.b**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 343 +|(% rowspan="4" %)DRVI|Parameter 1| | | | |●|●|●|●|●|●|●|●|●|●|●| 344 +|Parameter 2| | | | |●|●|●|●|●|●|●|●|●|●|●| 345 +|Parameter 3|●| | | | | | | | | | | | | | | 346 +|Parameter 4|●|●|●|●| | | | | | | | | | | | 345 345 346 346 **Features** 347 347 ... ... @@ -350,7 +350,7 @@ 350 350 With the current stop position as the starting point, specify the movement direction and movement amount (relative address) for positioning. 351 351 352 352 (% style="text-align:center" %) 353 -[[image:08_html_9e2927d44c64e0be.gif||height="323" width="800" class="img-thumbnail"]]355 +[[image:08_html_9e2927d44c64e0be.gif||class="img-thumbnail" height="323" width="800"]] 354 354 355 355 • Specify the positioning address of the user unit with a relative address in (s1). (It should be in the range of -2147483647 to +2147483647) 356 356 ... ... @@ -363,7 +363,7 @@ 363 363 • The pulse frequency and pulse position could be modified during the operation of this instruction. 364 364 365 365 (% style="text-align:center" %) 366 -[[image:08_html_50efa4160b140701.gif||height="418" width="800" class="img-thumbnail"]]368 +[[image:08_html_50efa4160b140701.gif||class="img-thumbnail" height="418" width="800"]] 367 367 368 368 **✎Note:** 369 369 ... ... @@ -384,7 +384,7 @@ 384 384 385 385 {{id name="OLE_LINK91"/}}{{id name="OLE_LINK92"/}}Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, and a pulse number of 200K. 386 386 387 -= {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** = 389 +== {{id name="_Toc23478"/}}**{{id name="_Toc19438"/}}{{id name="_Toc5660"/}}DRVA/DDRVA/Absolute positioning** == 388 388 389 389 **DRVA/DDRVA** 390 390 ... ... @@ -447,8 +447,11 @@ 447 447 448 448 This instruction uses absolute drive to perform single-speed positioning. The specified positioning address adopts the absolute method, and the specified position (absolute address) is used for positioning based on the origin. 449 449 450 - [[image:3q3.png]]452 +{{id name="OLE_LINK365"/}} 451 451 454 +(% style="text-align:center" %) 455 +[[image:08_html_7a3c30baa77024fb.gif||class="img-thumbnail" height="311" width="800"]] 456 + 452 452 • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647) 453 453 454 454 • Specify the instruction speed of user unit in (s2). (It should be in the range of 1 to 200,000) ... ... @@ -460,7 +460,7 @@ 460 460 • The pulse frequency and pulse position could be modified during the operation of this instruction. 461 461 462 462 (% style="text-align:center" %) 463 -[[image:08_html_620f348d2565adf2.gif||height="411" width="800" class="img-thumbnail"]]468 +[[image:08_html_620f348d2565adf2.gif||class="img-thumbnail" height="411" width="800"]] 464 464 465 465 **✎Note:** 466 466 ... ... @@ -481,7 +481,7 @@ 481 481 482 482 Set Y0 as the output axis, and Y1 as the direction axis with the maximum speed in 200K, and the offset speed in 500, and the acceleration/deceleration time in 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, starting at the origin position and ending at 200,000 483 483 484 -= {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** = 489 +== {{id name="_Toc21291"/}}**{{id name="_Toc21950"/}}{{id name="_Toc10018"/}}PLSR/DPLSR/Pulse output with acceleration and deceleration** == 485 485 486 486 **PLSR/DPLSR** 487 487 ... ... @@ -561,7 +561,7 @@ 561 561 • Specify the device that outputs pulses in (d). Only output devices (Y) with positioning parameters could be specified. 562 562 563 563 (% style="text-align:center" %) 564 -[[image:08_html_1b0fa8d702052193.gif||height="382" width="700" class="img-thumbnail"]]569 +[[image:08_html_1b0fa8d702052193.gif||class="img-thumbnail" height="382" width="700"]] 565 565 566 566 **✎Note:** 567 567 ... ... @@ -582,7 +582,7 @@ 582 582 583 583 Set Y0 as the output axis at a maximum speed of 200K, and a offset speed of 500, and a acceleration/deceleration time of 100ms. Send a high-speed pulse with acceleration and deceleration at a frequency of 200KHZ, a pulse number of 200K. 584 584 585 -= {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** = 590 +== {{id name="_Toc10313"/}}**{{id name="_Toc31417"/}}{{id name="_Toc9007"/}}PLSR2/Multi-speed positioning** == 586 586 587 587 **PLSR2** 588 588 ... ... @@ -735,7 +735,7 @@ 735 735 The waveform diagram is as follows: 736 736 737 737 (% style="text-align:center" %) 738 -[[image:08_html_3117922fe2a20cac.gif||height="387" width="700" class="img-thumbnail"]]743 +[[image:08_html_3117922fe2a20cac.gif||class="img-thumbnail" height="387" width="700"]] 739 739 740 740 2) Waiting time 741 741 ... ... @@ -759,7 +759,7 @@ 759 759 The waveform diagram is as follows: 760 760 761 761 (% style="text-align:center" %) 762 -[[image:08_html_6bc1d175fa4748a6.gif||height="372" width="700" class="img-thumbnail"]]767 +[[image:08_html_6bc1d175fa4748a6.gif||class="img-thumbnail" height="372" width="700"]] 763 763 764 764 3) Waiting signal 765 765 ... ... @@ -783,7 +783,7 @@ 783 783 If the signal is received in advance, it will not decelerate to stop, but directly accelerate/decelerate to the specified speed of the next segment. (X2 low level is received during operation) 784 784 785 785 (% style="text-align:center" %) 786 -[[image:08_html_5599da81e80c2958.gif||height="413" width="700" class="img-thumbnail"]]791 +[[image:08_html_5599da81e80c2958.gif||class="img-thumbnail" height="413" width="700"]] 787 787 788 788 4)** **Trigger signal 789 789 ... ... @@ -809,7 +809,7 @@ 809 809 The pulse waveform diagram is as follows: 810 810 811 811 (% style="text-align:center" %) 812 -[[image:08_html_a84e97c5590c3f71.gif||height="371" width="700" class="img-thumbnail"]]817 +[[image:08_html_a84e97c5590c3f71.gif||class="img-thumbnail" height="371" width="700"]] 813 813 814 814 If a signal is received in the acceleration section (deceleration section), it will directly accelerate (decelerate) in the current section to the next pulse frequency. 815 815 ... ... @@ -823,7 +823,7 @@ 823 823 |(% style="width:127px" %)4085H|(% style="width:954px" %)The table parameter with the first address in the read application instruction (s) exceeds the device range, and the output result of the read parameter (s), (d1) and (d2) exceeds the device range 824 824 |(% style="width:127px" %)4088H|(% style="width:954px" %)The same pulse output axis (d1) is used and has been started. 825 825 826 -= {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** = 831 +== {{id name="_Toc3904"/}}**{{id name="_Toc11943"/}}{{id name="_Toc18707"/}}PLSV/DPLSV/Variable speed operation** == 827 827 828 828 **PLSV/DPLSV** 829 829 ... ... @@ -865,7 +865,7 @@ 865 865 • The pulse frequency could be modified while the instruction is running. 866 866 867 867 (% style="text-align:center" %) 868 -[[image:08_html_2521cc1e50e799ab.gif||height="394" width="700" class="img-thumbnail"]]873 +[[image:08_html_2521cc1e50e799ab.gif||class="img-thumbnail" height="394" width="700"]] 869 869 870 870 **✎Note:** 871 871 ... ... @@ -893,9 +893,9 @@ 893 893 The sending pulse is as follows: 894 894 895 895 (% style="text-align:center" %) 896 -[[image:08_html_ac71a602fee1445e.gif||height="387" width="700" class="img-thumbnail"]]901 +[[image:08_html_ac71a602fee1445e.gif||class="img-thumbnail" height="387" width="700"]] 897 897 898 -= {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** = 903 +== {{id name="_Toc8609"/}}**{{id name="_Toc662"/}}{{id name="_Toc30652"/}}PLSY/DPLSY/Pulse output** == 899 899 900 900 **PLSY/DPLSY** 901 901 ... ... @@ -937,7 +937,7 @@ 937 937 • The instruction pulse output has no acceleration/deceleration process. 938 938 939 939 (% style="text-align:center" %) 940 -[[image:08_html_2c248b954bdddae3.gif||height="356" width="700" class="img-thumbnail"]]945 +[[image:08_html_2c248b954bdddae3.gif||class="img-thumbnail" height="356" width="700"]] 941 941 942 942 **✎Note:** 943 943 ... ... @@ -961,7 +961,7 @@ 961 961 [[image:08_html_ba12be0aaf3caf40.png||class="img-thumbnail"]] 962 962 963 963 (% style="text-align:center" %) 964 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]969 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 965 965 966 966 **(2) Pulse output: positioning address (operand (n))> 0** 967 967 ... ... @@ -970,9 +970,9 @@ 970 970 [[image:08_html_87bd5854f06006b0.png]] 971 971 972 972 (% style="text-align:center" %) 973 -[[image:08_html_97583e8621e6ae69.png||height="143" width="600" class="img-thumbnail"]]978 +[[image:08_html_97583e8621e6ae69.png||class="img-thumbnail" height="143" width="600"]] 974 974 975 -= {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** = 980 +== {{id name="_Toc10375"/}}**{{id name="_Toc17757"/}}PWM/BIN 16-bit pulse output** == 976 976 977 977 **PWM** 978 978 ... ... @@ -983,21 +983,21 @@ 983 983 **Content, range and data type** 984 984 985 985 (% class="table-bordered" %) 986 -| =(% scope="row" %)**Parameter**|=(% style="width:618px;" %)**Content**|=(% style="width:21px;" %)**Range**|=(% style="width: 132px;" %)**Data type**|=(% style="width: 118px;" %)**Data type (label)**987 -| =(s1)|(% style="width:618px" %)The ON time or the device number storing the ON time|(% style="width:121px" %)0 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S988 -| =(s2)|(% style="width:618px" %)Cycle or the device number storing the cycle|(% style="width:121px" %)1 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S989 -| =(d)|(% style="width:618px" %)The channel number and device number that pulse outputs|(% style="width:121px" %)-|(% style="width:132px" %)Bit|(% style="width:118px" %)ANY_BOOL991 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)** 992 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S 993 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S 994 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL 990 990 991 991 **Device used** 992 992 993 993 (% class="table-bordered" %) 994 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((999 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 995 995 **Pulse** 996 996 997 997 **extension** 998 998 ))) 999 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1000 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1004 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1005 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1001 1001 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1002 1002 |Parameter 3|●| | | | | | | | | | | | 1003 1003 ... ... @@ -1008,9 +1008,9 @@ 1008 1008 • Output the ON time specified in (s1) and the cycle pulse specified in (s2) to the output destination specified in (d). 1009 1009 1010 1010 ((( 1011 -• Specify the output pulse width in (s1). (The setting range is 0 to 32,767) 1016 +• Specify the output pulse width in (s1). (The setting range is 0 to 32,767ms) 1012 1012 1013 -• Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1018 +• Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1014 1014 1015 1015 • Specify the device that outputs pulses in (d). Only Y devices with positioning parameters can be specified. 1016 1016 ... ... @@ -1017,7 +1017,7 @@ 1017 1017 • The pulse width and pulse period can be modified during pulse sending. 1018 1018 1019 1019 (% style="text-align:center" %) 1020 -[[image:08_html_b54cf8e0b0b86ddb.png||height="195" width="600" class="img-thumbnail"]]1025 +[[image:08_html_b54cf8e0b0b86ddb.png||class="img-thumbnail" height="195" width="600"]] 1021 1021 ))) 1022 1022 1023 1023 **✎Note:** ... ... @@ -1025,28 +1025,20 @@ 1025 1025 1. Please do not duplicate device used for other controls. 1026 1026 1. Set pulse width and cycle time. Please set the value of pulse width (s1) and period (s2) as (s1)≤(s2). 1027 1027 1. About pulse output: This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops, and (s1) and (s2) could be modified when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped. 1028 -1. Support 16 PWM outputs, Y0~~Y7, Y10~~Y17. 1029 -1. When Y10~~Y17 is used for output, the permil mode is invalid. (PLC Editor2 V2.3.1 or above supports Y10~~Y17 PWM output.) 1030 -1. The resolution of Y0~~Y7 is 1us, and the resolution of Y10~~Y17 is 100us. 1031 -1. The output period and pulse width of Y10~~Y17 are measured in milliseconds (ms). 1032 1032 1033 1033 **Related device** 1034 1034 1035 1035 (% class="table-bordered" %) 1036 -| =(% scope="row" style="width: 233px;" %)**Output shaft**|(% scope="col" style="width:81px" %)**Y0**|(% scope="col" style="width:104px" %)**Y1**|(% scope="col" style="width:111px" %)**Y2**|(% scope="col" style="width:107px" %)**Y3**|(% scope="col" style="width:108px" %)**Y4**|(% scope="col" style="width:108px" %)**Y5**|(% scope="col" style="width:115px" %)**Y6**|(% scope="col" %)**Y7**1037 -| =(% style="width: 233px;" %)Percentage mode sign|(% style="width:81px" %)SM897|(% style="width:104px" %)SM957|(% style="width:111px" %)SM1017|(% style="width:107px" %)SM1077|(% style="width:108px" %)SM1137|(% style="width:108px" %)SM1197|(% style="width:115px" %)SM1257|SM13171037 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1038 +|Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1038 1038 1039 -|=(% scope="row" style="width: 217px;" %)**Output shaft**|(% scope="col" style="width:105px" %)**Y0**|(% scope="col" %)**Y1**|(% scope="col" %)**Y2**|(% scope="col" %)**Y3**|(% scope="col" %)**Y4**|(% scope="col" %)**Y5**|(% scope="col" %)**Y6**|(% scope="col" %)**Y7** 1040 -|=(% style="width: 217px;" %)PWM unit selection|(% style="width:105px" %)SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1041 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1042 - 1043 1043 **Error code** 1044 1044 1045 1045 (% class="table-bordered" %) 1046 -| =(% scope="row" %)**Error code**|=**Content**1047 -| =4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)1048 -| =4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range1049 -| =4088H|The same pulse output axis (d) is used and has been started.1043 +|**Error code**|**Content** 1044 +|4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2) 1045 +|4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range 1046 +|4088H|The same pulse output axis (d) is used and has been started. 1050 1050 1051 1051 **Example** 1052 1052 ... ... @@ -1053,16 +1053,16 @@ 1053 1053 (% style="text-align:center" %) 1054 1054 [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]] 1055 1055 1056 -The waveform diagram is shown as below.1053 +The waveform diagram is shown as right. 1057 1057 1058 1058 (% style="text-align:center" %) 1059 -[[image:08_html_f38f59f98fdc96c0.png|| height="174" width="477"class="img-thumbnail"]]1056 +[[image:08_html_f38f59f98fdc96c0.png||class="img-thumbnail" height="213" width="600"]] 1060 1060 1061 -= **PWM/PWM per milmode** =1058 +== **PWM/PWM perimeter mode** == 1062 1062 1063 1063 **PWM** 1064 1064 1065 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1062 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1066 1066 1067 1067 -[PWM (s1) (s2) (d)] 1068 1068 ... ... @@ -1069,37 +1069,37 @@ 1069 1069 **Content, range and data type** 1070 1070 1071 1071 (% class="table-bordered" %) 1072 -| =(% scope="row" %)**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**1073 -| =(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S1074 -| =(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S1075 -| =(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL1069 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 1070 +|(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S 1071 +|(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S 1072 +|(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL 1076 1076 1077 1077 **Device used** 1078 1078 1079 1079 (% class="table-bordered" %) 1080 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((1077 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 1081 1081 **Pulse** 1082 1082 1083 1083 **extension** 1084 1084 ))) 1085 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1086 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1082 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1083 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1087 1087 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1088 1088 |Parameter 3|●| | | | | | | | | | | | 1089 1089 1090 1090 **Features** 1091 1091 1092 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1089 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1093 1093 1094 -It is necessary to turn on the permil mode of the PWM instruction, and the corresponding related device:1091 +It is necessary to turn on the millimetric ratio mode of the PWM instruction, and the corresponding related device: 1095 1095 1096 1096 (% class="table-bordered" %) 1097 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1098 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171094 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1095 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1099 1099 1100 1100 Specify the output pulse duty ratio in (s1). (The setting range is 0 to 1000) 1101 1101 1102 -Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1099 +Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1103 1103 1104 1104 Specify the device that outputs the pulse in (d). Only Y devices with positioning parameters can be specified. 1105 1105 ... ... @@ -1107,7 +1107,7 @@ 1107 1107 1108 1108 High level time (ms) = set cycle time (ms) x duty cycle / 1000 1109 1109 1110 -Low level time (ms) = period (ms) 1107 +Low level time (ms) = period (ms)-high level time (ms) 1111 1111 1112 1112 That is, the period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; If it is set to 900, the output will be high for 90ms and low for 10ms. The fractional part of the calculated pulse output time is output by rounding. 1113 1113 ... ... @@ -1116,20 +1116,18 @@ 1116 1116 **✎Note:** 1117 1117 1118 1118 1. Please be careful not to overlap with other control devices. 1119 -1. About pulse output : This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.1116 +1. About pulse output 1120 1120 1118 +This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped. 1119 + 1121 1121 **Related device** 1122 1122 1123 -• Per milmode flag1122 +• Percentage mode flag 1124 1124 1125 1125 (% class="table-bordered" %) 1126 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1127 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171125 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1126 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1128 1128 1129 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1130 -|=PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1131 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1132 - 1133 1133 **Error code** 1134 1134 1135 1135 (% class="table-bordered" %) ... ... @@ -1143,14 +1143,14 @@ 1143 1143 The period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; duty cycle If it is set to 900, then the output is high for 90ms and low for 10ms; 1144 1144 1145 1145 (% style="text-align:center" %) 1146 -[[image:08_html_ace0b444319fb8c4.png|| height="155" width="905"class="img-thumbnail"]]1141 +[[image:08_html_ace0b444319fb8c4.png||class="img-thumbnail"]] 1147 1147 1148 1148 The waveform diagram is as follows, the period is 300ms, the duty cycle is 100, and the output is 30ms high level and 270ms low level: 1149 1149 1150 1150 (% style="text-align:center" %) 1151 -[[image:08_html_13acf8747e8703ff.png|| height="221" width="625"class="img-thumbnail"]]1146 +[[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]] 1152 1152 1153 -= **G90G01 Absolute position line interpolation instruction** = 1148 +== {{id name="_Toc26527"/}}**{{id name="_Toc9670"/}}{{id name="_Toc32423"/}}{{id name="_Toc27238"/}}G90G01 Absolute position line interpolation instruction** == 1154 1154 1155 1155 **G90G01** 1156 1156 ... ... @@ -1190,7 +1190,7 @@ 1190 1190 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis/3-axis line interpolation, and servo actuator runs to the target position according to the line interpolation. 1191 1191 1192 1192 (% style="text-align:center" %) 1193 -[[image:08_html_af156a7b9cc09d34.jpg||height="324" width="700" class="img-thumbnail"]]1188 +[[image:08_html_af156a7b9cc09d34.jpg||class="img-thumbnail" height="324" width="700"]] 1194 1194 1195 1195 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1196 1196 ... ... @@ -1215,8 +1215,11 @@ 1215 1215 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1216 1216 1217 1217 (% style="text-align:center" %) 1218 -[[image: image-20220921172417-2.png]]1213 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1219 1219 1215 +(% style="text-align:center" %) 1216 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1217 + 1220 1220 **{{id name="_Toc32765"/}}Error Codes** 1221 1221 1222 1222 (% class="table-bordered" %) ... ... @@ -1225,16 +1225,16 @@ 1225 1225 |4085H|The result output in the read application instruction (s1), (s2), (d1) and (d2) exceed the device range 1226 1226 |4088H|The same pulse output axis (d1) is used and has been started. 1227 1227 1228 -**Example** 1226 +**{{id name="_Toc29603"/}}Example** 1229 1229 1230 1230 (% style="text-align:center" %) 1231 -[[image: image-20220921163523-1.jpeg||class="img-thumbnail"]]1229 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1232 1232 1233 1233 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position line interpolation output based on the original position which is with acceleration and deceleration, and the end position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1234 1234 1235 -= **G91G01 Relative position line interpolation instruction** = 1233 +== {{id name="_Ref31771"/}}**{{id name="_Toc17391"/}}{{id name="_Toc10640"/}}{{id name="_Toc32642"/}}G91G01 Relative position line interpolation instruction** == 1236 1236 1237 -**G91G01** 1235 +{{id name="OLE_LINK10"/}}{{id name="_Toc20742"/}}**G91G01** 1238 1238 1239 1239 Execute 2 axis/3 axis line interpolation instruction in relative drive mode. The method of specifying the movement distance from the current position is also called incremental(relative) drive mode. 1240 1240 ... ... @@ -1272,7 +1272,7 @@ 1272 1272 This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis line interpolation, and servo actuator performs 2-axis line interpolation with a given offset based on the current position. 1273 1273 1274 1274 (% style="text-align:center" %) 1275 -[[image:08_html_b587806f5f71987d.jpg||height="371" width="800" class="img-thumbnail"]]1273 +[[image:08_html_b587806f5f71987d.jpg||class="img-thumbnail" height="371" width="800"]] 1276 1276 1277 1277 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis. The range is -2147483648 to +2147483647. 1278 1278 ... ... @@ -1295,10 +1295,13 @@ 1295 1295 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1296 1296 1297 1297 (% style="text-align:center" %) 1298 -[[image: image-20220921172437-3.png]]1296 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1299 1299 1300 -**Error Codes** 1298 +(% style="text-align:center" %) 1299 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1301 1301 1301 +**{{id name="_Toc8461"/}}Error Codes** 1302 + 1302 1302 (% class="table-bordered" %) 1303 1303 |**Error Codes**|**Contents** 1304 1304 |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1307,11 +1307,12 @@ 1307 1307 1308 1308 **{{id name="_Toc16441"/}}Example** 1309 1309 1310 -[[image:image-20220921163600-2.png]] 1311 +(% style="text-align:center" %) 1312 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1311 1311 1312 1312 {{id name="_Toc26903"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position line interpolation output based on the relative position which is with acceleration and deceleration , and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the pulse synthesis frequency is 1000. 1313 1313 1314 -= {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** = 1316 +== {{id name="_Ref31781"/}}**{{id name="_Toc27199"/}}{{id name="_Toc11517"/}}{{id name="_Toc20314"/}}{{id name="OLE_LINK11"/}}G90G02 Absolute position clockwise circular interpolation instruction** == 1315 1315 1316 1316 **G90G02** 1317 1317 ... ... @@ -1349,7 +1349,7 @@ 1349 1349 {{id name="OLE_LINK12"/}}This instruction outputs pulses according to the specified port, frequency and running direction, and performs 2-axis clockwise circular interpolation, and servo actuator performs clockwise circular interpolation to run to the target position point. 1350 1350 1351 1351 (% style="text-align:center" %) 1352 -[[image:08_html_ca40f9fe262dab7.jpg||height="482" width="800" class="img-thumbnail"]]1354 +[[image:08_html_ca40f9fe262dab7.jpg||class="img-thumbnail" height="482" width="800"]] 1353 1353 1354 1354 * (s1) is the starting address, and occupies 6 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis. The range is -2147483648 to +2147483647. 1355 1355 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1372,10 +1372,13 @@ 1372 1372 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1373 1373 1374 1374 (% style="text-align:center" %) 1375 -[[image: image-20220921172524-4.png]]1377 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1376 1376 1377 -**Error Codes** 1379 +(% style="text-align:center" %) 1380 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1378 1378 1382 + **Error Codes** 1383 + 1379 1379 (% class="table-bordered" %) 1380 1380 |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents** 1381 1381 |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1391,11 +1391,11 @@ 1391 1391 **{{id name="OLE_LINK268"/}}Example** 1392 1392 1393 1393 (% style="text-align:center" %) 1394 -[[image: image-20220921163619-3.png||class="img-thumbnail"]]1399 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1395 1395 1396 1396 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1397 1397 1398 -= **G91G02 Relative position clockwise circular interpolation instruction** = 1403 +== **G91G02 Relative position clockwise circular interpolation instruction** == 1399 1399 1400 1400 **G91G02** 1401 1401 ... ... @@ -1437,7 +1437,7 @@ 1437 1437 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis clockwise circular interpolation, and servo actuator performs 2-axis clockwise circular interpolation with a given offset based in current position. 1438 1438 1439 1439 (% style="text-align:center" %) 1440 -[[image:08_html_af9751b2294f613b.jpg||height="482" width="800" class="img-thumbnail"]]1445 +[[image:08_html_af9751b2294f613b.jpg||class="img-thumbnail" height="482" width="800"]] 1441 1441 1442 1442 * {{id name="OLE_LINK18"/}}s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (relative positioning), s1+2 is the target position of Y axis (relative positioning). The range is -2147483648 to +2147483647. 1443 1443 * {{id name="OLE_LINK20"/}}Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1460,8 +1460,11 @@ 1460 1460 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1461 1461 1462 1462 (% style="text-align:center" %) 1463 -[[image: image-20220921172550-5.png]]1468 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1464 1464 1470 +(% style="text-align:center" %) 1471 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1472 + 1465 1465 **Error Codes** 1466 1466 1467 1467 (% class="table-bordered" %) ... ... @@ -1479,11 +1479,11 @@ 1479 1479 **Example**{{id name="OLE_LINK22"/}} 1480 1480 1481 1481 (% style="text-align:center" %) 1482 -[[image: image-20220921163641-4.png||class="img-thumbnail"]]1490 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1483 1483 1484 1484 {{id name="OLE_LINK21"/}}Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1485 1485 1486 -= **G90G03 Absolute position counterclockwise circular interpolation instruction** = 1494 +== **G90G03 Absolute position counterclockwise circular interpolation instruction** == 1487 1487 1488 1488 G90G03 1489 1489 ... ... @@ -1525,7 +1525,7 @@ 1525 1525 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and the servo actuator performs counterclockwise circular interpolation to run to the target position point. 1526 1526 1527 1527 (% style="text-align:center" %) 1528 -[[image:08_html_7ad9ac91f5066720.jpg||height="491" width="800" class="img-thumbnail"]]1536 +[[image:08_html_7ad9ac91f5066720.jpg||class="img-thumbnail" height="491" width="800"]] 1529 1529 1530 1530 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1531 1531 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1548,8 +1548,11 @@ 1548 1548 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1549 1549 1550 1550 (% style="text-align:center" %) 1551 -[[image: image-20220921172606-6.png]]1559 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1552 1552 1561 +(% style="text-align:center" %) 1562 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1563 + 1553 1553 **Error Codes** 1554 1554 1555 1555 (% class="table-bordered" %) ... ... @@ -1567,11 +1567,11 @@ 1567 1567 **Example** 1568 1568 1569 1569 (% style="text-align:center" %) 1570 -[[image: image-20220921163737-5.png||class="img-thumbnail"]]1581 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1571 1571 1572 1572 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular interpolation output based on relative position with acceleration and deceleration, and the target position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1573 1573 1574 -= {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** = 1585 +== {{id name="_Ref31892"/}}**{{id name="_Toc1720"/}}{{id name="_Toc12908"/}}{{id name="_Toc10325"/}}G91G03 Relative position counterclockwise circular interpolation instruction** == 1575 1575 1576 1576 **G91G03** 1577 1577 ... ... @@ -1613,7 +1613,7 @@ 1613 1613 This instruction outputs pulses according to the specified port, frequency and running direction, performs 2-axis counterclockwise circular interpolation, and servo actuator performs a 2-axis counterclockwise circular interpolation with a given offset based in current position. 1614 1614 1615 1615 (% style="text-align:center" %) 1616 -[[image:08_html_445649f805e910a5.jpg||height="491" width="800" class="img-thumbnail"]]1627 +[[image:08_html_445649f805e910a5.jpg||class="img-thumbnail" height="491" width="800"]] 1617 1617 1618 1618 * s1 is the starting address, and occupies 4 consecutive addresses. s1 is the target position of X axis (absolute positioning), s1+2 is the target position of Y axis (absolute positioning). The range is -2147483648 to +2147483647. 1619 1619 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The center coordinate of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The center coordinate of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. ... ... @@ -1636,8 +1636,11 @@ 1636 1636 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1637 1637 1638 1638 (% style="text-align:center" %) 1639 -[[image: image-20220921172617-7.png]]1650 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1640 1640 1652 +(% style="text-align:center" %) 1653 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1654 + 1641 1641 **Error Codes** 1642 1642 1643 1643 (% class="table-bordered" %) ... ... @@ -1655,11 +1655,11 @@ 1655 1655 **Example** 1656 1656 1657 1657 (% style="text-align:center" %) 1658 -[[image: image-20220921163754-6.png]]1672 +[[image:08_html_c30d92ae8a2303e1.png||class="img-thumbnail"]] 1659 1659 1660 1660 Set Y0 as the interpolation starting axis, Y5 as the direction starting axis, the maximum speed is 2000, the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position reverse circular interpolation output based on relative position with acceleration and deceleration, and the incremental position is X (Y0) axis 100, Y (Y1) axis 100, and the the radius is 1000 pulse in radius mode, and the pulse synthesis frequency is 1000. 1661 1661 1662 -= {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** = 1676 +== {{id name="_Ref31901"/}}**{{id name="_Toc7584"/}}{{id name="_Toc8429"/}}{{id name="_Toc13595"/}}{{id name="_Toc10219"/}}G90G02H Absolute position clockwise circular helical interpolation instruction** == 1663 1663 1664 1664 **G90G02H** 1665 1665 ... ... @@ -1703,7 +1703,7 @@ 1703 1703 (% style="text-align:center" %) 1704 1704 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1705 1705 1706 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is image-20220921171331-1.png||height="31" width="113"]],,,,.(The range is -2147483648 to +2147483647.)1720 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1707 1707 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1708 1708 1709 1709 * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1723,7 +1723,7 @@ 1723 1723 1724 1724 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1725 1725 1726 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian image-20220921171348-2.png||height="47" width="90"]],,),,1740 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1727 1727 1728 1728 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1729 1729 ... ... @@ -1730,19 +1730,21 @@ 1730 1730 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1731 1731 1732 1732 (% style="text-align:center" %) 1733 -[[image: image-20220921172637-8.png]]1747 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1734 1734 1735 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1749 +(% style="text-align:center" %) 1750 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1736 1736 1737 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]]is determined by formula (1),and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation.1752 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1738 1738 1739 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,maynotbeequalotheset (Xe,Ye),but itmustpassthroughthesetpoint(Xe,Ye), inthe wholecircle.1754 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1740 1740 1741 -(% style="text-align:center" %) 1742 -[[image:image-20220921171411-3.png||height="62" width="312"]] 1756 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1743 1743 1744 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).1758 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1745 1745 1760 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1761 + 1746 1746 (% class="table-bordered" %) 1747 1747 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1748 1748 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1762,16 +1762,16 @@ 1762 1762 |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1763 1763 |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1764 1764 |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0. 1765 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,,,[[image:image-20220921171529-5.png||height="32" width="69"]],,,,)1781 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1766 1766 1767 1767 **{{id name="_Toc12418"/}}Example** 1768 1768 1769 1769 (% style="text-align:center" %) 1770 -[[image: image-20220921163843-7.png||class="img-thumbnail"]]1786 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1771 1771 1772 1772 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position clockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1773 1773 1774 -= {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** = 1790 +== {{id name="_Ref31918"/}}**{{id name="_Toc12793"/}}{{id name="_Toc9051"/}}{{id name="_Toc18572"/}}G91G02H Relative position clockwise circular helical interpolation instruction** == 1775 1775 1776 1776 **G91G02H** 1777 1777 ... ... @@ -1815,7 +1815,7 @@ 1815 1815 (% style="text-align:center" %) 1816 1816 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1817 1817 1818 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]].(The range is -2147483648 to +2147483647.)1834 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1819 1819 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1820 1820 1821 1821 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1835,28 +1835,28 @@ 1835 1835 1836 1836 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1837 1837 1838 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1854 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1839 1839 1840 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),, 1841 - 1842 1842 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1843 1843 1844 1844 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1845 1845 1846 1846 (% style="text-align:center" %) 1847 -[[image: image-20220921172651-9.png]]1861 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1848 1848 1849 -(9) Exact match pitch of screws (lead) K and Ze,,.,, 1863 +(% style="text-align:center" %) 1864 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1850 1850 1851 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates(Xe‘,Ye’) of X axisand Y axis accordingo the number of turns of interpolation.1866 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1852 1852 1853 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe‘,Ye’),,,maynotbeequalotheset (Xe,Ye),, ,,, but itmustpassthroughthesetpoin(Xe,Ye),,,,inhewhole circle.1868 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1854 1854 1855 -(% style="text-align:center" %) 1856 -[[image:image-20220921171703-8.png||height="58" width="291"]] 1870 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1857 1857 1858 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,.1872 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1859 1859 1874 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 1875 + 1860 1860 (% class="table-bordered" %) 1861 1861 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1862 1862 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1876,16 +1876,16 @@ 1876 1876 |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1877 1877 |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1878 1878 |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0. 1879 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image: image-20220921171735-9.png||height="28" width="59"]])1895 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1880 1880 1881 1881 **{{id name="_Toc28830"/}}Example** 1882 1882 1883 1883 (% style="text-align:center" %) 1884 -[[image: image-20220921163904-8.png]]1900 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 1885 1885 1886 1886 Set Y0 as the interpolation starting axis, Y4 as the direction start axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position clockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 1887 1887 1888 -= {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** = 1904 +== {{id name="_Ref31924"/}}**{{id name="_Toc4668"/}}{{id name="_Toc28191"/}}{{id name="_Toc24432"/}}G90G03H Absolute position counterclockwise circular helical interpolation instruction** == 1889 1889 1890 1890 **G90G03H** 1891 1891 ... ... @@ -1929,8 +1929,7 @@ 1929 1929 (% style="text-align:center" %) 1930 1930 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1931 1931 1932 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. 1933 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.) 1948 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is,,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1934 1934 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1935 1935 1936 1936 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1950,28 +1950,28 @@ 1950 1950 1951 1951 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1952 1952 1953 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1968 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 1954 1954 1955 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]] 1956 - 1957 1957 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1958 1958 1959 1959 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1960 1960 1961 1961 (% style="text-align:center" %) 1962 -[[image: image-20220921172744-10.png]]1975 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1963 1963 1964 -(9) Exact match pitch of screws (lead) K and Ze 1977 +(% style="text-align:center" %) 1978 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1965 1965 1966 - Thestartingpoint coordinate of helicalinterpolation is (0,0,0),, ,,, settheend pointcoordinateto(Xe,Ye,Ze),thenumber of turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.1980 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 1967 1967 1968 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset (Xe,Ye),,,,, but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.1982 +The starting point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 1969 1969 1970 -(% style="text-align:center" %) 1971 -[[image:image-20220921171930-12.png||height="74" width="370"]] 1984 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 1972 1972 1973 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestartingpointcoordinate (0,0,0),, ,,,the end pointcoordinate (0,0,Ze),, ,,).1986 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 1974 1974 1988 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif||class="img-thumbnail"]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif||class="img-thumbnail"]] ,,). 1989 + 1975 1975 (% class="table-bordered" %) 1976 1976 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 1977 1977 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -1991,16 +1991,16 @@ 1991 1991 |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1992 1992 |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1993 1993 |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0. 1994 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image: image-20220921171956-13.png||height="29" width="61"]])2009 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1995 1995 1996 1996 **{{id name="_Toc18584"/}}Example** 1997 1997 1998 1998 (% style="text-align:center" %) 1999 -[[image: image-20220921163935-9.png||class="img-thumbnail"]]2014 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2000 2000 2001 2001 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a absolute position counterclockwise circular helical interpolation output based on the absolute position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000. 2002 2002 2003 -= **G91G03H Relative position counterclockwise circular helical interpolation instruction** = 2018 +== {{id name="_Ref31947"/}}**{{id name="_Toc5018"/}}{{id name="_Toc1347"/}}{{id name="_Toc26018"/}}G91G03H Relative position counterclockwise circular helical interpolation instruction** == 2004 2004 2005 2005 **G91G03H** 2006 2006 ... ... @@ -2064,28 +2064,28 @@ 2064 2064 2065 2065 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 2066 2066 2067 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 2082 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian ,,[[image:08_html_16dfa306a6cd6123.gif||class="img-thumbnail"]] ,,) 2068 2068 2069 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]] 2070 - 2071 2071 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 2072 2072 2073 2073 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 2074 2074 2075 2075 (% style="text-align:center" %) 2076 -[[image: image-20220921172803-11.png]]2089 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 2077 2077 2078 -(9) Exact match pitch of screws (lead) K and Ze 2091 +(% style="text-align:center" %) 2092 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 2079 2079 2080 - Thestartpoint coordinate of helicalinterpolation is(0,0,0), settheend pointcoordinateto(Xe,Ye,Ze),thenumberof turns of helical interpolation[[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinatesof X axisand Y axis accordingo the number of turns of interpolation.2094 +(9) Exact match pitch of screws (lead) K and ,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] .,, 2081 2081 2082 -The final interpolationresultis:makesure thateadequalto K,andthe end point of Z axis is equaltoZe,,,,.ThedpointsitionofXandYaxes(Xe',Ye'),,,,maynotbeequalotheset(Xe,Ye), but itmustpassthroughthesetpoint(Xe,Ye),,,,inhewhole circle.2096 +The start point coordinate of helical interpolation is ,,[[image:08_html_5aecdb267e93e1ef.gif||class="img-thumbnail"]] ,,, set the end point coordinate to ,,[[image:08_html_62eafa46570f5bd9.gif||class="img-thumbnail"]] ,,,the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. 2083 2083 2084 -(% style="text-align:center" %) 2085 -[[image:image-20220921172159-16.png||height="72" width="362"]] 2098 +The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to,,[[image:08_html_26235c6907b42965.gif||class="img-thumbnail"]] ,,.The actual end point position of X and Y axes ,,[[image:08_html_812f611042b80df0.gif||class="img-thumbnail"]] ,,may not be equal to the set ,,[[image:08_html_72a7340925bd2eea.gif]] ,,, but it must pass through the set point ,,[[image:08_html_72a7340925bd2eea.gif||class="img-thumbnail"]] ,,in the whole circle. 2086 2086 2087 - (10) In helical interpolation radiusmode, the center distribution table ofwholecircle isasbelow. (For example: thestart pointcoordinate (0,0,0), the end pointcoordinate (0,0,Ze).2100 +,,[[image:08_html_d3f40984948fb2f1.gif||class="img-thumbnail"]] ,,(1) 2088 2088 2102 +(10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate ,,[[image:08_html_3ed96de3414e2c4d.gif]] ,,,the end point coordinate,,[[image:08_html_a9e3b53d7dfa134a.gif]] ,,). 2103 + 2089 2089 (% class="table-bordered" %) 2090 2090 |**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center**|**Helical interpolation direction**|**Radius value R**|**Coordinate of circle center** 2091 2091 |(% rowspan="2" %)Clockwise circular|R > 0|(0,R)|(% rowspan="2" %)Counterclockwise circular|R > 0|(0,-R) ... ... @@ -2105,12 +2105,12 @@ 2105 2105 |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 2106 2106 |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 2107 2107 |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0. 2108 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead image-20220921172255-17.png||height="29" width="62"]],,,,)2123 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead ,,[[image:08_html_63ad102f937fdad0.gif]] ,,) 2109 2109 2110 2110 **{{id name="_Toc11997"/}}Example** 2111 2111 2112 2112 (% style="text-align:center" %) 2113 -[[image: image-20220921163953-10.png||class="img-thumbnail"]]2128 +[[image:08_html_61693f5f524ad69e.png||class="img-thumbnail"]] 2114 2114 2115 2115 Set Y0 as the interpolation starting axis, Y4 as the direction starting axis, and the maximum speed is 2000, and the offset speed is 500, and the acceleration/deceleration time is 500ms. Send a relative position counterclockwise circular helical interpolation output based on the relative position with acceleration and deceleration, and the target position is X (Y0) axis 0, Y (Y1) axis 0 and Z (Y2) axis 5000, and the lead is 5000, and the radius is 5000 pulse in radius mode, and the synthesis frequency is 1000.{{id name="_Toc24071"/}}{{id name="_Toc17235"/}}{{id name="_Toc1369"/}}{{id name="_Toc21558"/}}{{id name="_Toc23998"/}}{{id name="_Toc21982"/}}{{id name="_Toc6785"/}}{{id name="_Toc22083"/}}{{id name="_Toc31780"/}}{{id name="_Toc5703"/}} 2116 2116 ... ... @@ -2260,7 +2260,7 @@ 2260 2260 When the flag bit is [1: pulse sending stop immediately], that is, pulse sending stops immediately without acceleration or deceleration. This flag is not affected by the scan cycle. 2261 2261 2262 2262 (% style="text-align:center" %) 2263 -[[image:08_html_bb07ddcb0a440df2.gif||height="293" width="700" class="img-thumbnail"]]2278 +[[image:08_html_bb07ddcb0a440df2.gif||class="img-thumbnail" height="293" width="700"]] 2264 2264 2265 2265 **(9) Not scanned** 2266 2266 ... ... @@ -2511,7 +2511,7 @@ 2511 2511 [1: Stop immediately]: Stop immediately after receiving the stop signal without decelerating movement. 2512 2512 2513 2513 (% style="text-align:center" %) 2514 -[[image:08_html_c616dcb4f3f0f698.gif||height="288" width="700" class="img-thumbnail"]]2529 +[[image:08_html_c616dcb4f3f0f698.gif||class="img-thumbnail" height="288" width="700"]] 2515 2515 2516 2516 **(8) Direction delay** 2517 2517 ... ... @@ -2524,7 +2524,7 @@ 2524 2524 |Direction delay|SD905|SD965|SD1025|SD1085|SD1145|SD1205|SD1265|SD1325 2525 2525 2526 2526 (% style="text-align:center" %) 2527 -[[image:08_html_2e35a77cf58094fa.gif||height="466" width="700" class="img-thumbnail"]]2542 +[[image:08_html_2e35a77cf58094fa.gif||class="img-thumbnail" height="466" width="700"]] 2528 2528 2529 2529 **(9) External start signal** 2530 2530 ... ... @@ -2556,12 +2556,12 @@ 2556 2556 ①Reachable frequency 2557 2557 2558 2558 (% style="text-align:center" %) 2559 -[[image:08_html_e260ba033ed851bb.gif||height="366" width="700" class="img-thumbnail"]]2574 +[[image:08_html_e260ba033ed851bb.gif||class="img-thumbnail" height="366" width="700"]] 2560 2560 2561 2561 ②Unreachable frequency 2562 2562 2563 2563 (% style="text-align:center" %) 2564 -[[image:08_html_54e112fa5aeba863.gif||height="386" width="700" class="img-thumbnail"]]2579 +[[image:08_html_54e112fa5aeba863.gif||class="img-thumbnail" height="386" width="700"]] 2565 2565 2566 2566 2) Modify the number of pulses: 2567 2567 ... ... @@ -2568,12 +2568,12 @@ 2568 2568 ①Modify to the number of reachable pulses 2569 2569 2570 2570 (% style="text-align:center" %) 2571 -[[image:08_html_f7207d642325c29f.gif||height="282" width="700" class="img-thumbnail"]]2586 +[[image:08_html_f7207d642325c29f.gif||class="img-thumbnail" height="282" width="700"]] 2572 2572 2573 2573 ②Modify to the number of unreachable pulses (only support instructions with direction. If there is no direction, stop pulse sending) 2574 2574 2575 2575 (% style="text-align:center" %) 2576 -[[image:08_html_b73c1c8f2b27e562.gif||height="322" width="700" class="img-thumbnail"]]2591 +[[image:08_html_b73c1c8f2b27e562.gif||class="img-thumbnail" height="322" width="700"]] 2577 2577 2578 2578 **{{id name="OLE_LINK371"/}}(12) The number of sent pulses is out of range** 2579 2579 ... ... @@ -2613,34 +2613,34 @@ 2613 2613 2614 2614 **C.**When the parameter is 0, Ladder acceleration and deceleration(calculate the pulse frequency one by one) mode is adopted. 2615 2615 2616 -{{id name="OLE_LINK373"/}}{{id name="OLE_LINK374"/}}**D.**When the parameter is 1, Time- divisionT-type acceleration and deceleration is adopted.2631 +{{id name="OLE_LINK373"/}}{{id name="OLE_LINK374"/}}**D.**When the parameter is 1, Time-minute ladder acceleration and deceleration is adopted. 2617 2617 2618 -**E.**When the parameter is 2, Time- divisionS-type acceleration and deceleration is adopted.2633 +**E.**When the parameter is 2, Time-minute s-type acceleration and deceleration is adopted. 2619 2619 2620 -**{{id name="OLE_LINK378"/}}(15) **Time-division**acceleration and deceleration parameter**2635 +**{{id name="OLE_LINK378"/}}(15) Time-minute acceleration and deceleration parameter** 2621 2621 2622 2622 (% class="table-bordered" %) 2623 2623 |**Output axis**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 2624 -|Time- division intervals|SD912|SD972|SD1032|SD1092|SD1152|SD1212|SD1272|SD13322639 +|Time-minute intervals|SD912|SD972|SD1032|SD1092|SD1152|SD1212|SD1272|SD1332 2625 2625 2626 -Time- division intervals:2641 +Time-minute intervals: 2627 2627 2628 -{{id name="OLE_LINK377"/}}{{id name="OLE_LINK379"/}}This parameter is time interval of Time-division acceleration and deceleration. The unit is 100us. The value range is 10 to1000.When the value is less than 10, the value is 10. When the value is greater than 1000, the value is 1000.2643 +{{id name="OLE_LINK377"/}}{{id name="OLE_LINK379"/}}This parameter is time interval of time-minute acceleration and deceleration. The unit is 100us. The value range is 10 to1000.When the value is less than 10, the value is 10. When the value is greater than 1000, the value is 1000. 2629 2629 2630 -Time- divisionT-type acceleration and deceleration2645 +Time-minute ladder acceleration and deceleration 2631 2631 2632 2632 (% style="text-align:center" %) 2633 -[[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]]2648 +[[image:08_html_4649b9d5dd0f0a90.gif||class="img-thumbnail" height="330" width="700"]] 2634 2634 2635 -Time- division S-type acceleration and deceleration2650 +Time-minute S-type acceleration and deceleration 2636 2636 2637 2637 (% style="text-align:center" %) 2638 -[[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]2653 +[[image:08_html_27806ce2da3a3ef0.gif||class="img-thumbnail" height="319" width="700"]] 2639 2639 2640 2640 The following figure shows the changes of each parameter 2641 2641 2642 2642 (% style="text-align:center" %) 2643 -[[image:08_html_7e62d35d88cbe966.gif||height="614" width="400" class="img-thumbnail"]]2658 +[[image:08_html_7e62d35d88cbe966.gif||class="img-thumbnail" height="614" width="400"]] 2644 2644 2645 2645 **✎Note: **When the frequency is modified during the operation, acceleration would accelerate again from zero. There will be discontinuous acceleration. 2646 2646
- 3q3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Jim - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.0 KB - Content
- image-20220921163523-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.2 KB - Content
- image-20220921163600-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.5 KB - Content
- image-20220921163619-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163641-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.7 KB - Content
- image-20220921163737-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163754-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -14.1 KB - Content
- image-20220921163843-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163904-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -16.6 KB - Content
- image-20220921163935-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921163953-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -17.1 KB - Content
- image-20220921171331-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171348-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171411-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171433-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171529-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171628-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171639-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171703-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171735-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171807-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171852-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171930-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171956-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172054-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172134-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172159-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921172255-17.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172410-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172417-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172437-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172524-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172550-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172606-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172617-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172637-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172651-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172744-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172803-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content