Changes for page 08 High-speed pulse output
Last modified by Mora Zhou on 2024/08/08 14:35
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 29 removed)
- 3q3.png
- image-20220921171331-1.png
- image-20220921171348-2.png
- image-20220921171411-3.png
- image-20220921171433-4.png
- image-20220921171529-5.png
- image-20220921171628-6.png
- image-20220921171639-7.png
- image-20220921171703-8.png
- image-20220921171735-9.png
- image-20220921171807-10.png
- image-20220921171852-11.png
- image-20220921171930-12.png
- image-20220921171956-13.png
- image-20220921172054-14.png
- image-20220921172134-15.png
- image-20220921172159-16.png
- image-20220921172255-17.png
- image-20220921172410-1.png
- image-20220921172417-2.png
- image-20220921172437-3.png
- image-20220921172524-4.png
- image-20220921172550-5.png
- image-20220921172606-6.png
- image-20220921172617-7.png
- image-20220921172637-8.png
- image-20220921172651-9.png
- image-20220921172744-10.png
- image-20220921172803-11.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Mora1 +XWiki.Stone - Content
-
... ... @@ -63,7 +63,7 @@ 63 63 64 64 **{{id name="OLE_LINK84"/}}✎Note:** 65 65 66 -{{id name="OLE_LINK85"/}}Please do not duplicate device used for other controls.66 +{{id name="OLE_LINK85"/}}Please do not duplicate soft components used for other controls. 67 67 68 68 When designing the near-point DOG, please consider that there is enough time to be ON to fully decelerate to the crawl speed. 69 69 ... ... @@ -87,7 +87,7 @@ 87 87 (% style="text-align:center" %) 88 88 [[image:08_html_5398e9b5857a7283.png||height="366" width="700" class="img-thumbnail"]] 89 89 90 -{{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a noffset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset.90 +{{id name="OLE_LINK86"/}}Set Y1 as the output axis at a maximum speed of 200K, a offset speed of 500, and a acceleration/deceleration time of 100ms. Origin return is performed at the frequency of 200Khz, and it runs at a crawling speed after receiving the origin signal X0, and it stops after the X0 signal is reset. 91 91 92 92 = {{id name="_Toc17090"/}}**{{id name="_Toc4613"/}}{{id name="_Toc28244"/}}DSZR/DDSZR/Origin return** = 93 93 ... ... @@ -447,8 +447,11 @@ 447 447 448 448 This instruction uses absolute drive to perform single-speed positioning. The specified positioning address adopts the absolute method, and the specified position (absolute address) is used for positioning based on the origin. 449 449 450 - [[image:3q3.png]]450 +{{id name="OLE_LINK365"/}} 451 451 452 +(% style="text-align:center" %) 453 +[[image:08_html_7a3c30baa77024fb.gif||height="311" width="800" class="img-thumbnail"]] 454 + 452 452 • Specify the positioning address of user unit with a absolute address in (s1). (It should be in the range of -2,147,483,647 to +2,147,483,647) 453 453 454 454 • Specify the instruction speed of user unit in (s2). (It should be in the range of 1 to 200,000) ... ... @@ -983,21 +983,21 @@ 983 983 **Content, range and data type** 984 984 985 985 (% class="table-bordered" %) 986 -| =(% scope="row" %)**Parameter**|=(% style="width:618px;" %)**Content**|=(% style="width:21px;" %)**Range**|=(% style="width: 132px;" %)**Data type**|=(% style="width: 118px;" %)**Data type (label)**987 -| =(s1)|(% style="width:618px" %)The ON time or the device number storing the ON time|(% style="width:121px" %)0 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S988 -| =(s2)|(% style="width:618px" %)Cycle or the device number storing the cycle|(% style="width:121px" %)1 to 32,767|(% style="width:132px" %)Signed BIN16|(% style="width:118px" %)ANY16_S989 -| =(d)|(% style="width:618px" %)The channel number and device number that pulse outputs|(% style="width:121px" %)-|(% style="width:132px" %)Bit|(% style="width:118px" %)ANY_BOOL989 +|**Parameter**|(% style="width:702px" %)**Content**|(% style="width:183px" %)**Range**|**Data type**|**Data type (label)** 990 +|(s1)|(% style="width:702px" %)The ON time or the device number storing the ON time|(% style="width:183px" %)0 to 32,767|Signed BIN16|ANY16_S 991 +|(s2)|(% style="width:702px" %)Cycle or the device number storing the cycle|(% style="width:183px" %)1 to 32,767|Signed BIN16|ANY16_S 992 +|(d)|(% style="width:702px" %)The channel number and device number that pulse outputs|(% style="width:183px" %)-|Bit|ANY_BOOL 990 990 991 991 **Device used** 992 992 993 993 (% class="table-bordered" %) 994 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((997 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 995 995 **Pulse** 996 996 997 997 **extension** 998 998 ))) 999 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1000 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1002 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1003 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1001 1001 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1002 1002 |Parameter 3|●| | | | | | | | | | | | 1003 1003 ... ... @@ -1008,9 +1008,9 @@ 1008 1008 • Output the ON time specified in (s1) and the cycle pulse specified in (s2) to the output destination specified in (d). 1009 1009 1010 1010 ((( 1011 -• Specify the output pulse width in (s1). (The setting range is 0 to 32,767) 1014 +• Specify the output pulse width in (s1). (The setting range is 0 to 32,767ms) 1012 1012 1013 -• Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1016 +• Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1014 1014 1015 1015 • Specify the device that outputs pulses in (d). Only Y devices with positioning parameters can be specified. 1016 1016 ... ... @@ -1025,28 +1025,20 @@ 1025 1025 1. Please do not duplicate device used for other controls. 1026 1026 1. Set pulse width and cycle time. Please set the value of pulse width (s1) and period (s2) as (s1)≤(s2). 1027 1027 1. About pulse output: This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops, and (s1) and (s2) could be modified when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped. 1028 -1. Support 16 PWM outputs, Y0~~Y7, Y10~~Y17. 1029 -1. When Y10~~Y17 is used for output, the permil mode is invalid. (PLC Editor2 V2.3.1 or above supports Y10~~Y17 PWM output.) 1030 -1. The resolution of Y0~~Y7 is 1us, and the resolution of Y10~~Y17 is 100us. 1031 -1. The output period and pulse width of Y10~~Y17 are measured in milliseconds (ms). 1032 1032 1033 1033 **Related device** 1034 1034 1035 1035 (% class="table-bordered" %) 1036 -| =(% scope="row" style="width: 233px;" %)**Output shaft**|(% scope="col" style="width:81px" %)**Y0**|(% scope="col" style="width:104px" %)**Y1**|(% scope="col" style="width:111px" %)**Y2**|(% scope="col" style="width:107px" %)**Y3**|(% scope="col" style="width:108px" %)**Y4**|(% scope="col" style="width:108px" %)**Y5**|(% scope="col" style="width:115px" %)**Y6**|(% scope="col" %)**Y7**1037 -| =(% style="width: 233px;" %)Percentage mode sign|(% style="width:81px" %)SM897|(% style="width:104px" %)SM957|(% style="width:111px" %)SM1017|(% style="width:107px" %)SM1077|(% style="width:108px" %)SM1137|(% style="width:108px" %)SM1197|(% style="width:115px" %)SM1257|SM13171035 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1036 +|Percentage mode sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1038 1038 1039 -|=(% scope="row" style="width: 217px;" %)**Output shaft**|(% scope="col" style="width:105px" %)**Y0**|(% scope="col" %)**Y1**|(% scope="col" %)**Y2**|(% scope="col" %)**Y3**|(% scope="col" %)**Y4**|(% scope="col" %)**Y5**|(% scope="col" %)**Y6**|(% scope="col" %)**Y7** 1040 -|=(% style="width: 217px;" %)PWM unit selection|(% style="width:105px" %)SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1041 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1042 - 1043 1043 **Error code** 1044 1044 1045 1045 (% class="table-bordered" %) 1046 -| =(% scope="row" %)**Error code**|=**Content**1047 -| =4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2)1048 -| =4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range1049 -| =4088H|The same pulse output axis (d) is used and has been started.1041 +|**Error code**|**Content** 1042 +|4084H|The data input in the application instruction (s1) and (s2) exceed the specified range or (s1)>(s2) 1043 +|4085H|The result output in the read application instruction (s1), (s2) and (d) exceed the device range 1044 +|4088H|The same pulse output axis (d) is used and has been started. 1050 1050 1051 1051 **Example** 1052 1052 ... ... @@ -1053,16 +1053,16 @@ 1053 1053 (% style="text-align:center" %) 1054 1054 [[image:08_html_3ed5f1836c38d129.png||class="img-thumbnail"]] 1055 1055 1056 -The waveform diagram is shown as below.1051 +The waveform diagram is shown as right. 1057 1057 1058 1058 (% style="text-align:center" %) 1059 -[[image:08_html_f38f59f98fdc96c0.png||height="1 74" width="477" class="img-thumbnail"]]1054 +[[image:08_html_f38f59f98fdc96c0.png||height="213" width="600" class="img-thumbnail"]] 1060 1060 1061 -= **PWM/PWM per milmode** =1056 += **PWM/PWM perimeter mode** = 1062 1062 1063 1063 **PWM** 1064 1064 1065 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1060 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1066 1066 1067 1067 -[PWM (s1) (s2) (d)] 1068 1068 ... ... @@ -1069,37 +1069,37 @@ 1069 1069 **Content, range and data type** 1070 1070 1071 1071 (% class="table-bordered" %) 1072 -| =(% scope="row" %)**Parameter**|=**Content**|=**Range**|=**Data type**|=**Data type (label)**1073 -| =(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S1074 -| =(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S1075 -| =(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL1067 +|**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)** 1068 +|(s1)|Set output pulse duty cycle|0 to 1000|Signed BIN16|ANY16_S 1069 +|(s2)|Set pulse output cycle|1 to 32767|Signed BIN16|ANY16_S 1070 +|(d)|Pulse output channel number, device number|-|Bit|ANY_BOOL 1076 1076 1077 1077 **Device used** 1078 1078 1079 1079 (% class="table-bordered" %) 1080 -| =(% rowspan="2" %)**Instruction**|=(% rowspan="2" %)**Parameter**|=(% colspan="11" %)**Devices**|=**Offset modification**|=(((1075 +|(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|**Offset modification**|((( 1081 1081 **Pulse** 1082 1082 1083 1083 **extension** 1084 1084 ))) 1085 -| =**Y**|=**KnX**|=**KnY**|=**KnM**|=**KnS**|=**T**|=**C**|=**D**|=**R**|=**K**|=**H**|=**[D]**|=**XXP**1086 -| =(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●|1080 +|**Y**|**KnX**|**KnY**|**KnM**|**KnS**|**T**|**C**|**D**|**R**|**K**|**H**|**[D]**|**XXP** 1081 +|(% rowspan="3" %)PWM|Parameter 1| |●|●|●|●|●|●|●|●|●|●|●| 1087 1087 |Parameter 2| |●|●|●|●|●|●|●|●|●|●|●| 1088 1088 |Parameter 3|●| | | | | | | | | | | | 1089 1089 1090 1090 **Features** 1091 1091 1092 -The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of permil mode is used to output to the output target specified in (d).1087 +The period parameter (s2), the average equal division is 1000 equal divisions, (s1) is the pulse duty ratio, and the setting of the millimetric ratio mode is used to output to the output target specified in (d). 1093 1093 1094 -It is necessary to turn on the permil mode of the PWM instruction, and the corresponding related device:1089 +It is necessary to turn on the millimetric ratio mode of the PWM instruction, and the corresponding related device: 1095 1095 1096 1096 (% class="table-bordered" %) 1097 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1098 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171092 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1093 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1099 1099 1100 1100 Specify the output pulse duty ratio in (s1). (The setting range is 0 to 1000) 1101 1101 1102 -Specify the output pulse period in (s2). (The setting range is 1 to 32,767) 1097 +Specify the output pulse period in (s2). (The setting range is 1 to 32,767ms) 1103 1103 1104 1104 Specify the device that outputs the pulse in (d). Only Y devices with positioning parameters can be specified. 1105 1105 ... ... @@ -1107,7 +1107,7 @@ 1107 1107 1108 1108 High level time (ms) = set cycle time (ms) x duty cycle / 1000 1109 1109 1110 -Low level time (ms) = period (ms) 1105 +Low level time (ms) = period (ms)-high level time (ms) 1111 1111 1112 1112 That is, the period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; If it is set to 900, the output will be high for 90ms and low for 10ms. The fractional part of the calculated pulse output time is output by rounding. 1113 1113 ... ... @@ -1116,20 +1116,18 @@ 1116 1116 **✎Note:** 1117 1117 1118 1118 1. Please be careful not to overlap with other control devices. 1119 -1. About pulse output : This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped.1114 +1. About pulse output 1120 1120 1116 +This instruction is executed in interrupt mode. When the instruction power flow is OFF, the output stops. (s1) and (s2) can be changed when the PWM instruction is executed. If it is modified to an incorrect parameter, the sending of PWM pulse will be stopped. 1117 + 1121 1121 **Related device** 1122 1122 1123 -• Per milmode flag1120 +• Percentage mode flag 1124 1124 1125 1125 (% class="table-bordered" %) 1126 -| =(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7**1127 -| =Permilmodesign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM13171123 +|**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1124 +|Percentage Mode Sign|SM897|SM957|SM1017|SM1077|SM1137|SM1197|SM1257|SM1317 1128 1128 1129 -|=(% scope="row" %)**Output shaft**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 1130 -|=PWM unit selection|SM902|SM962|SM1022|SM1082|SM1142|SM1202|SM1262|SM1322 1131 -|(% colspan="9" scope="row" %)Take Y0 as an example: When SM902 is OFF, the Y0 PWM output cycle and pulse width are in "ms"; When SM902 is ON, the Y0 PWM output cycle and pulse width are in "us". 1132 - 1133 1133 **Error code** 1134 1134 1135 1135 (% class="table-bordered" %) ... ... @@ -1143,12 +1143,12 @@ 1143 1143 The period is set to 100ms, if the duty cycle is set to 500, the output is high for 50ms and low for 50ms; if the duty cycle is set to 100, the output is high for 10ms and low for 90ms; duty cycle If it is set to 900, then the output is high for 90ms and low for 10ms; 1144 1144 1145 1145 (% style="text-align:center" %) 1146 -[[image:08_html_ace0b444319fb8c4.png|| height="155" width="905"class="img-thumbnail"]]1139 +[[image:08_html_ace0b444319fb8c4.png||class="img-thumbnail"]] 1147 1147 1148 1148 The waveform diagram is as follows, the period is 300ms, the duty cycle is 100, and the output is 30ms high level and 270ms low level: 1149 1149 1150 1150 (% style="text-align:center" %) 1151 -[[image:08_html_13acf8747e8703ff.png|| height="221" width="625"class="img-thumbnail"]]1144 +[[image:08_html_13acf8747e8703ff.png||class="img-thumbnail"]] 1152 1152 1153 1153 = **G90G01 Absolute position line interpolation instruction** = 1154 1154 ... ... @@ -1215,8 +1215,11 @@ 1215 1215 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1216 1216 1217 1217 (% style="text-align:center" %) 1218 -[[image: image-20220921172417-2.png]]1211 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1219 1219 1213 +(% style="text-align:center" %) 1214 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1215 + 1220 1220 **{{id name="_Toc32765"/}}Error Codes** 1221 1221 1222 1222 (% class="table-bordered" %) ... ... @@ -1295,10 +1295,13 @@ 1295 1295 1. The actual synthetic frequency S (the minimum frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1296 1296 1297 1297 (% style="text-align:center" %) 1298 -[[image: image-20220921172437-3.png]]1294 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1299 1299 1300 -**Error Codes** 1296 +(% style="text-align:center" %) 1297 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1301 1301 1299 +**{{id name="_Toc8461"/}}Error Codes** 1300 + 1302 1302 (% class="table-bordered" %) 1303 1303 |**Error Codes**|**Contents** 1304 1304 |4084H|The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1372,10 +1372,13 @@ 1372 1372 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1373 1373 1374 1374 (% style="text-align:center" %) 1375 -[[image: image-20220921172524-4.png]]1374 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1376 1376 1377 -**Error Codes** 1376 +(% style="text-align:center" %) 1377 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1378 1378 1379 + **Error Codes** 1380 + 1379 1379 (% class="table-bordered" %) 1380 1380 |(% style="width:134px" %)**Error Codes**|(% style="width:947px" %)**Contents** 1381 1381 |(% style="width:134px" %)4084H|(% style="width:947px" %)The data input in the application instruction (s1) and (s2) exceed the specified range ... ... @@ -1460,8 +1460,11 @@ 1460 1460 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1461 1461 1462 1462 (% style="text-align:center" %) 1463 -[[image: image-20220921172550-5.png]]1465 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1464 1464 1467 +(% style="text-align:center" %) 1468 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1469 + 1465 1465 **Error Codes** 1466 1466 1467 1467 (% class="table-bordered" %) ... ... @@ -1548,8 +1548,11 @@ 1548 1548 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1549 1549 1550 1550 (% style="text-align:center" %) 1551 -[[image: image-20220921172606-6.png]]1556 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1552 1552 1558 +(% style="text-align:center" %) 1559 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1560 + 1553 1553 **Error Codes** 1554 1554 1555 1555 (% class="table-bordered" %) ... ... @@ -1636,8 +1636,11 @@ 1636 1636 1. The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1637 1637 1638 1638 (% style="text-align:center" %) 1639 -[[image: image-20220921172617-7.png]]1647 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1640 1640 1649 +(% style="text-align:center" %) 1650 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1651 + 1641 1641 **Error Codes** 1642 1642 1643 1643 (% class="table-bordered" %) ... ... @@ -1703,7 +1703,7 @@ 1703 1703 (% style="text-align:center" %) 1704 1704 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1705 1705 1706 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is mage-20220921171331-1.png||height="31" width="113"]],, ,,.(The range is -2147483648 to +2147483647.)1717 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_8d829d6ac7cb190d.gif?rev=1.1||alt="08_html_8d829d6ac7cb190d.gif" height="27" width="85"]],,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1707 1707 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1708 1708 1709 1709 * Specify the synthetic output frequency in (s3) . The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1723,7 +1723,7 @@ 1723 1723 1724 1724 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1725 1725 1726 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian mage-20220921171348-2.png||height="47" width="90"]],,),,1737 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from the starting point coordinate to the set end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_16dfa306a6cd6123.gif?rev=1.1||alt="08_html_16dfa306a6cd6123.gif" height="39" width="70"]],,[[image:08_html_16dfa306a6cd6123.gif]] ,,) 1727 1727 1728 1728 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1729 1729 ... ... @@ -1730,8 +1730,11 @@ 1730 1730 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1731 1731 1732 1732 (% style="text-align:center" %) 1733 -[[image: image-20220921172637-8.png]]1744 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1734 1734 1746 +(% style="text-align:center" %) 1747 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1748 + 1735 1735 (9) Exact match pitch of screws (lead) K and Ze,,.,, 1736 1736 1737 1737 The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif||class="img-thumbnail"]] is determined by formula (1), and recalculate the end point coordinates (Xe',Ye') of X axis and Y axis according to the number of turns of interpolation. ... ... @@ -1738,8 +1738,7 @@ 1738 1738 1739 1739 The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye') ,, ,,may not be equal to the set (Xe,Ye), but it must pass through the set point (Xe,Ye), in the whole circle. 1740 1740 1741 -(% style="text-align:center" %) 1742 -[[image:image-20220921171411-3.png||height="62" width="312"]] 1755 +[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_d3f40984948fb2f1.gif?rev=1.1||alt="08_html_d3f40984948fb2f1.gif"]],,[[image:08_html_d3f40984948fb2f1.gif]] ,,(1) 1743 1743 1744 1744 (10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0), the end point coordinate (0,0,Ze). 1745 1745 ... ... @@ -1762,7 +1762,7 @@ 1762 1762 |(% style="width:139px" %)4F97H|(% style="width:942px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1763 1763 |(% style="width:139px" %)4F98H|(% style="width:942px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1764 1764 |(% style="width:139px" %)4F99H|(% style="width:942px" %)Helical interpolation error, Z axis is 0. 1765 -|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead ,, ,,[[image:image-20220921171529-5.png||height="32" width="69"]],, ,,)1778 +|(% style="width:139px" %)4F9BH|(% style="width:942px" %)Lead setting exceeds the range.(Lead [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif" height="23" width="44"]][[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif"]],,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1766 1766 1767 1767 **{{id name="_Toc12418"/}}Example** 1768 1768 ... ... @@ -1815,7 +1815,7 @@ 1815 1815 (% style="text-align:center" %) 1816 1816 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1817 1817 1818 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is ,, ,,[[image:image-20220921171628-6.png||height="29" width="106"]]. (The range is -2147483648 to +2147483647.)1831 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (relative positioning) of X axis , s1+2 is the target position (relative positioning) of Y axis, and s1+4 is the target position (relative positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_8d829d6ac7cb190d.gif?rev=1.1||alt="08_html_8d829d6ac7cb190d.gif" height="23" width="72"]],,[[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1819 1819 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1820 1820 1821 1821 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1835,17 +1835,18 @@ 1835 1835 1836 1836 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1837 1837 1838 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1851 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_16dfa306a6cd6123.gif?rev=1.1||alt="08_html_16dfa306a6cd6123.gif"]],,[[image:08_html_16dfa306a6cd6123.gif]]),, 1839 1839 1840 -(If Ze=75, lead K=50, and the actual radian [[image:image-20220921171639-7.png||height="56" width="107"]],,),, 1841 - 1842 1842 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1843 1843 1844 1844 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1845 1845 1846 1846 (% style="text-align:center" %) 1847 -[[image: image-20220921172651-9.png]]1858 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1848 1848 1860 +(% style="text-align:center" %) 1861 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1862 + 1849 1849 (9) Exact match pitch of screws (lead) K and Ze,,.,, 1850 1850 1851 1851 The starting point coordinate of helical interpolation is (0,0,0), set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates (Xe‘,Ye’) of X axis and Y axis according to the number of turns of interpolation. ... ... @@ -1852,8 +1852,7 @@ 1852 1852 1853 1853 The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe‘,Ye’) ,, ,,may not be equal to the set (Xe,Ye) ,, ,,, but it must pass through the set poin (Xe,Ye) ,, ,,in the whole circle. 1854 1854 1855 -(% style="text-align:center" %) 1856 -[[image:image-20220921171703-8.png||height="58" width="291"]] 1869 +[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_d3f40984948fb2f1.gif?rev=1.1||alt="08_html_d3f40984948fb2f1.gif"]],,[[image:08_html_d3f40984948fb2f1.gif]] ,,(1) 1857 1857 1858 1858 (10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,. 1859 1859 ... ... @@ -1876,7 +1876,7 @@ 1876 1876 |(% style="width:129px" %)4F97H|(% style="width:952px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1877 1877 |(% style="width:129px" %)4F98H|(% style="width:952px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1878 1878 |(% style="width:129px" %)4F99H|(% style="width:952px" %)Helical interpolation error, Z axis is 0. 1879 -|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image:i mage-20220921171735-9.png||height="28" width="59"]])1892 +|(% style="width:129px" %)4F9BH|(% style="width:952px" %)Lead setting exceeds the range.(Lead[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif" height="20" width="38"]],,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1880 1880 1881 1881 **{{id name="_Toc28830"/}}Example** 1882 1882 ... ... @@ -1929,8 +1929,7 @@ 1929 1929 (% style="text-align:center" %) 1930 1930 [[image:08_html_769e3269fb4c782e.png||class="img-thumbnail"]] 1931 1931 1932 -* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. 1933 -* The lead range is [[image:image-20220921171807-10.png||height="35" width="128"]]. (The range is -2147483648 to +2147483647.) 1945 +* (s1) is the starting address, and occupies 8 consecutive addresses. s1 is the target position (absolute positioning) of X axis , s1+2 is the target position (absolute positioning) of Y axis, and s1+4 is the target position (absolute positioning) of Z axis, and s1+6 is the lead range of Z axis. The lead range is[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_8d829d6ac7cb190d.gif?rev=1.1||alt="08_html_8d829d6ac7cb190d.gif" height="23" width="70"]],, [[image:08_html_8d829d6ac7cb190d.gif]] ,,.(The range is -2147483648 to +2147483647.) 1934 1934 * Specify radius or center mode in (s2), and occupy 4 consecutive addresses. The coordinate of circle center of s2+0 is in the difference value of the number of pulse output of X axis relative to the current position, or the number of the pulse of radius R. The coordinate of circle center of s2+2 is in the difference value of the number of pulse output of Y axis relative to the current position. When using radius, the value must be 0X7FFF FFFF. The range is 1 to 141421. 1935 1935 1936 1936 * Specify the synthetic output frequency in (s3). The range is 1 to 100000. Helical interpolation can switch the synthetic frequency by setting SM901. 0 means default, and the synthetic frequency is the frequency of the linear velocity of helix. 1 means that the synthetic frequency is the frequency of the linear velocity of the arc of arc plane, that is, the actual synthetic frequency is greater than the setting synthetic frequency. ... ... @@ -1950,17 +1950,18 @@ 1950 1950 1951 1951 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the center of the circle on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 1952 1952 1953 -(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 1965 +(6) In helical interpolation R mode (radius mode): When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. (If Ze=75, lead K=50, and the actual radian [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_16dfa306a6cd6123.gif?rev=1.1||alt="08_html_16dfa306a6cd6123.gif"]],,[[image:08_html_16dfa306a6cd6123.gif]]),, 1954 1954 1955 -If Ze=75, lead K=50, and the actual radian(% style="font-size:10.5px" %) [[image:image-20220921171852-11.png||height="65" width="124"]] 1956 - 1957 1957 (7) When using the interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 1958 1958 1959 1959 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 1960 1960 1961 1961 (% style="text-align:center" %) 1962 -[[image: image-20220921172744-10.png]]1972 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 1963 1963 1974 +(% style="text-align:center" %) 1975 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 1976 + 1964 1964 (9) Exact match pitch of screws (lead) K and Ze 1965 1965 1966 1966 The starting point coordinate of helical interpolation is (0,0,0),, ,,, set the end point coordinate to (Xe,Ye,Ze), the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. ... ... @@ -1967,8 +1967,7 @@ 1967 1967 1968 1968 The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye),, ,,, but it must pass through the set point (Xe,Ye),, ,,in the whole circle. 1969 1969 1970 -(% style="text-align:center" %) 1971 -[[image:image-20220921171930-12.png||height="74" width="370"]] 1983 +[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_d3f40984948fb2f1.gif?rev=1.1||alt="08_html_d3f40984948fb2f1.gif"]],,[[image:08_html_d3f40984948fb2f1.gif]] ,,(1) 1972 1972 1973 1973 (10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the starting point coordinate (0,0,0),, ,,,the end point coordinate (0,0,Ze),, ,,). 1974 1974 ... ... @@ -1991,7 +1991,7 @@ 1991 1991 |(% style="width:132px" %)4F97H|(% style="width:949px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 1992 1992 |(% style="width:132px" %)4F98H|(% style="width:949px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 1993 1993 |(% style="width:132px" %)4F99H|(% style="width:949px" %)Helical interpolation error, Z axis is 0. 1994 -|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image:i mage-20220921171956-13.png||height="29"2006 +|(% style="width:132px" %)4F9BH|(% style="width:949px" %)Lead setting exceeds the range. (Lead [[image:/bin/download/PLC%20Editor2/1%20User%20manual/2.1%20LX5V%20user%20manual/08/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif"]][[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif"]],,[[image:08_html_63ad102f937fdad0.gif]] ,,) 1995 1995 1996 1996 **{{id name="_Toc18584"/}}Example** 1997 1997 ... ... @@ -2064,17 +2064,18 @@ 2064 2064 2065 2065 (5) IJ mode: Regardless of absolute position interpolation or relative position interpolation, s2 is only expressed as the difference of the pulse output number between the coordinates of the circle center on the XY axis (Y0/Y1) relative to the current position, and both are in the offset value. 2066 2066 2067 -(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. 2079 +(6) In helical interpolation R mode (radius mode) : When the value of R is greater than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc less than or equal to 180 degrees. When the value of R is less than 0, it indicates that from starting point coordinate to the setting end point coordinate in the circular plane of XY is an arc greater than or equal to 180 degrees, and the actual passing angle is determined by the endpoint of Z axis and the lead K. ( If Ze=75, lead K=50, and the actual radian [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_16dfa306a6cd6123.gif?rev=1.1||alt="08_html_16dfa306a6cd6123.gif"]],,[[image:08_html_16dfa306a6cd6123.gif]] ,,) 2068 2068 2069 -If Ze=75, lead K=50, and the actual radian [[image:image-20220921172134-15.png||height="68" width="130"]] 2070 - 2071 2071 (7) When using interpolation instruction, parameter settings (such as acceleration/deceleration time and so on) are subject to the X axis (Y0); 2072 2072 2073 2073 (8) The actual synthetic frequency S (the lowest frequency value) is the lowest base frequency of the output synthetic frequency. The calculation modes are as follows: 2074 2074 2075 2075 (% style="text-align:center" %) 2076 -[[image: image-20220921172803-11.png]]2086 +[[image:08_html_6f6668df922f7274.gif||class="img-thumbnail"]] 2077 2077 2088 +(% style="text-align:center" %) 2089 +[[image:08_html_6854958a7732277a.gif||class="img-thumbnail"]] 2090 + 2078 2078 (9) Exact match pitch of screws (lead) K and Ze 2079 2079 2080 2080 The start point coordinate of helical interpolation is(0,0,0), set the end point coordinate to (Xe,Ye,Ze),the number of turns of helical interpolation [[image:08_html_f1878c8190771c9b.gif]] is determined by formula (1), and recalculate the end point coordinates of X axis and Y axis according to the number of turns of interpolation. ... ... @@ -2081,8 +2081,7 @@ 2081 2081 2082 2082 The final interpolation result is: make sure that lead is equal to K, and the end point of Z axis is equal to Ze,, ,,.The actual end point position of X and Y axes (Xe',Ye'),, ,,may not be equal to the set (Xe,Ye), but it must pass through the set point (Xe,Ye),, ,,in the whole circle. 2083 2083 2084 -(% style="text-align:center" %) 2085 -[[image:image-20220921172159-16.png||height="72" width="362"]] 2097 +[[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_d3f40984948fb2f1.gif?rev=1.1||alt="08_html_d3f40984948fb2f1.gif"]],,[[image:08_html_d3f40984948fb2f1.gif]] ,,(1) 2086 2086 2087 2087 (10) In helical interpolation radius mode, the center distribution table of whole circle is as below. (For example: the start point coordinate (0,0,0), the end point coordinate (0,0,Ze). 2088 2088 ... ... @@ -2105,7 +2105,7 @@ 2105 2105 |(% style="width:108px" %)4F97H|(% style="width:973px" %)In center mode, the calculated radius distance is greater than the maximum radius range, which is positive or negative 800,000 pulse. 2106 2106 |(% style="width:108px" %)4F98H|(% style="width:973px" %)Helical interpolation error, Z axis is the main axis.(The coordinate of Z axis is greater than the number of of virtual main axis of circular plane) 2107 2107 |(% style="width:108px" %)4F99H|(% style="width:973px" %)Helical interpolation error, Z axis is 0. 2108 -|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead mage-20220921172255-17.png||height="29" width="62"]],, ,,)2120 +|(% style="width:108px" %)4F9BH|(% style="width:973px" %)Lead setting exceeds the range.(Lead [[image:/bin/download/PLC%20Editor2/08%20High-speed%20pulse%20output/WebHome/08_html_63ad102f937fdad0.gif?rev=1.1||alt="08_html_63ad102f937fdad0.gif" height="19" width="37"]],,[[image:08_html_63ad102f937fdad0.gif]] ,,) 2109 2109 2110 2110 **{{id name="_Toc11997"/}}Example** 2111 2111 ... ... @@ -2613,26 +2613,26 @@ 2613 2613 2614 2614 **C.**When the parameter is 0, Ladder acceleration and deceleration(calculate the pulse frequency one by one) mode is adopted. 2615 2615 2616 -{{id name="OLE_LINK373"/}}{{id name="OLE_LINK374"/}}**D.**When the parameter is 1, Time- divisionT-type acceleration and deceleration is adopted.2628 +{{id name="OLE_LINK373"/}}{{id name="OLE_LINK374"/}}**D.**When the parameter is 1, Time-minute ladder acceleration and deceleration is adopted. 2617 2617 2618 -**E.**When the parameter is 2, Time- divisionS-type acceleration and deceleration is adopted.2630 +**E.**When the parameter is 2, Time-minute s-type acceleration and deceleration is adopted. 2619 2619 2620 -**{{id name="OLE_LINK378"/}}(15) **Time-division**acceleration and deceleration parameter**2632 +**{{id name="OLE_LINK378"/}}(15) Time-minute acceleration and deceleration parameter** 2621 2621 2622 2622 (% class="table-bordered" %) 2623 2623 |**Output axis**|**Y0**|**Y1**|**Y2**|**Y3**|**Y4**|**Y5**|**Y6**|**Y7** 2624 -|Time- division intervals|SD912|SD972|SD1032|SD1092|SD1152|SD1212|SD1272|SD13322636 +|Time-minute intervals|SD912|SD972|SD1032|SD1092|SD1152|SD1212|SD1272|SD1332 2625 2625 2626 -Time- division intervals:2638 +Time-minute intervals: 2627 2627 2628 -{{id name="OLE_LINK377"/}}{{id name="OLE_LINK379"/}}This parameter is time interval of Time-division acceleration and deceleration. The unit is 100us. The value range is 10 to1000.When the value is less than 10, the value is 10. When the value is greater than 1000, the value is 1000.2640 +{{id name="OLE_LINK377"/}}{{id name="OLE_LINK379"/}}This parameter is time interval of time-minute acceleration and deceleration. The unit is 100us. The value range is 10 to1000.When the value is less than 10, the value is 10. When the value is greater than 1000, the value is 1000. 2629 2629 2630 -Time- divisionT-type acceleration and deceleration2642 +Time-minute ladder acceleration and deceleration 2631 2631 2632 2632 (% style="text-align:center" %) 2633 2633 [[image:08_html_4649b9d5dd0f0a90.gif||height="330" width="700" class="img-thumbnail"]] 2634 2634 2635 -Time- division S-type acceleration and deceleration2647 +Time-minute S-type acceleration and deceleration 2636 2636 2637 2637 (% style="text-align:center" %) 2638 2638 [[image:08_html_27806ce2da3a3ef0.gif||height="319" width="700" class="img-thumbnail"]]
- 3q3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Jim - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.0 KB - Content
- image-20220921171331-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171348-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171411-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171433-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171529-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171628-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171639-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171703-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171735-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921171807-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.5 KB - Content
- image-20220921171852-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921171930-12.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921171956-13.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172054-14.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172134-15.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -6.1 KB - Content
- image-20220921172159-16.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -7.6 KB - Content
- image-20220921172255-17.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172410-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.7 KB - Content
- image-20220921172417-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172437-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172524-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172550-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172606-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172617-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172637-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172651-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172744-10.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content
- image-20220921172803-11.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -9.1 KB - Content