Wiki source code of 09 Electronic cam

Version 1.1 by Leo Wei on 2022/06/08 12:57

Hide last authors
Leo Wei 1.1 1 = **Electronic CAM (ECAM) instruction** =
2
3 == {{id name="_Toc15695"/}}**{{id name="_Toc25745"/}}{{id name="_Toc16425"/}}DEGEAR/Electronic gear/32 bit hand wheel instruction** ==
4
5 **DEGEAR**
6
7 Electronic gear function refers to the function of multiplying the speed of the driving shaft by the set gear ratio and outputting to the driven shaft at this speed to control the mechanical operation.
8
9 -[DEGEAR (s1) (s2) (s3) (d1) (d2)]
10
11 (% style="text-align:center" %)
12 [[image:09_html_da882b8c1ba50fe6.png||class="img-thumbnail" height="388" width="700"]]
13
14 **Content, range and data type**
15
16 (% class="table-bordered" %)
17 |**Parameter**|(% style="width:778px" %)**Content**|(% style="width:269px" %)**Range**|**Data type**|**Data type (label)**
18 |(s1)|(% style="width:778px" %)Specify the high-speed counter or ordinary double-word counter that receives the master axis pulse|(% style="width:269px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
19 |(s2)|(% style="width:778px" %)Specify the data buffer of the electronic gear command|(% style="width:269px" %) |Form type|LIST
20 |(s3)|(% style="width:778px" %)Response time, that is, how often the gear calculation is performed|(% style="width:269px" %)0~~500|Signed BIN 32 bit|ANY32
21 |(d)|(% style="width:778px" %)Specify pulse output axis|(% style="width:269px" %)Y0~~Y7|Bit|ANY_BOOL
22 |(d)|(% style="width:778px" %)Specify direction output shaft|(% style="width:269px" %)Y/M/S/D.b|Bit|ANY_BOOL
23
24 **Device used**
25
26 (% class="table-bordered" %)
27 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="10" %)**Device**|(((
28 **Offset**
29
30 **modification**
31 )))|(((
32 **Pulse**
33
34 **extension**
35 )))
36 |**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
37 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | |●|●| | | |
38 |Parameter 2| | | | |●|●| | | | | |
39 |Parameter 3| | | | |●|●| | |●|●| |
40 |Parameter 4|●| | | | | | | | | | |
41 |Parameter 5|●|●|●|●| | | | | | | |
42
43 **Features**
44
45 •When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1) according to the set response time (s2), calculates the average frequency within the response time, and calculates the output of the driven axis according to the set gear ratio Frequency and output pulse number, and output pulse (d1) and direction (d2). When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
46
47 •When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
48
49 •When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
50
51 • Electronic gear data buffer (s2) table:
52
53 (% class="table-bordered" %)
54 |(% colspan="5" %)**Electronic gear instruction parameter description table**
55 |**Offset**|(% style="width:348px" %)**Content**|(% style="width:724px" %)**Instruction**|(% style="width:209px" %)**Range**|**Read and write permission**
56 |0|(% style="width:348px" %)Electronic gear ratio (numerator)|(% rowspan="2" style="width:724px" %)(((
57 Number of outputs =
58
59 Number of inputs in response time*numerator/denominator
60 )))|(% style="width:209px" %)0 to 32767|(% rowspan="2" %)Read/write
61 |1|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:209px" %)1 to 32767
62 |2|(% style="width:348px" %)Maximum output frequency (low word)|(% style="width:724px" %)Max frequency|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write
63 |3|(% style="width:348px" %)Maximum output frequency (high word)|(% style="width:724px" %)Max frequency|Read/write
64 |4|(% style="width:348px" %)Average spindle frequency (low word)|(% style="width:724px" %)Hand crank input frequency|(% rowspan="2" style="width:209px" %)-|Read-only
65 |5|(% style="width:348px" %)Average spindle frequency (high word)|(% style="width:724px" %)Hand crank input frequency|Read-only
66 |6|(% style="width:348px" %)Accumulative electronic gear input pulse number (low word)|(% rowspan="2" style="width:724px" %)Cumulative number of electronic gear input pulses|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
67 |7|(% style="width:348px" %)Cumulative number of electronic gear input pulses(High word)
68 |8|(% style="width:348px" %)Sign|(% style="width:724px" %)After the electronic gear is initialized, the flag is equal to 1|(% style="width:209px" %)Reserved|Reserved
69 |9|(% style="width:348px" %)interval|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
70 |10|(% style="width:348px" %)Electronic gear ratio (numerator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
71 |11|(% style="width:348px" %)Electronic gear ratio (denominator)|(% style="width:724px" %)Confirmation value|(% style="width:209px" %)-|Read-only
72 |12|(% style="width:348px" %)Maximum output frequency (low word)|(% rowspan="2" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)1 to 200000|Read/write
73 |13|(% style="width:348px" %)Maximum output frequency (high word)|Read/write
74 |14|(% style="width:348px" %)Dynamically switch gear ratio|(% style="width:724px" %)(((
75 1: Switch to the newly set gear ratio immediately. And set the address back to 0.
76
77 2: The cycle is completed and the gear ratio is switched, and the value is set back to 0 after the switching is completed. (The value of the spindle count reaching the denominator is regarded as a cycle)
78 )))|(% style="width:209px" %)0 to 2|Read/write
79 |15|(% style="width:348px" %)16-bit gear ratio and 32-bit gear ratio switch|(% style="width:724px" %)(((
80 0: Use 16-bit gear ratio
81
82 1: Use 32-bit gear ratio
83
84 ✎**Note:     **After changing this bit, it will only take effect after the DEGEAR command is re-enabled or the dynamic gear ratio function is used.
85 )))|(% style="width:209px" %)0 to 1|Read/write
86 |16|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)(((
87 Number of inputs =
88
89 Spindle input number within response time*numerator/denominator
90 )))|(% rowspan="2" style="width:209px" %)0 to 214748647|(% rowspan="2" %)Read/write
91 |17|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
92 |18|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)1 to 214748647|(% rowspan="2" %)Read/write
93 |19|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
94 |20|(% style="width:348px" %)32-bit electronic gear ratio numerator (low word)|(% rowspan="4" style="width:724px" %)Confirmation value|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
95 |21|(% style="width:348px" %)32-bit electronic gear ratio numerator (high word)
96 |22|(% style="width:348px" %)32-bit electronic gear ratio denominator (low word)|(% rowspan="2" style="width:209px" %)-|(% rowspan="2" %)Read-only
97 |23|(% style="width:348px" %)32-bit electronic gear ratio denominator (high word)
98
99 **✎Note:**
100
101 • When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
102
103 • The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, The computing interval is unchanged, that is, the 8-axis electronic gear instruction is executed at the same time, and the computing interval is also 100us.
104
105 • The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
106
107 • The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
108
109 **Error code**
110
111 (% class="table-bordered" %)
112 |**Error code**|**Content**
113 |4085H|The read address of (s1), (s2) and (s3) exceeds the device range
114 |4084H|The data exceeds the settable range
115 |4EC0H|Electronic gear ratio setting error
116 |4088H|High-speed pulse instructions use the same output shaft (d1)
117
118 **Example**
119
120 **(1) Realize the 1:1 follow function of Y0 output pulse to Y3 output pulse.**
121
122 1) Configure the high-speed counter, enable HSC0, and configure it as one-way output and count-up mode.
123
124 (% style="text-align:center" %)
125 [[image:09_html_c27f358df2fb693.png||class="img-thumbnail"]]
126
127 2) Ladder
128
129 (% style="text-align:center" %)
130 [[image:09_html_242f6504931e93b5.png||class="img-thumbnail"]]
131
132 Connect the Y3 output of the PLC to the X0 input.
133
134 Turn on M1, start M2, and Y3 for output. At this time, Y0 will follow Y3 1:1 (SD880 = SD1060).
135
136 **(2) Use of 32-bit gear ratio.**
137
138 (% style="text-align:center" %)
139 [[image:09_html_5ccccc63668ba219.png||class="img-thumbnail"]]
140
141 Set the 32-bit gear ratio: 18518517: 12345678, set the 15 address of the data buffer to 1, and enable the 32-bit gear ratio function.
142
143 M1 turns ON to turn on the electronic gear command, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 18518517:12345678.
144
145 **(3) Use of gear ratio switching function**
146
147 (% style="text-align:center" %)
148 [[image:09_html_bb25bf2898683582.png||class="img-thumbnail"]]
149
150 Set the gear ratio to 1:1.
151
152 M1 turns ON to turn on the electronic gear instruction, M2 turns ON, LC0 will increase by 1 every 100ms, at this time SD880:LC0 always = 1:1. When M3 is turned on, change the gear ratio to 2:1 and enable the switch gear ratio function. After that, the increment of SD880 and the increment of LC0 are always 2:1.
153
154 == {{id name="_Toc4792"/}}**{{id name="_Toc8689"/}}DECAM/32-bit electronic cam instruction** ==
155
156 **DECAM**
157
158 The electronic cam function uses the preset cam curve to determine the slave axis movement amount according to the spindle movement (phase information) and the cam curve, and output. The cam curve refers to each phase (rotation angle (Degree) and CAM curve refers master axis rotation 1 cycle as the movement benchmark. The displacement of the slave axis can be set by the ECAMTBX instruction.
159
160 -[DECAM (s1) (s2) (s3) (d1) (d2)]
161
162 (% style="text-align:center" %)
163 [[image:09_html_a82d001d381b23bb.png||class="img-thumbnail" height="476" width="700"]]
164
165 **Content, range and data type**
166
167 (% class="table-bordered" %)
168 |**Parameter**|(% style="width:790px" %)**Content**|(% style="width:268px" %)**Range**|**Data type**|**Data type (label)**
169 |(s1)|(% style="width:790px" %)Specify to receive the input pulse of the master axis|(% style="width:268px" %)-2147483648 to 2147483647|Signed BIN 32 bit|ANY32
170 |(s2)|(% style="width:790px" %)Specify the data buffer of the electronic cam instruction|(% style="width:268px" %) |Form type|LIST
171 |(s3)|(% style="width:790px" %)The external start signal of the electronic cam needs to be enabled in the data buffer area to be effective.|(% style="width:268px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
172 |(d1)|(% style="width:790px" %)Specify pulse output axis|(% style="width:268px" %)Y0~~Y7|Bit|ANY_BOOL
173 |(d2)|(% style="width:790px" %)Specify direction output shaft|(% style="width:268px" %)Y/M/S/D.b|Bit|ANY_BOOL
174
175 **Device used**
176
177 (% class="table-bordered" %)
178 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="11" %)**Devices**|(((
179 **Offset**
180
181 **modification**
182 )))|(((
183 **Pulse**
184
185 **extension**
186 )))
187 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|(% style="width:36px" %)**K**|(% style="width:44px" %)**H**|**[D]**|**XXP**
188 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|(% style="width:36px" %)●|(% style="width:44px" %)●| |
189 |Parameter 2| | | | | |●|●| | |(% style="width:36px" %) |(% style="width:44px" %) | |
190 |Parameter 3|●| |●|●|●| | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
191 |Parameter 4| |●| | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
192 |Parameter 5| | | | | | | | | |(% style="width:36px" %) |(% style="width:44px" %) | |
193
194 **Features**
195
196 When the instruction is turned on, the PLC obtains the number of pulses of the master axis (s1), calculates the number of pulses that the slave axis needs to output for this calculation according to the set cam curve, and performs the pulse (d1) and direction (d2) Output. When the frequency of the driven shaft is greater than the set maximum frequency, it will output according to the set maximum frequency.
197
198 • When the master axis (s1) uses the high-speed counter (HSC), the PLC internally obtains the number of external input pulses. Modifying the value of the HSC counter does not affect the judgment of the input pulse.
199
200 • When the master axis (s1) uses an ordinary double-word counter (LC), the PLC directly obtains the number of pulses from the LC register, and modifying the value of the register directly affects the judgment of the input pulse.
201
202 • When the master axis (s1) uses the constant K/H, the number of input pulses is the time axis. If it is K1, the number of input pulses will increase by 1 every 100 us.
203
204 • Electronic cam data buffer (s2) table:
205
206 (% class="table-bordered" %)
207 |(% style="width:135px" %)**Offset address**|(% style="width:199px" %)**Name**|**Instruction**|**Initial value**|**Range**
208 |(% style="width:135px" %)0|(% style="width:199px" %)Form version number| |5200|
209 |(% rowspan="3" style="width:135px" %)1|(% rowspan="3" style="width:199px" %)Flag register|(((
210 Bit0-Initialization complete flag
211
212 After the electronic cam permission signal is activated, calculate the related
213
214 Data, automatically set to ON after initialization, users need to clear this flag state by themselves
215 )))|0|—
216 |(((
217 Bit1-Cycle complete flag
218
219 Electronic cam completion flag. When the periodic electronic cam is executed
220
221 After completion, this flag will be automatically set to ON; if you want to restart the periodic electronic cam, the user needs to clear this flag state first.
222 )))|0|—
223 |(((
224 Bit2-Pulse transmission delayed flag bit
225
226 Bit3-Error electronic cam stop running flag bit
227
228 Bit4-Parameter error error, electronic cam stop running flag bit
229
230 Bit5-Table error, electronic cam stop running flag
231
232 Bit6-Periodic electronic cam flag
233
234 Bit7-Aperiodic electronic cam flag
235
236 Bit9-Stop flag for current cycle completion
237
238 Bit10-synchronization zone flag
239
240 Bit11-Time axis flag
241
242 Bit12-New form loading complete flag
243
244 Bit13-Periodic delay electronic cam flag
245
246 Bit14-Delayed start function, delayed waiting flag bit
247 )))|0|
248 \\\\\\—
249 |(% style="width:135px" %)2|(% style="width:199px" %)Error register|(((
250 Operation error condition (check Bit3 of address 1): Display Error code.
251
252 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
253
254 Table error condition (check Bit5 of address 1): display Incorrect table segment number.
255 )))|0|
256 \\—
257 |(% style="width:135px" %)3|(% style="width:199px" %)(((
258 Function register
259
260 (Confirm before using electronic cam)
261 )))|(((
262 Bit0-Delayed start enable Bit1-Start at specified position
263
264 Bit2-Spindle zoom Bit3-zoom from axis
265
266 Bit5-Use external start signal Bit6-Start from current position
267
268 *Bit1 and Bit6 cannot both be 1.
269 )))|0|—
270 |(% style="width:135px" %)4|(% style="width:199px" %)(((
271 Function register
272
273 (can be changed while the electronic cam is running)
274 )))|(((
275 Bit0-Sync signal enable
276
277 Bit1-Stop the electronic cam after the current cycle is completed
278
279 Bit2-Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
280 )))|0|
281
282
283 **✎Note:**
284
285 When the output pulse axis (d1) is used by this instruction, other high-speed pulse instructions can no longer use the output axis. Otherwise, an operation error will occur and pulse output will not be performed.
286
287 The cycle of calculating the electronic gear inside the PLC is 100us once. If multiple electronic gear/electronic cam commands are used at the same time, the time will increase accordingly. If the 8-axis electronic gear command is executed at the same time, the calculation cycle will become 800us.
288
289 The electronic gear commands can only be enabled at most 8 (Y0 ~~ Y7) at the same time.
290
291 The electronic gear command is used, and the data buffer (s2) will occupy 24 consecutive devices. Note that the address cannot exceed the range of the device and reuse.
292
293 **Error code**
294
295 (% class="table-bordered" %)
296 |**Error code**|**Content**
297 |4E80H|E-cam table loading error
298 |4E81H|The currently numbered form has a cam in use
299 |4E82H|E-cam table address error
300 |4E83H|The electronic cam table exceeds the device range
301
302 **Example**
303
304 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
305
306 == {{id name="_Toc17791"/}}**{{id name="_Toc17882"/}}{{id name="OLE_LINK605"/}}ECAMCUT/Electronic cam table switching instruction** ==
307
308 **ECAMCUT**
309
310 This instruction needs to be used in conjunction with the electronic cam instruction (DECAM) to specify the newly defined table address to realize the function of switching the electronic cam table periodically during the operation of the electronic cam.
311
312 -[ECAMCUT (s1) (s2)]
313
314 **Content, range and data type**
315
316 (% class="table-bordered" %)
317 |**Parameter**|**Content**|**Range**|**Data type**|**Data type (label)**
318 |(s1)|Specify the table number, currently only supports one table|1 to 2 (LX5VT: 1 to 16)|Signed BIN 16 bit|ANY16
319 |(s2)|Specify the first address of the data buffer area of the electronic cam table|-|Form type|LIST
320
321 **Device used**
322
323 (% class="table-bordered" %)
324 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
325 **Offset modification**
326 )))|(((
327 **Pulse extension**
328 )))
329 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
330 |(% rowspan="2" %)ECAMCUT|Parameter 1|●|●|●|●| |
331 |Parameter 2|●|●| | | |
332
333 **Features**
334
335 Table format definition:
336
337 (% class="table-bordered" %)
338 |**Offset**|**Instruction**
339 |0|Number of table segments
340 |1|Table version
341 |2 to 3|Spindle section 0 (double word)
342 |4 to 5|Section 0 slave axis (double word)
343 |6 to 7|Spindle section 1
344 |8 to 9|Section 1 slave axis
345 |(% colspan="2" %)......
346
347 **Instruction function description**
348
349 (1) In the (s1) parameter, only K1 or K2 can be used to specify the location of the table. The format of the table must be as above.
350
351 K1 means Form 1
352
353 K2 means Form 2
354
355 Form 0 is the original form of the cam (optional)
356
357 (2) When the instruction is running, check the table data in the start address specified by (s2) and verify the correctness of the data. After the operation is successful, the table with the specified table number should point to the starting address of (s2). In the process of command pointing, if the corresponding numbered table is in the current cam operation, an operation error will be reported.
358
359 Before using the table, you need to run this command to configure the address where the table is located. After the table address is specified, it will not be saved after power off.
360
361 (3) Related registers and flags
362
363 •Electronic cam buffer offset 1 (flag bit register)
364
365 bit12 ~-~-- table switching completed flag
366
367 •Electronic cam buffer offset 4 (function register)
368
369 After bit2-cycle is completed, switch to the specified table operation
370
371 •Electronic cam buffer offset 31
372
373 Number of the table to be run in the next cycle (0 ~~ 2)
374
375 •Electronic cam buffer offset 32
376
377 The table number of current cycle operation (0 ~~ 2)
378
379 **✎Note:**
380
381 Table 0 is the self-contained table of the electronic cam, that is, the continuous address starting at offset 38 of the electronic cam data buffer. Therefore, the electronic cam can specify up to 3 tables at the same time, which can be switched freely during operation.
382
383 If the curve generated by the electronic cam table generation command ECAMTBX is used, the data buffer of the ECAMTBX generated table should be offset by 38 addresses and then specified.
384
385 (% style="text-align:center" %)
386 [[image:09_html_214525e2311bb039.png||class="img-thumbnail"]]
387
388 **Error code**
389
390 (% class="table-bordered" %)
391 |**Error code**|**Content**
392 |4E80H|E-cam table loading error
393 |4E81H|The currently numbered form has a cam in use
394 |4084H|Data exceeding 1 to 2 is specified in (s1)
395 |4085H|The (s2) table exceeds the device range
396
397 **Example**
398
399 Realize the mutual switching between electronic cam form 1 and form 2
400
401 (% style="text-align:center" %)
402 [[image:09_html_e4c32bd6a926ac39.png||class="img-thumbnail"]]
403
404 (% style="text-align:center" %)
405 [[image:09_html_808130957dbf9656.png||class="img-thumbnail"]]
406
407 **✎Note:**
408
409 1. According to the above Circuit program, first set M2, configure table 1 data, and use ECAMCUT to designate table 1 as electronic cam operation table 1.
410 1. Set M200 to configure the cam running command DECAM.
411 1. Set M201 to enable electronic cam operation. And automatically prepare table 2 data, and assign table 2 data as electronic cam operation table 2.
412 1. Set the second position of D2004 to 1 to turn on the electronic cam switching table function. At this time, table 1 is run in the current cycle, and table 2 is run in the next cycle.
413 1. Use manual addition (M110) to change the master axis (LC0), and the slave axis pulse number SD880 will also change, and the ratio is the ratio of Table 1 (1:2).
414 1. When LC0 = 100, the program automatically switches to Table 2 to run, LC0 increment: SD880 increment = 2000:120500. And currently running table 2 and next cycle running table 1. When LC0 = 2100, switch back to Table 1 to run.
415
416 == {{id name="_Toc24615"/}}**ECAMTBX/Electronic cam table generation instruction** ==
417
418 **ECAMTBX**
419
420 This instruction is used to generate the table data of the electronic cam.
421
422 -[ECAMTBX (S0) (S1) (D0) (D1)]
423
424 **Content, range and data type**
425
426 (% class="table-bordered" %)
427 |**Parameter**|(% style="width:700px" %)**Content**|(% style="width:138px" %)**Range**|(% style="width:255px" %)**Data type**|**Data type (label)**
428 |(S0)|(% style="width:700px" %)Specify the first address of the electronic cam table parameter|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
429 |(S1)|(% style="width:700px" %)Specify the curve type of the electronic cam|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
430 |(D0)|(% style="width:700px" %)Specify the first address of the data buffer area of the E-cam table|(% style="width:138px" %)-|(% style="width:255px" %)Form type|LIST
431 |(D1)|(% style="width:700px" %)Table generation results|(% style="width:138px" %)-|(% style="width:255px" %)Signed BIN 16 bit|ANY16
432
433 **Device used**
434
435 (% class="table-bordered" %)
436 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameter**|(% colspan="4" %)**Devices**|(((
437 **Offset modification**
438 )))|(((
439 **Pulse extension**
440 )))
441 |**D**|**R**|**K**|**H**|**[D]**|**XXP**
442 |(% rowspan="4" %)ECAMTBX|Parameter 1|●|●| | | |
443 |Parameter 2|●|●|●|●| |
444 |Parameter 3|●|●| | | |
445 |Parameter 4|●|●| | | |
446
447 **Features**
448
449 S0~-~-parameter address, allowable Devices: D, R.
450
451 {{id name="OLE_LINK386"/}}Description: Indicate the parameters to be set to generate the curve.
452
453 S1~-~-curve type, allowable Devicess: D, R, H, K.
454
455 Description: Indicates the type of curve to be generated.
456
457 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
458
459 K2: Customize the designated key point to generate a table
460
461 K100: Generate flying shear curve
462
463 K101: Generate chase curve
464
465 D0~-~-The first address of cam parameters, allowable devices: D, R
466
467 Description: The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
468
469 D1-table generation result, allowable Devices: D, R
470
471 D1 <0 generates a table error;
472
473 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
474
475 **Error code**
476
477 ECAMTBX instruction generates curve Error code:
478
479 (% class="table-bordered" %)
480 |**Error code**|**Content**
481 |-1|Condition parameter error
482 |-2|The spindle pulse number is too few, not enough for synchronization area
483 |-3|Unknown cam curve type
484 |-4|Resolution range error
485 |-5|Too many pulses of the slave axis calculated
486 |-6|The calculated number of pulses from the slave axis is too small
487 |-7|The calculated number of spindle pulses exceeds the set length
488 |-8|The pulse number of the slave axis is set to 0
489 |-10|S type acceleration and deceleration curve calculation error
490 |-11|Unknown curve type
491 |-12|Curve left wrong
492 |-13|The number of slave axes exceeds the range
493
494 Key point generating curve Error code:
495
496 (% class="table-bordered" %)
497 |**Error code**|**Content**
498 |-21|The number of key points is out of range
499 |-22|Total resolution exceeds range
500 |-23|Incorrect relationship between spindle size
501 |-24|The resolution setting of each segment is incorrect
502 |-25|When calculating, the number of control points is insufficient
503 |-26|Unknown acceleration curve type
504 |-27|Spindle pulse number is negative
505
506 S-type acceleration and deceleration generated curve Error code:
507
508 (% class="table-bordered" %)
509 |**Error code**|**Content**
510 |-31|The number of pulses exceeds the range
511 |-32|Maximum frequency out of range
512 |-33|Acceleration and deceleration time out of range
513 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
514
515 **✎Note:**
516
517 After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
518
519 **Example**
520
521 For details, please refer to "__[[9.2 Instruction manual of Electronic CAM (ECAM )>>path:#_9.2 Instruction manual of Electronic CAM (ECAM )]]__".
522
523 = {{id name="_Toc30498"/}}**Instruction manual of Electronic CAM (ECAM )** =
524
525 == {{id name="_Toc4483"/}}**{{id name="_Toc15753"/}}{{id name="_Toc16335"/}}{{id name="一、电子凸轮原理"/}}{{id name="_Toc18423"/}}{{id name="_Toc19697"/}}{{id name="_电子凸轮说明手册"/}}{{id name="电子凸轮功能使用指南V2.0版"/}}Principle of ECAM** ==
526
527 The traditional mechanical cam is composed of cam, follower and frame. A mechanical cam is an irregular part, generally an input part with a constant speed, which can transmit motion to a follower through direct contact, so that the action moves according to a set law. The follower is a passive part driven by a mechanical cam, and is generally an output part that produces unequal speed, discontinuous, and irregular motion.
528
529 ECAM is a software system that uses the constructed concave wheel curve to simulate mechanical cam to achieve the same relative motion between the camshaft and the main shaft of the mechanical cam system.
530
531 Compared with mechanical cams, ECAM makes the design of mechanical and electrical parts more and more simple. ECAM allows the equipment to be flexibly used in different templates and plate styles, and also allows the operation process and cycle of the equipment to be modified, either during the design phase of the equipment or after the equipment is formed. It reduces the complexity of the equipment, makes the equipment run more smoothly and doubles the production efficiency.
532
533 == {{id name="_Toc10338"/}}**{{id name="_Toc21791"/}}{{id name="_Toc18361"/}}{{id name="_Toc4935"/}}Description of ECAM function** ==
534
535 **A.Establish ECAM data**
536
537 {{id name="二、电子凸轮功能描述"/}}{{id name="1、建立电子凸轮数据"/}}LX5V provides 3 ways to establish ECAM data:
538
539 ① Write table data to the table data area by DMOV instruction.
540
541 ② Generate ECAM data automatically by ECAMTBX instruction.
542
543 ③ Draw ECAM data with PLC Editor software.
544
545 **{{id name="2、主轴脉冲选择"/}}B.Spindle pulse selection**
546
547 The selectable spindles of LX5V series PLC are HSC, LC type and virtual time axis K.
548
549 Among them, external high-speed input uses high-speed counter, which supports single-phase single-count input\single-phase double-count input and biphase double-count input. As for the assignment of counters, refer to the instructions for high-speed counters in the PLC help.
550
551 When using HSC register (high-speed counter), the pulse of spindle is obtained internally. Modifying the value of the counter does not affect the cam to judge the actual pulse input quantity.
552
553 When using the normal counter LC, the pulse of spindle is obtained from devices. Modifying the value of the register will affect the judgment of the pulse of spindle .
554
555 When using the K type register, it means to use the internal virtual time axis, and the minimum unit is 100us, K1=100us, K10=1ms.
556
557 **{{id name="3、启用电子凸轮配置"/}}C.Enable ECAM configuration**
558
559 Use the DECAM instruction to configure the ECAM function of PLC.
560
561 (% class="table-bordered" %)
562 |**Name**|**Function**|**Bits**|**Whether pulse type**|**Instruction format**|**Step number**
563 |DECAM|ECAM configuration|32|No|DECAM s1 s2 s3 d1 d2|10
564
565 Ladder :
566
567 (% style="text-align:center" %)
568 [[image:09_html_763f6b25c0dc7c9b.png||class="img-thumbnail"]]
569
570 **(1) Parameters**
571
572 (% class="table-bordered" %)
573 |**Parameter**|(% style="width:812px" %)**Content**|(% style="width:185px" %)**Range**|**Data type**|**Data type (label)**
574 |(s1)|(% style="width:812px" %)Specify to receive the input pulse of the master axis|(% style="width:185px" %)(((
575 -2147483648 to
576
577 +2147483647
578 )))|Signed BIN 32 bit|ANY32
579 |(s2)|(% style="width:812px" %)Specify the data buffer area of the ECAM instruction|(% style="width:185px" %) |Form|LIST
580 |(s3)|(% style="width:812px" %)The external start signal of ECAM needs to be enabled in the data buffer area to be effective.|(% style="width:185px" %)X/M/S/D.b|Signed BIN 32 bit|ANY32
581 |(d1)|(% style="width:812px" %)Specify pulse output axis|(% style="width:185px" %)Y0 to Y7|Bit|ANY_BOOL
582 |(d2)|(% style="width:812px" %)Specify direction output axis|(% style="width:185px" %)Y/M/S/D.b|Bit|ANY_BOOL
583
584 **{{id name="_Toc9293"/}}Device used:**
585
586 (% class="table-bordered" %)
587 |(% rowspan="2" %)**Instruction**|(% rowspan="2" %)**Parameters**|(% colspan="11" %)**Device**|(((
588 **Offset**
589
590 **modification**
591 )))|(((
592 **Pulse**
593
594 **extension**
595 )))
596 |**X**|**Y**|**M**|**S**|**D.b**|**D**|**R**|**LC**|**HSC**|**K**|**H**|**[D]**|**XXP**
597 |(% rowspan="5" %)DECAM|Parameter 1| | | | | | | |●|●|●|●| |
598 |Parameter 2| | | | | | | | | | | | |
599 |Parameter 3|●| |●|●|●|●|●| | | | | |
600 |Parameter 4| |●| | | | | | | | | | |
601 |Parameter 5| |●|●| |●| | | | | | | |
602
603 **(2) Function description**
604
605 When the contact M0 is turned on, the PLC activates ECAM function, but the ECAM function is not yet running at this time, it just initializes the parameters of the cam. It includes that D1000 to D1005, D1031, D1032 will be cleared and check whether the cam table is correct. After initialization, these registers still need to be set for control.
606
607 This instruction configures the relevant registers and required data for cam operation, and enables the function of ECAM, but the cam does not actually run. To actually enable the ECAM function, the relevant device in the cache address of the instruction (such as D1000 in the instruction) is also needed to control the start and stop of the cam.
608
609 If the instruction is disconnected, the cam stops working.
610
611 Refer to the description of "9.2.2.5 ECAM function register" for the definition of cam parameter devices.
612
613 **(3) Instruction error description**
614
615 When the instruction is running, PLC will check the relevant cam parameters in the cache address and prompt the corresponding error. You can find the error according to the prompt [PLC Error code information]:
616
617 (% class="table-bordered" %)
618 |**Error code**|**Content**
619 |4084H|The parameter set in the instruction exceeds the limit
620 |4085H|The device used in the instruction exceeds the maximum device number
621 |4088H|Multiple application instructions use the same output axis for pulse output
622 |4E80H|ECAM table loading error
623 |4E81H|The currently numbered form has a cam in use
624 |4E82H|ECAM table address error
625 |4E83H|The electronic cam table exceeds the device range
626
627 When an error occurs, the ECAM function is not enabled at this time.
628
629 **(4) Devices involved in instruction execution**
630
631 (% class="table-bordered" %)
632 |**Devices**|**Content**
633 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
634 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
635 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
636 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
637 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
638 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
639 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
640 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
641
642 (% class="table-bordered" %)
643 |**Devices**|**Content**|**Devices**|**Content**
644 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
645 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
646 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
647 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
648 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
649 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
650 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
651 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
652
653 **{{id name="4、电子凸轮启动/停止"/}}D.ECAM start/stop**
654
655 **{{id name="4.1周期式电子凸轮启动/停止"/}}(1) Periodic ECAM start/stop**
656
657 Periodic ECAM means that while the main axis is continuously advancing, the cam axis will realize the corresponding position according to the "ECAM curve table (table)", but the table only defines one period of data, so the positional relationship of master/slave axis in this mode is the continuous repetitive extension of the table.
658
659 (% style="text-align:center" %)
660 [[image:09_html_b2aea2b9660ae563.gif||class="img-thumbnail"]]
661
662 {{id name="_Toc9"/}}1) {{id name="(1)周期式电子凸轮启动"/}}Periodic ECAM start
663
664 Periodic ECAM start sequence is as below.
665
666 ✎At time T1, address 5=1, start periodic electronic cam.
667
668 ✎After the time T2 has elapsed, the PLC takes the initiative to set address 1-bit0 (ECAM initialization complete flag).
669
670 ✎During time T3, ECAM initialization is completed and the periodic action is started. The slave axis follows the movement of the spindle according to the position relationship in the table, and the synchronization signal terminal is output according to the synchronization point range.
671
672 ✎When a cycle is completed, ECAM cycle completion flag address 1-bit1 turns ON, and the user clears the completion flag by itself, and then continues to judge the next cycle.
673
674 (% style="text-align:center" %)
675 [[image:09_html_230c69b0429b0c.gif||class="img-thumbnail" height="259" width="800"]]
676
677 {{id name="_Toc18782"/}}2) Periodic ECAM stop
678
679 The periodic ECAM stop sequence is as below.
680
681 ✎When ECAM starts register (address 5) = 0, the ECAM stops operating immediately.
682
683 ✎When the periodic ECAM is operating, the system receives the completion stop flag ((address 4-bit1), the periodic ECAM will continue until the current table is executed, the slave axis will stop operating, as shown in the figure below. If you want to start the periodic cam again, you need to write 0 to address 5 and keep it more than 100us, and then you can start the periodic cam through address 5 again.
684
685 (% style="text-align:center" %)
686 [[image:09_html_cfb2abe40245003c.gif||class="img-thumbnail" height="373" width="900"]]
687
688 {{id name="_Toc31992"/}}3) Example description
689
690 The following figure shows the ECAM data, where the spindle length is 50000, the output unit is the number of pulses, and the synchronization range is 20000 to 30000. When running into the synchronization zone, the synchronization terminal output can be used as a control signal. To create ECAM data, please refer to the ECAM data. Hardware circuit Y1 outputs pulse to connect to X0, and it means that the spindle input terminal receives the output pulse of Y1.
691
692 (% style="text-align:center" %)
693 [[image:09_html_b46d1fff9093d80c.gif||class="img-thumbnail"]]
694
695 This example is to use the software PLC Editor2 to set the table.
696
697 **Instructions**
698
699 ① When executing the program, the special register is set first. The set parameters are as follows:
700
701 A. Double word is composed of SD881 and SD880, the current position of Y0 is cleared to 0,
702
703 B. Start the high-speed counter HSC0 and configure it as a single-phase input to receive the high-speed pulse input of X0 (in this case, the pulse of X0 comes from the output pulse of Y1).
704
705 ② SET M0 to start the ECAM, Y axis starts to perform variable speed movement. The main axis receives variable speed input pulse of Y axis, the slave axis outputs pulse according to the ECAM curve, and when the main axis position is 20000-30000 in each cycle, Y7 is ON state.
706
707 **✎Note: **Special registers must be set before the ECAM is started. Set the upper and lower limits of the synchronization position of the ECAM D2009 = 20000, D2011 = 30000; and set the number of the synchronization terminal Y D2008, and the synchronization output enable D2004-BIT0, an ECAM cycle is 50000 pulses and when the spindle position is 20000-30000 pulses (monitored by D2025 and D2026), the synchronization terminal is ON.
708
709 ③ RST M0, the cam stops running.
710
711 PLC program
712
713 (% style="text-align:center" %)
714 [[image:09_html_90fe8b1de142b4f3.png||class="img-thumbnail" height="942" width="600"]]
715
716 **{{id name="4.2非周期式电子凸轮启动/停止"/}}(2) Aperiodic ECAM start/stop**
717
718 Aperiodic ECAM refers to the timing when the camshaft starts to realize the corresponding position according to the table while the main shaft is continuously advancing after the cam start signal is input. Different from the periodic ECAM, The position relationship of the master/slave axis in this mode actually only runs for one cycle, that is, the table only moves once.
719
720 (% style="text-align:center" %)
721 [[image:09_html_86b1dc09cd872158.gif||class="img-thumbnail"]]
722
723 1) Aperiodic ECAM start
724
725 The aperiodic ECAM stop sequence is as below.
726
727 1. At time T1, address 5=2, and aperiodic ECAM is started.
728 1. After the calculation of the time T2, the PLC actively sets the address 1-bit0=ON (the initialization of aperiodic ECAM is completed). At this time, the slave axis will not follow the movement of the master axis.
729 1. At time T3, the ECAM start signal is turned ON (when the external start signal is used), the slave axis will follow the spindle movement for one cycle according to the position relationship in the table.
730 1. After the cycle is completed at the position of time T4, the PLC will actively clear the state of address 1-bit0=ON, and the user can also judge whether the cycle is completed according to the state of address 1-bit1 to .
731 1. During the time T5, the user can choose whether to set the address 1-bit0=ON again through the program , for the purpose of completing the judgment next time.
732 1. Time T6/T7 position is to repeat the action of T3 to T4 again. **✎Note: **The interval between the rising edges of the cam start signal must be more than 0.5ms.
733 1. Sync signal terminal output.
734
735 (% style="text-align:center" %)
736 [[image:09_html_8efdb40d8fd3ece6.gif||class="img-thumbnail" height="357" width="900"]]
737
738 2) Aperiodic electronic cam stop
739
740 1. When starting the ECAM register address 5=0, the ECAM slave axis stops operating immediately, as shown in the figure below.
741
742 [[image:09_html_7d9a964fd1036d74.gif]]
743
744 2. When the aperiodic ECAM is running, address 4-BIT1=1 (stop after the current cycle is completed), the aperiodic ECAM will continue to run through the table and then the slave axis will stop operating, as shown in the figure below.
745
746 (% style="text-align:center" %)
747 [[image:09_html_93e0a854c1e8db80.gif||class="img-thumbnail" height="333" width="800"]]
748
749 3) Example explanation
750
751 The following figure shows the ECAM running table (the spindle length is 0 to 100000 for a cycle), and its output is the number of pulses. When the external signal X2 is triggered by the rising edge, execute two consecutive tables (D1014=2), and wait for the X2 rising edge Trigger again, and execute two consecutive tables again, and so on.
752
753 (% style="text-align:center" %)
754 [[image:09_html_690e150bae16339c.gif||class="img-thumbnail"]]
755
756 This example uses the software PLC EDITOR to ECam0. Please refer to 9.2.2.5 for the detailed steps of creating an ECAM curve. The Y1 axis of the hardware circuit outputs pulse and connects to the X0 axis input terminal, indicating that input terminal position of master axis is to receive the pulse output of Y1 axis as input.
757
758 **{{id name="_Toc973"/}}Operation steps**
759
760 ① When the program is executed, set special registers first, and the set parameters are as follows:
761
762 A. The contents of SD880, SD881 and SD940, SD941 are cleared to 0
763
764 B. Set D1014=2 (repeat the form twice)
765
766 ② Set M0: Configure and start the cam. When M0 is the rising edge, set D1003-Bit5 to use an external start signal; when D1005=2, Y1 outputs pulses, and Y0 axis has not output yet at this time.
767
768 ③ The external signal X2 is triggered, and Y0 axis is output with the ECAM curve; the output stops after 2 cycles.
769
770 ④ RST M0: Close the ECAM mode; if runs RST M0 when the ECAM is running, Y0 axis will stop output immediately.
771
772 [PLC program]
773
774 (% style="text-align:center" %)
775 [[image:09_html_d46ee9de94f51e8b.jpg||class="img-thumbnail" height="983" width="500"]]
776
777 **{{id name="_电子凸轮功能寄存器"/}}Electronic cam function register**
778
779 (% class="table-bordered" %)
780 |**Offset address**|**Name**|(% style="width:944px" %)**Instruction**|(% style="width:126px" %)(((
781 **Initial value**
782 )))|(% style="width:154px" %)**Range**
783 |0|Form version number|(% style="width:944px" %) |(% style="width:126px" %)0|(% style="width:154px" %)
784 |(% rowspan="3" %)1|(% rowspan="3" %)Flag register|(% style="width:944px" %)(((
785 Bit0: Initialization complete flag
786
787 After the ECAM permission signal is activated, calculate the related data, and automatically set to ON after initialization. Users need to clear the state of this flag by themselves.
788 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
789 |(% style="width:944px" %)(((
790 Bit1: Cycle completion flag
791
792 ECAM completion flag. When the periodic ECAM is executed, this flag will be automatically set to ON; if you want to restart the periodic ECAM, clear the state of this flag first.
793 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
794 |(% style="width:944px" %)(((
795 Bit2: Pulse sending delayed flag
796
797 Bit3: ECAM error stop running flag
798
799 Bit4: Parameter error, ECAM stop running flag
800
801 Bit5: Table error, electronic cam stop running flag
802
803 Bit6: Periodic ECAM flag
804
805 Bit7: Aperiodic ECAM flag
806
807 Bit9: Current cycle completion stop flag
808
809 Bit10: synchronization zone flag
810
811 Bit11: Time axis flag
812
813 Bit12: New form load completion flag
814
815 Bit13: Periodic delay ECAM flag
816
817 Bit14: Delayed start function, delayed waiting flag bit
818 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
819 |2|Register error|(% style="width:944px" %)(((
820 Operation error condition (check Bit3 of address 1): Display Error code.
821
822 Parameter error condition (check Bit4 of address 1): Display the offset address of the error parameter register.
823
824 Table error condition (check Bit5 of address 1): display error
825
826 Incorrect table segment number.
827
828 **✎Note:** Bit3 of address 1 must be set with Bit4 and Bit5
829 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
830 |3|(((
831 Function register
832
833 (Confirm before using electronic cam)
834 )))|(% style="width:944px" %)(((
835 Bit0: Delayed start enable Bit1: Start at specified position Bit2: Spindle zoom
836
837 Bit3: zoom from axis
838
839 Bit5: Use external start signal
840
841 Bit6: Start from current position
842 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
843 |4|(((
844 Function register
845
846 (Can be changed while the ECAM is running)
847 )))|(% style="width:944px" %)(((
848 Bit0: Sync signal enable
849
850 Bit1: Stop the electronic cam after the current cycle is completed
851
852 Bit2: Switch the table after the cycle is completed, the bit will automatically change back to 0 after the switch is completed
853 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
854 |5|ECAM start register|(% style="width:944px" %)(((
855 0: Stop the electronic cam immediately
856
857 1: Periodic electronic cam (start)
858
859 2: Aperiodic electronic cam (start)
860
861 3: Stop after the cycle is completed, this register automatically becomes 3
862
863 4: Periodic delay electronic cam (start)
864
865 Other: reserved, not available
866 )))|(% style="width:126px" %)0|(% style="width:154px" %)—
867 |6|Maximum output frequency setting of ECAM|(% rowspan="2" style="width:944px" %)(((
868 Maximum output frequency setting of electronic cam;
869
870 When the frequency is less than 0 or greater than 200K, it is 200K
871 )))|(% style="width:126px" %)200000|(% style="width:154px" %)0 to 200000
872 |7|The highest ECAM output frequency setting|(% style="width:126px" %) |(% style="width:154px" %)
873 |8|Sync signal Y terminal number|(% style="width:944px" %)(((
874 Output terminal number:
875
876 Set the Y number of the synchronization output terminal, the range is 0 to 1777 (octal), when the synchronization output function is enabled, when in the synchronization area, the corresponding Y terminal outputs the synchronization signal. This function needs to set the upper and lower limits of the synchronization position first .
877 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 1777
878 |9|(((
879 CAM synchronization position lower limit
880
881 (Low word)
882 )))|(% rowspan="4" style="width:944px" %)(((
883 The synchronization position upper/lower limit setting of the electronic cam,
884
885 When the synchronization position lower limit ≤ spindle position ≤ position upper limit
886
887 And the synchronization signal terminal Y output is ON when the synchronization signal is enabled (address 4, BIT0).
888
889 When the lower limit> the upper limit, the upper and lower limit values will be exchanged.
890 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
891 |10|(((
892 CAM synchronization position lower limit
893
894 (High word)
895 )))
896 |11|(((
897 CAM synchronization position upper limit
898
899 (Low word)
900 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)0 to 2147483647
901 |12|(((
902 CAM synchronization position upper limit
903
904 (High word)
905 )))
906 |13|Electronic cam pulse remainder distribution setting (reserved)|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
907 |14|Aperiodic ECAM execution times|(% style="width:944px" %)(((
908 Periodic electronic cam: reserved;
909
910 Aperiodic electronic cam: control table execution times; when the value is H0001, the electronic cam will stop after executing once;
911
912 When the value is HFFFF, it will become a periodic electronic cam execution.
913 )))|(% style="width:126px" %)11|(% style="width:154px" %)1 to 65535
914 |15|ECAM start delay pulse setting (low word)|(% rowspan="2" style="width:944px" %)(((
915 Periodic electronic cam: reserved
916
917 Aperiodic electronic cams and periodic delay electronic cams: the delayed start function can be enabled through (Address 3, Bit0-delayed start enable). When the aperiodic electronic cam is executed, a cam start signal is received. If the electronic cam table is not executed immediately, but the spindle rotates for a few pulses, the table is run. At this time, this register sets the number of delayed pulses.
918 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
919 |16|ECAM start delay pulse setting (high word)
920 |17|(((
921 Spindle specified position start
922
923 (Low word)
924 )))|(% rowspan="2" style="width:944px" %)(((
925 Periodic electronic cam: reserved
926
927 Aperiodic electronic cam:
928
929 It can be enabled by (address 3, Bit1-specified location start enable),
930
931 To enable the function of the specified location. The starting position is set by this address. The setting value must be within the table period.
932 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)(((
933 32-bit unsigned integer
934
935 number
936 )))
937 |18|(((
938 Spindle specified position start
939
940 (high word)
941 )))
942 |19|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
943 Output shaft: current position of slave shaft (after conversion)
944
945 The position of the slave axis during the current cam execution, after scaling
946 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
947 |20|Current position of slave axis (high word)
948 |21|Current position of slave axis (low word)|(% rowspan="2" style="width:944px" %)(((
949 Output shaft: current position of slave shaft (before conversion)
950
951 The position of the slave axis during the current cam execution, before scaling
952 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
953 |22|Current position of slave axis (high word)
954 |23|Denominator of slave axis magnification|(% rowspan="2" style="width:944px" %)Zoom from axis|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
955 |24|Slave magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
956 |25|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
957 Input axis: the current position of the spindle (after conversion)
958
959 The position of the main axis during the current cam execution, after scaling
960 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
961 |26|Spindle current position (high word)
962 |27|Spindle current position (low word)|(% rowspan="2" style="width:944px" %)(((
963 Input axis: the current position of the spindle (before conversion)
964
965 The position of the main axis during the current cam execution, before scaling
966 )))|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit unsigned integer
967 |28|Spindle current position (high word)
968 |29|Denominator of spindle magnification|(% rowspan="2" style="width:944px" %)Spindle zoom|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
969 |30|Spindle magnification numerator|(% style="width:126px" %)1|(% style="width:154px" %)1 to 65535
970 |31|Specify the table to be run in the next cycle|(% style="width:944px" %)(((
971 Switch to use in the table function after the cycle is completed. 0: Use the default table
972
973 1: Use the data in Table 1 (ECAMCUT specifies the address)
974
975 2: Use the data in Table 2 (ECAMCUT specifies the address)
976 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
977 |32|Table running in current cycle|(% style="width:944px" %)(((
978 Switch to use in the table function after the cycle is completed. Indicates the current week
979
980 Periodically run form.
981 )))|(% style="width:126px" %)0|(% style="width:154px" %)0 to 2
982 |33|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
983 |34|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
984 |35|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
985 |36|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
986 |37|Reserved|(% style="width:944px" %)Reserved|(% style="width:126px" %)—|(% style="width:154px" %)—
987 |38|Number of segments in the table|(% style="width:944px" %)Total data segment of cam table data|(% style="width:126px" %)0|(% style="width:154px" %)0 to 512
988 |39|Start offset of the table|(% style="width:944px" %)Specify the offset address of the cam table, fixed to 40|(% style="width:126px" %)40|(% style="width:154px" %)40
989 |40|(((
990 Spindle segment 0
991
992 (low word)
993 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
994 |41|(((
995 Spindle segment 0
996
997 (high word)
998 )))
999 |42|(((
1000 Section 0 slave axis
1001
1002 (low word)
1003 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 0|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1004 |43|(((
1005 Section 0 slave axis
1006
1007 (high word)
1008 )))
1009 |44|(((
1010 Spindle section 1
1011
1012 (low word)
1013 )))|(% rowspan="2" style="width:944px" %)Spindle position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1014 |45|(((
1015 Spindle section 1
1016
1017 (high word)
1018 )))
1019 |46|(((
1020 Section 1 slave axis
1021
1022 (low word)
1023 )))|(% rowspan="2" style="width:944px" %)Slave axis position of segment 1|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1024 |47|(((
1025 Section 1 slave axis
1026
1027 (high word)
1028 )))
1029 |40+ N*4|(((
1030 Nth spindle
1031
1032 (low word)
1033 )))|(% rowspan="2" style="width:944px" %)Nth segment spindle position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1034 |40+ N*4+1|(((
1035 Nth spindle
1036
1037 (high word)
1038 )))
1039 |40+ N*4+2|Nth segment slave axis(low word)|(% rowspan="2" style="width:944px" %)Nth segment slave axis position|(% rowspan="2" style="width:126px" %)0|(% rowspan="2" style="width:154px" %)32-bit integer
1040 |40+ N*4+3|Nth segment slave axis(high word)
1041
1042 **{{id name="5.1凸轮寄存器相关说明"/}}Description of cam register**
1043
1044 **(1) Address 2 - Error register:**
1045
1046 Operation error (check Bit3 of address 1) error code description:
1047
1048 (% class="table-bordered" %)
1049 |**Error code**|**Content**
1050 |-1|Form number is out of range
1051 |-2|The table is not initialized properly
1052 |-3|The number of table segments is too short
1053 |1|Spindle input error, pulse change is too large, 100us exceeds 200
1054 |3|Too many slave axes calculated
1055 |5|The spindle has too many unprocessed pulses in the current cycle
1056 |8|Calculate the number of pulses that the slave axis currently needs to output is too much
1057 |9|The cam master is 2 cycles ahead of the slave
1058 |Parameter error (check Bit4 of address 1)|Display the offset address of the error parameter register.
1059 |Form error (check Bit5 of address 1)|The wrong table segment number is displayed.
1060
1061 **(2) Address 3—function register before ECAM is enabled**
1062
1063 Start the corresponding function register of the cam. When the corresponding setting is 1, the corresponding function of the cam is enabled.
1064
1065 BIT6: start from current position
1066
1067 You can set the starting point of the master and slave when the cam starts.
1068
1069 When this function is enabled, the initial position of the spindle is obtained from [Address 27, 28 — current position of the spindle (before conversion)];
1070
1071 The initial position of the slave axis is obtained from [Address 19, 20 — current position of the slave axis (after conversion)].
1072
1073 **(3) Address 4—function register in ECAM operation**
1074
1075 Bit0-Sync signal enable
1076
1077 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position ≤ the spindle position ≤ the upper limit of the synchronous position, the synchronous terminal outputs.
1078
1079 Bit1-Stop when the current cycle is completed
1080
1081 When address 4-BIT1 = 1, the cam will stop immediately after the execution of the current table is completed. After stopping, address 5 will automatically change to 3, reset to 1, and the periodic electronic cam can be started again. The same applies to non-periodic electronic cams.
1082
1083 **(4) Address 5—electronic cam start register**
1084
1085 Periodic electronic cam start: when address 5=1, start periodic electronic cam: when address 5=0, stop electronic cam.
1086
1087 Periodic delay electronic cam start: when address 5=2, start the first period delay pulse set by address 15, 16 and execute according to periodic electronic cam; address 5=0, stop electronic cam.
1088
1089 When switching between periodic electronic cam and non-periodic electronic cam, the data switching between address 5=1→address 5=0→address 5=2 requires an interval of more than 100us.
1090
1091 **(5) Address 8—synchronization signal Y terminal number**
1092
1093 This register is used to set the terminal number of the synchronization signal output.
1094
1095 When the address 4-Bit0=1, when the spindle position is at the lower limit of the synchronous position≦the spindle position≦the upper limit of the synchronous position, the synchronous terminal outputs.
1096
1097 **(6) Address 9-12—synchronization position upper and lower limit**
1098
1099 (% class="table-bordered" %)
1100 |**Address**|**Features**|**Range**
1101 |Address 9|CAM synchronization position lower limit (LOW WORD)|(% rowspan="2" %)0 to 2147483647
1102 |Address 10|CAM synchronization position lower limit (HIGH WORD)
1103 |Address 11|CAM synchronization LOW WORD)|(% rowspan="2" %)0 to 2147483647
1104 |Address 12|CAM synchronization position upper limit (HIGH WORD)
1105
1106 The synchronization position upper/lower limit of the electronic cam is set. When the synchronization position lower limit ≤ spindle position ≤ position upper limit and the synchronization signal is enabled (address 4, BIT0), the synchronization signal terminal Y is output.
1107
1108 (% style="text-align:center" %)
1109 [[image:09_html_696eef9be2fe781b.gif||class="img-thumbnail"]]
1110
1111 **(7) Address 14—Aperiodic electronic cam execution times setting**
1112
1113 (% class="table-bordered" %)
1114 |**Address**|**Features**|**Range**
1115 |Address 14|(((
1116 Periodic electronic cam-reserved
1117
1118 Non-periodic electronic cam-control the number of times the electronic cam is executed
1119 )))|1 to 65535
1120
1121 When the non-periodic electronic cam mode is selected, the address 14 controls the execution times of the electronic cam. The current address is set to the number of times the cam repeats the table. When the value is HFFFF, it will become periodic cam execution. When the value is 0, the current address will automatically become 1 if it exceeds the range.
1122
1123 **Number of repetitions=0**
1124
1125 (% style="text-align:center" %)
1126 [[image:09_html_cd76208bae686662.gif||class="img-thumbnail"]]
1127
1128 **Number of repetitions=1**
1129
1130 (% style="text-align:center" %)
1131 [[image:09_html_32911c7488cda346.gif||class="img-thumbnail"]]
1132
1133 **(8) Address 15-16—Electronic cam start delay pulse setting**
1134
1135 (% class="table-bordered" %)
1136 |(% style="width:129px" %)**Address**|(% style="width:809px" %)**Features**|**Range**
1137 |(% style="width:129px" %)Address 15|(% rowspan="2" style="width:809px" %)Aperiodic electronic cams or periodic delay electronic cams. The electronic cam table will be executed immediately after the spindle rotates the set number of pulses|(% rowspan="2" %)32-bit unsigned integer
1138 |(% style="width:129px" %)Address 16
1139
1140 When executing aperiodic electronic cams or periodic delayed electronic cams, if address 3 (Bit0-delayed start enable) is set, the delayed start function is enabled. The slave axis receives a cam start signal. If the electronic cam table is not executed immediately, the table is run after delaying the spindle rotation for several pulses. At this time, the number of delayed pulses must be set for address 16.
1141
1142 As shown in the figure below: When the system receives a cam start signal, the electronic cam table will be executed immediately after the spindle rotates the set number of pulses.
1143
1144 **Delayed start pulse=10**
1145
1146 (% style="text-align:center" %)
1147 [[image:09_html_6e842f28225b1875.gif||class="img-thumbnail"]]
1148
1149 **Delayed start pulse=50**
1150
1151 (% style="text-align:center" %)
1152 [[image:09_html_d581ddc508fba3fa.gif||class="img-thumbnail"]]
1153
1154 **(9) Address 17-18—start at the specified position of the spindle**
1155
1156 (% class="table-bordered" %)
1157 |(% style="width:110px" %)**Address**|(% style="width:827px" %)**Features**|**Range**
1158 |(% style="width:110px" %)Address 17|(% rowspan="2" style="width:827px" %)The non-periodic electronic cam can be started at the specified position by address 3 (Bit1-specified position start enable). The starting location is set by this address|(% rowspan="2" %)32-bit unsigned integer
1159 |(% style="width:110px" %)Address 18
1160
1161 (% style="text-align:center" %)
1162 [[image:09_html_ac82ab14a3800b51.gif||class="img-thumbnail"]]
1163
1164 **{{id name="6、电子凸轮电子表格数据建立"/}}9.2.2.6 E-cam spreadsheet data creation**
1165
1166 **{{id name="6.1_单笔表格数据变更设定"/}}(1) Single table data change setting**
1167
1168 Each electronic cam table can create 512 points of data, which are set using offset address 40-address [40+n*4+4] respectively. Every 4 points of data is a group of ECAM data, which is composed of master axis position and slave axis position.
1169
1170 Use DMOV instruction to manipulate table data:
1171
1172 (% style="text-align:center" %)
1173 [[image:09_html_66dcb0a2e81acec5.jpg||class="img-thumbnail"]]
1174
1175 (((
1176 Set the total data segment of the spreadsheet data to 3
1177
1178 The spindle position of segment 0 is 0
1179
1180 The position of the 0th segment slave axis is 0
1181
1182 The spindle position of the first segment is 100
1183
1184 The first segment slave axis position is 100
1185
1186 The second stage spindle position is 200
1187
1188 The second segment slave axis position is 0
1189
1190 Configure electronic cam
1191
1192
1193 )))
1194
1195 **{{id name="6.2_使用PLC_Editor生成表格数据"/}}(2) Use PLC Editor to generate table data**
1196
1197 Define the relationship between master axis and slave axis, which is called electronic cam table data. In the data input, the electronic cam table has two ways to express:
1198
1199 Method 1: The functional relationship between the adopter
1200
1201 Method 2: Use the point-to-point relationship of X and Y to obtain the electronic cam table in two ways:
1202
1203 Approach 1: According to the standard function relationship of the master and slave axis
1204
1205 Approach 2: According to the corresponding relationship between points measured in actual work.
1206
1207 The cam table can define multiple CAM curves. After the relationship is determined, the position of the slave axis can be obtained according to the position of the master axis.
1208
1209 For example, the cam table for sinusoidal signals:
1210
1211 (% style="text-align:center" %)
1212 [[image:09_html_642ffea375343f61.png||class="img-thumbnail"]]
1213
1214 The electronic cam table is called electronic cam table in PLC Editor. Select [electronic cam table] in [Project Properties]-[Protection Function], right click to add and delete the table.
1215
1216 (% style="text-align:center" %)
1217 [[image:09_html_8d0f9043566eacf4.png||class="img-thumbnail"]]
1218
1219 The chart is mainly divided into 4 parts, namely the relative position of the master/slave axis, the relative speed of the master/slave axis, the relative acceleration of the master/slave axis, and the bottom data setting. The first three parts are used to display the CAM data set by the user. The horizontal axis is the main axis, and the vertical axis is the position of the slave axis, the speed ratio of the slave axis to the master axis, and the acceleration ratio of the slave axis to the master axis. The data setting area is introduced as follows:
1220
1221 1. Displacement resolution: Provide users to set the total number of data points occupied by the table, and the setting range is from 10 to 512, one point occupies 4 WORD Devicess.
1222 1. Data setting: Describe the displacement change of the master/slave axis by function.
1223 1. Import: describe the displacement change of the master/slave axis through a point-to-point method.
1224 1. Export: Export and archive the change relationship of the master/slave axis in a point-to-point manner.
1225
1226 {{id name="6.2.1_以函数方式描述主从轴的位置变化"/}}1) Functionally describe the position changes of the master and slave axes
1227
1228 Select [Data Setting] in the data setting area and the "Data Setting Window" will appear, which allows the user to describe the curve of the entire cam in a function, rather than a point-to-point description. At present, Wecon PLC provides 3 cam curve modes for users to choose, namely: Const Speed (constant speed), Const Acc (uniform acceleration), BSpline (cycloid).
1229
1230 (% style="text-align:center" %)
1231 [[image:09_html_1c2bc8b46503f556.png||class="img-thumbnail"]]
1232
1233 [Data Setting] The window is composed of sections, each section provides the user to set a section of cam curve, and then the entire section composes the cam curve. Each section is composed of master axis, slave axis, CAM curve and resolution, as explained below:
1234
1235 Main shaft: the displacement of the main shaft, the displacement of the main shaft must be greater than a value of 0, and increase;
1236
1237 Slave axis: the displacement of the slave axis, which is positive or negative;
1238
1239 CAM curve: the function used in the current section;
1240
1241 Resolution: The number of points used in the current section. The entire table can be set in the range 10-512. 1 point occupies 4 WORDs. If not set, the remaining points will be divided equally. The resolution is set according to the requirements of the device. The higher the resolution, the smoother the device runs, but the larger the device.
1242
1243 {{id name="6.2.2_以点对点方式描述主从轴的位置变化"/}}2) Describe the position changes of the master and slave axes in a point-to-point manner
1244
1245 Directly add data to the electronic cam table in a point-to-point mode. A cam table can input up to 512 points of data.
1246
1247 [Export]Export the current table data in a point-to-point manner and store it in the specified file.
1248
1249 [Import] Import the current table data in a point-to-point manner.
1250
1251 **{{id name="6.3_使用ECAM_TBX生成表格"/}}(3) Use ECAM TBX to generate tables**
1252
1253 (% class="table-bordered" %)
1254 |**Name**|**Features**|**Bits (bits)**|**Whether pulse type**|**Instruction format**|**Step count**
1255 |ECAMTBX|Generate spreadsheet data|16|No|ECAMTBXS0 S1 D0 D1|9
1256
1257 S0~-~-parameter address, allowable device: D, R.
1258
1259 For the setting parameters when generating the curve, please refer to the description in [Appendix]-[Parameter List]
1260
1261 S1~-~-curve type, allowable Devicess: D, R, H, K.
1262
1263 Indicates the type of curve to be generated.
1264
1265 K1: Generate S type acceleration/deceleration curve with a spindle of 1ms
1266
1267 K2: Customize the specified key point to generate a table
1268
1269 K100: Generate rotary saw curve
1270
1271 K101: Generate chase curve
1272
1273 D0~-~-the first address of cam parameters,
1274
1275 Allowed devices: D, R
1276
1277 The generated table data is stored at the beginning of [D0 + 40], and the number of table segments is stored in [D0 + 38].
1278
1279 D1~-~-form generation result
1280
1281 Allowed devices: D, R
1282
1283 D1 <0 generates a table error;
1284
1285 D1> 0 The table is successfully generated. D1 represents the total number of segments in the current table.
1286
1287 ECAMTBX instruction generating curve error code:
1288
1289 (% class="table-bordered" %)
1290 |**Error code**|**Content**
1291 |-1|Condition parameter error
1292 |-2|The spindle pulse number is too few, not enough for synchronization area
1293 |-3|Unknown cam curve type
1294 |-4|Resolution range error
1295 |-5|Too many pulses of the slave axis calculated
1296 |-6|The calculated number of pulses from the slave axis is too small
1297 |-7|The calculated number of spindle pulses exceeds the set length
1298 |-8|The pulse number of the slave axis is set to 0
1299 |-10|S type acceleration and deceleration curve calculation error
1300 |-11|Unknown curve type
1301 |-12|Curve left wrong
1302 |-13|The number of slave axes that exceeds the range
1303
1304 Key point generating curve Error code:
1305
1306 (% class="table-bordered" %)
1307 |**Error code**|**Content**
1308 |-21|The number of key points is out of range
1309 |-22|Total resolution exceeds range
1310 |-23|Incorrect relationship between spindle size
1311 |-24|The resolution setting of each segment is incorrect
1312 |-25|When calculating, the number of control points is insufficient
1313 |-26|Unknown acceleration curve type
1314 |-27|Spindle pulse number is negative
1315
1316 S-type acceleration and deceleration generated curve Error code:
1317
1318 (% class="table-bordered" %)
1319 |**Error code**|**Content**
1320 |-31|The number of pulses exceeds the range
1321 |-32|Maximum frequency out of range
1322 |-33|Acceleration and deceleration time out of range
1323 |-34|The number of pulses or frequency settings cannot meet the curve generation conditions
1324
1325 **✎Note: **After the curve is successfully generated by the ECAMTBX instruction, the cam table can be uploaded to the upper computer for viewing in the PLC of the PLC Edit upper computer software.
1326
1327 == {{id name="_Toc21163"/}}**The application of ECAM** ==
1328
1329 **{{id name="1、飞剪应用"/}}A.Rotary saw application**
1330
1331 In the feeding and cutting application, the traditional method is to use the stop-and-go method. The feeding shaft first walks to a fixed length, and then the cutting shaft moves again, and then the process of "feeding stop" and "cutting stop" is repeated. Disadvantages of the medium method. In the process of feeding shaft stop and stop, the required acceleration and deceleration can not improve the production efficiency. Therefore, the new method is to use the non-stop feeding method. Generally, there are two feeding and cutting methods: rotary saw and flying saw. The difference between the two is that rotary saw moves in the same direction, while flying saw moves back and forth, and the set CAM table curves are also different.
1332
1333 (% style="text-align:center" %)
1334 [[image:09_html_8c06476629016e1b.png||class="img-thumbnail"]]
1335
1336 **{{id name="1.1飞剪动作说明"/}}(1) Description of rotary saw action**
1337
1338 1) Rotary saws control the cutting axis to rotate in the same direction, and cut when the tool touches the material. During this period, the feeding axis will continue to feed at a constant speed without stopping. The action and output stroke of rotary saw control are shown in the figure below:
1339
1340 ①. Accelerate and move to the synchronization area from the beginning of the axis;
1341
1342 ②. In the synchronization zone and the spindle at the same speed and output the cutting signal (CLR0);
1343
1344 ③. After leaving the synchronization zone, the slave axis will decelerate and move back to the origin to complete a cycle of cutting. After knowing the stroke, the speed relationship can be drawn.
1345
1346 2) In the peeling process, the most important thing is speed synchronization. For example, when the cutting knife contacts the material, it must be synchronized with the material speed. If the cutting knife speed is greater than the synchronous speed during contact, a force that pulls the material forward will cause the material to be uneven. If the speed is lower than the material speed, it will appear. Blocking phenomenon.
1347
1348 3) The planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is larger in a cutting cycle, the acceleration and deceleration time will be smaller, which means that the equipment needs to be accelerated and decelerated in a short time. For motors and machines The impact of the cutter is very large, and it is easy to cause the servo over-current alarm and the equipment cannot operate normally.
1349
1350 (% style="text-align:center" %)
1351 [[image:09_html_88dc65c9b19c9920.gif||class="img-thumbnail" height="498" width="500"]]
1352
1353 4) The relationship between cutting length and cutter circumference:
1354
1355 (% class="table-bordered" %)
1356 |(((
1357 Cutting length <cutter circumference:
1358
1359 In the synchronization zone, the cutter linear speed is synchronized with the feeding speed. After the synchronization zone, in order to catch up with the next cutting, the cutting axis is accelerated, as shown in the figure.
1360 )))|[[image:09_html_80a90f759be3a8d9.gif||class="img-thumbnail"]]
1361 |(((
1362 Cutting length = cutter circumference:
1363
1364 Average speed of cutting axis
1365 )))|[[image:09_html_75f2a002afdb5c2.gif||class="img-thumbnail"]]
1366 |1 times cutter circumference <cutting length <2 times cutter circumference:After the cutting action in the synchronization zone is completed, the cutting axis decelerates, then speed up to synchronize the next cutting, as shown in the figure.|[[image:09_html_d8e09cd43d7a2aba.gif||class="img-thumbnail"]]
1367 |Cutting length> 2 times the circumference of the cutter:When the cutting length is greater than 2 times the knife circumference (this is also the most common situation), in a cycle, after the cutting of the knife edge in the synchronization zone is completed, it decelerates to a stop, waits for a certain length to pass, and then starts the next cutting .|[[image:09_html_8c9af77a8c8fff2.gif]]
1368
1369 {{id name="1.3飞剪配置"/}}{{id name="1.2_飞剪生成"/}}**(2) Rotary saw generation**
1370
1371 The PLC built-in rotary saw curve automatically generates instructions. For the parameters needed to generate the curve, please refer to the "Rotary saw Parameter Table". The CAM curve in depth 6 has 5 forms. The combination of these 5 forms can generate the required rotary saw curve. ,As shown below.
1372
1373 (% class="table-bordered" %)
1374 |(% colspan="5" %)**Rotary saw curve parameter setting**
1375 |(% style="width:105px" %)**Parameter**|(% style="width:88px" %)**Offset address**|(% style="width:165px" %)**Name**|**Format**|**Instruction**
1376 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:88px" %)Address 0|(% rowspan="2" style="width:165px" %)Spindle length|(% rowspan="2" %)32 Bits Integer|(% rowspan="2" %)The cutting length of the feeding axis moving, the unit is Pulse.
1377 |(% style="width:88px" %)Address 1
1378 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:88px" %)Address 2|(% rowspan="2" style="width:165px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1379 The circumference of the cutting axis (including the tool length), the unit is Pulse.
1380
1381 Range [-2000000000, 2000000000]
1382 )))
1383 |(% style="width:88px" %)Address 3
1384 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:88px" %)Address 4|(% rowspan="2" style="width:165px" %)Slave axis sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)(((
1385 The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S-type rotary saw is selected, the value satisfies 40 *synchronization ratio<=synchronization length<slave axis
1386
1387 Length-2. ), synchronization area range: 0<synchronization area length<|slave axis length|
1388 )))
1389 |(% style="width:88px" %)Address 5
1390 |(% rowspan="2" style="width:105px" %)Parameter 4|(% style="width:88px" %)Address 6|(% rowspan="2" style="width:165px" %)(((
1391 Slave axis synchronization
1392
1393 magnification
1394 )))|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1395 Calculation method 1: In the synchronization zone, the speed of the master axis and the slave axis are equal, and the calculation method of synchronization magnification:
1396
1397 [[image:09_html_d11c191bffc9429b.jpg||class="img-thumbnail"]]
1398
1399 among them
1400
1401 V1(V2)=Master (slave) axis speed
1402
1403 F1(F2)=Master (slave) axis speed (Hz)
1404
1405 D1(D2)=Master (slave) shaft diameter
1406
1407 R1 (R2) = master (slave) axis pulse number per revolution
1408
1409 Calculation method two:
1410
1411 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/
1412
1413 Number of pulses required by 1mm spindle
1414 )))
1415 |(% style="width:88px" %)Address 7
1416 |(% rowspan="2" style="width:105px" %)Parameter 5|(% style="width:88px" %)Address 8|(% rowspan="2" style="width:165px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
1417 Maximum magnification=
1418
1419 Maximum speed of slave axis/maximum speed of main axis
1420 )))
1421 |(% style="width:88px" %)Address 9
1422 |(% style="width:105px" %)Parameter 6|(% style="width:88px" %)Address 10|(% style="width:165px" %)Acceleration curve|Integer|(((
1423 0: constant acceleration curve, the speed curve is T type
1424
1425 1: Constant jerk curve, speed curve is S type
1426
1427 2: reserved
1428
1429 3: reserved
1430
1431 4: New S type rotary saw curve (the synchronization zone is in the middle),Please refer to the appendix for details. The current curve only supports CAM curve 0
1432 )))
1433 |(% style="width:105px" %)Parameter 7|(% style="width:88px" %)Address 11|(% style="width:165px" %)CAM curve|Integer|(((
1434 Start, stop, and various curve selections of different synchronization zone positions:
1435
1436 0: LeftCAM synchronization area is located on the front curve;
1437
1438 1: MidCAMall;
1439
1440 2: MidCAMBegin initial curve;
1441
1442 3: MidCAMEnd end curve;
1443
1444 4: RightCAM sync area is located at the back curve;
1445
1446 BIT[15]=1: continue the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
1447 )))
1448 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:88px" %)Address 12|(% style="width:165px" %)Resolution|Integer|(((
1449 Range [31,511], of which 20 synchronization areas;
1450
1451 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
1452 )))
1453 |(% style="width:88px" %)Address 13|(% style="width:165px" %)Reserved|Retained|Reserved
1454 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:88px" %)Address 14|(% rowspan="2" style="width:165px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1455 |(% style="width:88px" %)Address 15
1456 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:88px" %)Address 16|(% rowspan="2" style="width:165px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1457 |(% style="width:88px" %)Address 17
1458 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:88px" %)Address 18|(% rowspan="2" style="width:165px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than the speed corresponding to this value. Thereby adjusting the slope of the deceleration section.
1459 |(% style="width:88px" %)Address 19
1460
1461 (% style="text-align:center" %)
1462 [[image:09_html_85b39cb6a2a254f4.png||class="img-thumbnail"]]
1463
1464 **(3) Rotary saw configuration**
1465
1466 {{id name="1.3.1概述"/}}1) Overview
1467
1468 Synchronization zone: At this time, the feeding axis and the cutter axis rotate at a fixed speed ratio (the linear velocity of the cutter head is equal to the linear velocity of the cutting surface), and the cutting of the material occurs in the synchronous zone.
1469
1470 Adjustment area: due to different cutting lengths, corresponding displacement adjustments are required. According to the cutting length adjustment zone, it can be divided into the following three situations.
1471
1472 Short material cutting: the cutter shaft first has a uniform speed in the adjustment area, and then decelerates to the synchronous speed.
1473
1474 Normal material cutting: In this case, the cutter axis accelerates first in the adjustment zone. Then decelerate to synchronous speed.
1475
1476 Long material cutting: In this case, the cutter shaft first accelerates to the minimum limit operating speed in the adjustment area, and then decelerates to the synchronous speed. After the cutter shaft makes one revolution, the cutter shaft decelerates to zero and stays for a while, then speed up and cycle operation. The longer the material length, the longer the residence time.
1477
1478 (% style="text-align:center" %)
1479 [[image:09_html_ac77ff756d4dd1b2.gif||class="img-thumbnail" height="335" width="800"]]
1480
1481 (% style="text-align:center" %)
1482 [[image:09_html_7947002c875493ad.gif||class="img-thumbnail" height="337" width="400"]]
1483
1484 **{{id name="_Toc28644"/}}✎Note:**
1485
1486 When setting the maximum limit magnification, synchronization magnification, and minimum limit operation magnification, the material length boundary is also determined. Several limit values are as follows:
1487
1488 ①The speed of the shortest material (Lm1) satisfies: the actual maximum operating magnification = the maximum limit magnification, and the adjustment area is a constant speed + deceleration process.
1489
1490 (% style="text-align:center" %)
1491 [[image:09_html_e6ef7719c15b9c56.gif||class="img-thumbnail"]]
1492
1493 ②The shortest normal material (Lm2): the actual maximum operating magnification = the maximum limit magnification, the adjustment area is the acceleration + deceleration process.
1494
1495 (% style="text-align:center" %)
1496 [[image:09_html_b59eeb079fa045f8.gif||class="img-thumbnail"]]
1497
1498 ③The shortest length of material (Lm3): the actual maximum operating magnification = the minimum limit operating magnification, the adjustment area is acceleration + deceleration + dwell process.
1499
1500 (% style="text-align:center" %)
1501 [[image:09_html_2546314cd37aed9d.gif||class="img-thumbnail"]]
1502
1503 Therefore, the length of the material determines the type of operation of the slave axis:
1504
1505 ① When Lm1 ≤ L <Lm2, this is a short material, and its 0 ≤ actual maximum operating magnification ≤ maximum limit magnification
1506
1507 ② When Lm2 ≤ L <Lm3, this is a normal material, and its minimum limit operation magnification ≤ actual maximum operation magnification ≤ maximum limit magnification
1508
1509 ③ When L ≥ Lm3, this is a long material, and the actual maximum operating magnification = minimum limit magnification. There is a residence zone, the longer the material, the longer the residence time.
1510
1511 {{id name="1.3.2示例"/}}2) Example
1512
1513 The process result will be different according to the difference of the maximum limit magnification, synchronization magnification and minimum limit operation magnification.
1514
1515 ① Synchronous magnification <minimum limit operation magnification <maximum limit magnification
1516
1517 The parameter settings are as follows:
1518
1519 (% style="text-align:center" %)
1520 [[image:09_html_9c3f0a8bc2f79674.gif||class="img-thumbnail" height="310" width="500"]]
1521
1522 **Short material:**{{id name="OLE_LINK389"/}}
1523
1524 (% style="text-align:center" %)
1525 [[image:09_html_a335f05c7945dd4b.gif||class="img-thumbnail" height="320" width="800"]]
1526
1527 **Normal materials:**
1528
1529 (% style="text-align:center" %)
1530 [[image:09_html_ecd43824be58368a.gif||class="img-thumbnail" height="326" width="800"]]
1531
1532 **Long material:**
1533
1534 (% style="text-align:center" %)
1535 [[image:09_html_5cf341fa104d76d3.gif||class="img-thumbnail" height="318" width="800"]]
1536
1537 ② Synchronous magnification = minimum limit operation magnification <maximum limit magnification
1538
1539 In this case, when the material is long, there is no deceleration into the synchronization zone. The parameter settings are as follows:
1540
1541 (% style="text-align:center" %)
1542 [[image:09_html_95b3fe4d6308ff9a.gif||class="img-thumbnail" height="329" width="500"]]
1543
1544 The situation of short material and normal material is the same as described in 2.1.
1545
1546 Long material: (no deceleration process in the adjustment zone)
1547
1548 (% style="text-align:center" %)
1549 [[image:09_html_74f9770e2a994f81.gif||class="img-thumbnail"]]
1550
1551 ③ Synchronous magnification = minimum limit operation magnification = maximum limit magnification
1552
1553 In this case, there are no normal materials, only short materials and long materials. The parameter settings are as follows:
1554
1555 (% style="text-align:center" %)
1556 [[image:09_html_ae0be67bb13d9c18.gif||class="img-thumbnail"]]
1557
1558 **Short material        Long material**
1559
1560 (% style="text-align:center" %)
1561 [[image:09_html_7033bb8aa22df588.gif||class="img-thumbnail"]]
1562
1563 **{{id name="1.4_案例"/}}(4) Case**
1564
1565 1) Control requirements:
1566
1567 ①. Use rotary saw curve to automatically generate cam table.
1568
1569 ②. For the equipment matched with the cutting axis and the feeding axis, the servo parameter is 1,000 pulse/rev.
1570
1571 ③. Related parameters:
1572
1573 Cutting material length is 1000 mm, cutting shaft circumference is 60πmm, feeding shaft circumference is 100πmm, and feeding shaft speed is 1,000 Hz
1574
1575 2) Parameters required to establish rotary saw curve
1576
1577 Parameter 1: You eed to input the length of the spindle cutting material because the cutting material length is 1000mm, it is converted to pulse
1578
1579 1000*1000/100Pi=3183 (pulse)
1580
1581 Parameter 2: The circumference of the slave shaft, that is, the number of pulses required for one revolution of the slave shaft 1000 pulse
1582
1583 Parameter 3: The synchronization length of the slave axis is set to approximately 1/3 of the circumference of the slave axis as 1000/3=333 pulse.
1584
1585 Parameter 4: During synchronization, the speed ratio of master and slave
1586
1587 (% style="text-align:center" %)
1588 [[image:09_html_5d7398a6b51d0822.png||class="img-thumbnail"]]
1589
1590 Parameter 5: The maximum magnification limit is: set to 10 times the synchronization magnification as 50/3 (floating point number).
1591
1592 Parameter 6: Low WORD is set to 0 - uniform acceleration
1593
1594 High WORD set to 0 - LEFTCAM
1595
1596 Parameter 7: Set the curve generation result to 0
1597
1598 Using curve generation instructions, ECAMTBX generates curves.
1599
1600 Circuit program corresponding to the case:
1601
1602 Spindle length
1603
1604 Slave length
1605
1606 Slave synchronization length
1607
1608 Slave axis synchronization magnification
1609
1610 Slave axis maximum magnification limit
1611
1612 Acceleration curve
1613
1614 CAM curve solution resolution
1615
1616 Set as rotary saw curve
1617
1618 Curve generation instruction
1619
1620 (% style="text-align:center" %)
1621 [[image:09_html_d35bbecf23e4f86c.png||class="img-thumbnail" height="592" width="500"]]
1622
1623 The curve corresponding to the Circuit program:
1624
1625 Upload via PLC, check the electronic cam table, set the table address, and upload the generated cam curve.
1626
1627 (% style="text-align:center" %)
1628 [[image:09_html_c2f99535690a2e69.gif||class="img-thumbnail" height="483" width="600"]]
1629
1630 **{{id name="2、追剪应用"/}}Flying saw application**
1631
1632 The flying saw system means that the feeding shaft will not stop while the system is cutting, so the camshaft must keep the same speed with the feeding shaft when cutting, and the same speed time must be enough for the cutter to complete the cutting and detach to safety s position. The flying saw camshaft will drive the cutter and the entire group of cutting mechanisms to move, so that it can maintain the same speed with the main shaft during cutting.
1633
1634 **{{id name="2.1_追剪动作说明"/}}(1) Description of flying saw action**
1635
1636 Suppose the wiring is as shown in the figure below, where 1, 2, 3, 4 are the waiting point (starting point), synchronization point, synchronization departure point, and waiting point (starting point), and its actions will follow the movement of the spindle. At the beginning, the camshaft stops at position 1, and then accelerates forward to position 2 to achieve speed synchronization, and continues to position 3, then decelerates and returns to position 4 in the opposite direction (assuming position 1 and position 4 are the same), and then repeat this action .
1637
1638 (% style="text-align:center" %)
1639 [[image:09_html_883677875ea25ecd.gif||class="img-thumbnail"]]
1640
1641 Flying saw control is used in pipe cutting machines, beverage filling and other equipment that needs to move with the processed product; its action is to add axis (slave axis)-start to accelerate and follow the processed product, and after moving to the synchronization zone, it will contact the processed product Start processing at a constant speed. After leaving the synchronization zone, the speed will decrease and stop, and then return to the starting position. All the stroke feeding axes (spindles) have been feeding at a constant speed. As shown below.{{id name="OLE_LINK475"/}}
1642
1643 (% style="text-align:center" %)
1644 [[image:09_html_f748f42472a5e8bc.gif||class="img-thumbnail"]]
1645
1646 The stroke of the flying saw is divided into two parts: the following part and the returning part. The two moving distances must be the same. From the speed stroke point of view, that is, positive area = negative area.
1647
1648 During flying saw, you need to pay attention that the feeding will not stop during processing, so the processing axis must keep the same speed with the feeding axis, and the synchronization time must be enough for the equipment to complete processing and move to a safe position.
1649
1650 The stroke length of the synchronization area is also the processing time, which can be considered when planning the synchronization area. In addition, the planning of the synchronization area will affect the operation of the actual equipment. If the synchronization area is large in a cutting cycle, the acceleration and deceleration time will be smaller, indicating that the equipment needs to be accelerated and decelerated in a short time. For motors, machines, and cutters The impact is very large, and it is easy to cause the servo over-current alarm, and the equipment cannot operate normally.
1651
1652 **{{id name="2.2_追剪参数表"/}}(2) Flying saw parameter table**
1653
1654 (((
1655 (% class="table-bordered" %)
1656 |(% colspan="5" %)**Parameter setting of flying saw curve**
1657 |(% style="width:118px" %)**Parameter**|(% style="width:96px" %)**Offset address**|(% style="width:195px" %)**Name**|(% style="width:102px" %)**Format**|(% style="width:958px" %)**Instruction**
1658 |(% rowspan="2" style="width:118px" %)Parameter 1|(% style="width:96px" %)Address 0|(% rowspan="2" style="width:195px" %)Spindle length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The cutting length of the feeding axis moving, the unit is Pulse.
1659 |(% style="width:96px" %)Address 1
1660 |(% rowspan="2" style="width:118px" %)Parameter 2|(% style="width:96px" %)Address 2|(% rowspan="2" style="width:195px" %)Slave length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The circumference of the cutting axis (including the tool length), the unit is Pulse. Range [-2000000000, 2000000000]
1661 |(% style="width:96px" %)Address 3
1662 |(% rowspan="2" style="width:118px" %)Parameter 3|(% style="width:96px" %)Address 4|(% rowspan="2" style="width:195px" %)Slave synchronization length|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
1663 |(% style="width:96px" %)Address 5
1664 |(% rowspan="2" style="width:118px" %)Parameter 4|(% style="width:96px" %)Address 6|(% rowspan="2" style="width:195px" %)Slave axis synchronization magnification|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1665 Calculation method one:
1666
1667 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the synchronization magnification calculation method:
1668
1669 V1(V2)=Master (slave) axis speed
1670
1671 F1(F2)=Master (slave) axis speed (Hz)
1672
1673 D1(D2)=Master (slave) shaft diameter
1674
1675 R1 (R2) = master (slave) axis pulse number per revolution
1676
1677 Calculation method two:
1678
1679 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm
1680
1681 Number of pulses required by the spindle
1682 )))
1683 |(% style="width:96px" %)Address 7
1684 |(% rowspan="2" style="width:118px" %)Parameter 5|(% style="width:96px" %)Address 8|(% rowspan="2" style="width:195px" %)Slave axis maximum magnification limit|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
1685 |(% style="width:96px" %)Address 9
1686 |(% rowspan="2" style="width:118px" %)Parameter 6|(% style="width:96px" %)Address 10|(% style="width:195px" %)Acceleration curve|(% style="width:102px" %)Integer|(% style="width:958px" %)(((
1687 0: constant acceleration curve, the speed curve is T type
1688
1689 1: Constant jerk curve, the speed curve is S type
1690 )))
1691 |(% style="width:96px" %)Address 11|(% style="width:195px" %)CAM curve|(% style="width:102px" %)Integer|(% style="width:958px" %)Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the default tracking RightCam, and the return LeftCam curve type. May not be set)
1692 |(% rowspan="2" style="width:118px" %)Parameter 7|(% style="width:96px" %)Address 12|(% style="width:195px" %)Resolution|(% style="width:102px" %)Integer|(% style="width:958px" %)Range [62,511]
1693 |(% style="width:96px" %)Address 13|(% style="width:195px" %)Reserved|(% style="width:102px" %)Retained|(% style="width:958px" %)Reserved
1694 |(% rowspan="2" style="width:118px" %)Parameter 8|(% style="width:96px" %)Address 14|(% rowspan="2" style="width:195px" %)synchronization zone start position|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1695 |(% style="width:96px" %)Address 15
1696 |(% rowspan="2" style="width:118px" %)Parameter 9|(% style="width:96px" %)Address 16|(% rowspan="2" style="width:195px" %)End of synchronization zone|(% rowspan="2" style="width:102px" %)32-bit integer|(% rowspan="2" style="width:958px" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
1697 |(% style="width:96px" %)Address 17
1698 |(% rowspan="2" style="width:118px" %)Parameter 10|(% style="width:96px" %)Address 18|(% rowspan="2" style="width:195px" %)Reserved|(% rowspan="2" style="width:102px" %)Reserved|(% rowspan="2" style="width:958px" %)Reserved
1699 |(% style="width:96px" %)Address 19
1700 |(% rowspan="2" style="width:118px" %)Parameter 11|(% style="width:96px" %)Address 20|(% rowspan="2" style="width:195px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" style="width:102px" %)Floating|(% rowspan="2" style="width:958px" %)(((
1701 The maximum magnification of the actual operation of slave axis:
1702
1703 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
1704 )))
1705 |(% style="width:96px" %)Address 21
1706 )))
1707
1708 **{{id name="2.3_案例"/}}(3) Case**
1709
1710 1) Control parameters
1711
1712 ①. The servo parameter is 1000 pulse/rev.
1713
1714 ②. Related parameters
1715
1716 The processing length of the feeding shaft is 660 mm, and the circumference of the feeding shaft is 60πmm
1717
1718 The machining length of the machining shaft is 40 mm
1719
1720 {{id name="_Toc11189"/}}One rotation of the machining axis is 20 mm
1721
1722 The feed shaft speed is 1000 Hz
1723
1724 {{id name="2.3.1_利用飞剪曲线来建立追剪曲线"/}}2) Establish flying saw curve by rotary saw curve
1725
1726 The parameters needed to establish rotary saw curve
1727
1728 Spindle length (processing length): Assuming that the spindle servo parameter is 1000 pulse/rev and the mechanism parameter is 60π mm/rev, then 1pulse is 0.188mm. If the actual processing length is 660mm→convert to 660/0.188=3501 pulse.
1729
1730 Slave axis length(machining axis length):
1731
1732 First consider that the slave axis servo parameter is 1000 pulse/rev and the mechanism parameter is 20mm/rev, then 1pulse=0.01mm can be obtained.
1733
1734 The actual measured slave shaft machining length is 40 mm → converted to 2000 Pulse.
1735
1736 The location of the synchronization zone;
1737
1738 The lower limit of the synchronization zone is when the actual START0 signal is triggered, the slave axis goes from 0 to the position 200 where it catches up with the spindle speed;
1739
1740 The upper limit of the synchronization zone is the position 500 where the processing time ends and the processing equipment also leaves.
1741
1742 The speed ratio of master and slave axis in synchronization zone: the speed ratio of the master axis and slave axis in the synchronization zone.
1743
1744 The speed ratio of master and slave axis when returning:
1745
1746 After the total length of the stroke subtracts the stroke of the following movement, the return stroke length can be obtained, and then use the following stroke distance = return stroke distance to know the speed ratio when returning = 3.
1747
1748 3) Establish flying saw curve automatically by rotary saw curve
1749
1750 ① Establish a positive area curve
1751
1752 Parameter 1: It needs to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle = 3501/2 =1750 pulse;
1753
1754 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1755
1756 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3 = 667 pulse;
1757
1758 Parameter 4:
1759
1760 (% style="text-align:center" %)
1761 [[image:09_html_68100086fd1c297a.gif||class="img-thumbnail"]]
1762
1763 Parameter 5: the highest synchronization magnification 10 (floating point number);
1764
1765 Parameter 6: Low word setting 0: uniform acceleration;
1766
1767 High word setting 0: LeftCam.
1768
1769 ② Establish a negative area curve
1770
1771 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse; Since the chase shear needs to return to the origin after the machining is completed, the pulse of the spindle =3501/2 =1750 pulse;
1772
1773 Parameter 2: Reverse running size is -2000;
1774
1775 Parameter 3: Same;
1776
1777 Parameter 4: Same;
1778
1779 Parameter 5: Same;
1780
1781 Parameter 6: Low word setting 0: uniform acceleration;
1782
1783 High word setting H8000: LeftCam continues the existing table data.
1784
1785 4) Generate tables with the function of flying saw
1786
1787 Parameter 1: Need to input the processing length of the spindle feeding shaft to be 660mm, which is converted to pulse 660*1000/60pi=3501 pulse;
1788
1789 Parameter 2: Slave shaft processing length is 40mm, conversion 40*1000/20=2000 pulse;
1790
1791 Parameter 3: Slave axis synchronization length setting agrees that 1/3 of the slave axis circumference is 2000/3=667 pulse;
1792
1793 Parameter 4:
1794
1795 (% style="text-align:center" %)
1796 [[image:09_html_bd90dcc010d13207.gif||class="img-thumbnail"]]
1797
1798 Parameter 5: the highest synchronization magnification 10 (floating point number)
1799
1800 Parameter 6: Low word setting 1: Uniform acceleration;
1801
1802 High word setting 0: invalid.
1803
1804 Use ECAMTBX to generate curves:
1805
1806 (% style="text-align:center" %)
1807 [[image:09_html_67c3ab90b2ffbbd3.png||class="img-thumbnail" height="449" width="500"]]
1808
1809 (((
1810 Spindle length
1811
1812 Slave length
1813
1814 Slave synchronization length
1815
1816 Slave axis synchronization magnification
1817
1818 Slave axis maximum magnification limit
1819
1820 Acceleration curve
1821
1822 CAM curve solution resolution
1823
1824 Set as rotary saw curve
1825
1826 Curve generation instruction
1827
1828
1829 )))
1830
1831 Obtain the curve according to the ladder program:{{id name="3、S型加减速曲线建立"/}}
1832
1833 (% style="text-align:center" %)
1834 [[image:09_html_88ff5c1c9ceb8325.gif||class="img-thumbnail" height="455" width="600"]]
1835
1836 **S type acceleration and deceleration curve establishment**
1837
1838 **{{id name="3.1_S型加减速曲线表格参数"/}}(1) S type acceleration and deceleration curve table parameters**
1839
1840 (% class="table-bordered" %)
1841 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
1842 |(% style="width:105px" %)**Parameter**|(% style="width:98px" %)**Offset address**|(% style="width:238px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
1843 |(% rowspan="2" style="width:105px" %)Parameter 1|(% style="width:98px" %)Address 0|(% rowspan="2" style="width:238px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
1844 |(% style="width:98px" %)Address 1
1845 |(% rowspan="2" style="width:105px" %)Parameter 2|(% style="width:98px" %)Address 2|(% rowspan="2" style="width:238px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
1846 |(% style="width:98px" %)Address 3
1847 |(% rowspan="2" style="width:105px" %)Parameter 3|(% style="width:98px" %)Address 4|(% rowspan="2" style="width:238px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)
1848 |(% style="width:98px" %)Address 5
1849 |(% style="width:105px" %)Parameter 4|(% style="width:98px" %)Address 6|(% style="width:238px" %)Accelerated Time|16-bit integer|Pulse acceleration time|ms|2 to 32767
1850 |(% style="width:105px" %)Parameter 5|(% style="width:98px" %)Address 7|(% style="width:238px" %)deceleration time|16-bit integer|Pulse deceleration time|ms|2 to 32767
1851 |(% style="width:105px" %)Parameter 6|(% style="width:98px" %)Address 8|(% style="width:238px" %)Resolution|16-bit integer|Pulse resolution|Length|50 to 511
1852 |(% style="width:105px" %)Parameter 7|(% style="width:98px" %)Address 9|(% style="width:238px" %)Reserved|Retained|Reserved| |
1853 |(% rowspan="2" style="width:105px" %)Parameter 8|(% style="width:98px" %)Address 10|(% rowspan="2" style="width:238px" %)Number of spindle pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of spindle pulses in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
1854 \\Internally generated
1855 |(% style="width:98px" %)Address 11
1856 |(% rowspan="2" style="width:105px" %)Parameter 9|(% style="width:98px" %)Address 12|(% rowspan="2" style="width:238px" %)Number of slave axis pulses in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses from the last segment of the slave axis (high and low bits)|(% rowspan="2" %)Pulse
1857 |(% style="width:98px" %)Address 13
1858 |(% rowspan="2" style="width:105px" %)Parameter 10|(% style="width:98px" %)Address 14|(% rowspan="2" style="width:238px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the pulse at a constant speed|(% rowspan="2" %)Pulse
1859 |(% style="width:98px" %)Address 15
1860 |(% rowspan="2" style="width:105px" %)Parameter 11|(% style="width:98px" %)Address 16|(% rowspan="2" style="width:238px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Maximum speed of curve results during operation|(% rowspan="2" %)Hz
1861 |(% style="width:98px" %)Address 17
1862 |(% style="width:105px" %)Parameter 12|(% style="width:98px" %)Address 18|(% style="width:238px" %)Reserved| | | |
1863 |(% style="width:105px" %)Parameter 13|(% style="width:98px" %)Address 19|(% style="width:238px" %)Curve generation result| | | |
1864
1865 **✎Note:**
1866
1867 Generate S type acceleration and deceleration curve (table) with the given acceleration time, deceleration time, and the highest speed. When calculating, the spindle uses the pulse input frequency of 1K (1ms) as the calculation basis.
1868
1869 **{{id name="3.2_案例"/}}(2) Case**
1870
1871 1) Related control parameters
1872
1873 Calculation case:
1874
1875 Total number of pulses (length): 10000 pulses
1876
1877 Acceleration time: 100ms
1878
1879 Deceleration time: 100ms Resolution: 200
1880
1881 2) 2. Curve parameters:
1882
1883 Parameter 1: The total number of output pulses 10000
1884
1885 Parameter 2: Maximum speed 50000
1886
1887 Parameter 6: acceleration time 100
1888
1889 Parameter 7: acceleration time 100
1890
1891 Parameter 8: Resolution 200
1892
1893 (% style="text-align:center" %)
1894 [[image:09_html_aa28fc53f7b57a5e.png||class="img-thumbnail" height="392" width="500"]]
1895
1896 (((
1897 Pulse maximum speed
1898
1899 Total pulse number
1900
1901 Acceleration time
1902
1903 Deceleration time
1904
1905 Resolution
1906
1907 Set S type acceleration and deceleration curve
1908
1909 Curve generation instruction
1910
1911
1912 )))
1913
1914 (% style="text-align:center" %)
1915 [[image:09_html_ce402394c75f0459.gif||class="img-thumbnail"]]
1916
1917 **C.Customize specified key points to generate a table**
1918
1919 **{{id name="4.1_指定关键点生成表格参数"/}}(1) Specified key points generate table parameters**
1920
1921 (% class="table-bordered" %)
1922 |(% colspan="6" %)**Specified key points generate table parameters**
1923 |(% colspan="2" %)**Address**|(% style="width:333px" %)**Name**|(% style="width:197px" %)**Length**|**Instruction**|**Range**
1924 |(% colspan="2" %)S0|(% style="width:333px" %)Curve result|(% style="width:197px" %)Single word|(((
1925 ~>0: The curve is generated successfully
1926
1927 <0: Failed to generate curve
1928 )))|
1929 |(% colspan="2" %)S0+1|(% style="width:333px" %)Error parameter position|(% style="width:197px" %)Single word| |
1930 |(% colspan="2" %)S0+2|(% style="width:333px" %)Total resolution|(% style="width:197px" %)Single word| |10 to 511
1931 |(% colspan="2" %)S0+3|(% style="width:333px" %)Number of key points (n)|(% style="width:197px" %)Single word| |1 to 10
1932 |(% colspan="2" %)S0+4|(% rowspan="2" style="width:333px" %)The initial position of slave axis|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Set the initial offset position of slave axis|(% rowspan="2" %)Reserved
1933 |(% colspan="2" %)S0+5
1934 |(% colspan="2" %)S0+6|(% style="width:333px" %)Spindle segment 0|(% style="width:197px" %)Single word|(% rowspan="2" %)The master/slave axis segment 0 is always 0|(% rowspan="2" %)Reserved
1935 |(% colspan="2" %)S0+7|(% style="width:333px" %)Slave axis segment 0|(% style="width:197px" %)Single word
1936 |(% rowspan="6" %)(((
1937 Key
1938
1939 point 1
1940 )))|S0+8|(% rowspan="2" style="width:333px" %)Spindle segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 1|(% rowspan="2" %)32-bit integer
1941 |S0+9
1942 |S0+10|(% rowspan="2" style="width:333px" %)Slave axis segment 1|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 1|(% rowspan="2" %)32-bit integer
1943 |S0+11
1944 |S0+12|(% style="width:333px" %)Curve type of segment 1|(% style="width:197px" %)Single word|*1|
1945 |S0+13|(% style="width:333px" %)Resolution of segment 1|(% style="width:197px" %)Single word|*2|
1946 |(% rowspan="6" %)(((
1947 Key
1948
1949 point 2
1950 )))|S0+14|(% rowspan="2" style="width:333px" %)Spindle segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment 2|(% rowspan="2" %)32-bit integer
1951 |S0+15
1952 |S0+16|(% rowspan="2" style="width:333px" %)Slave axis segment 2|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment 2|(% rowspan="2" %)32-bit integer
1953 |S0+17
1954 |S0+18|(% style="width:333px" %)Curve type of segment 2|(% style="width:197px" %)Single word|*1|
1955 |S0+19|(% style="width:333px" %)Resolution of segment 2|(% style="width:197px" %)Single word|*2|
1956 | |**......**|(% style="width:333px" %)**......**|(% style="width:197px" %)**.....**|**......**|**......**
1957 |(% rowspan="6" %)(((
1958 Key point
1959
1960 N
1961 )))|S0+n*6+2|(% rowspan="2" style="width:333px" %)Spindle segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of spindle segment N|(% rowspan="2" %)32-bit integer
1962 |S0+n*6+3
1963 |S0+n*6+4|(% rowspan="2" style="width:333px" %)Slave axis segment N|(% rowspan="2" style="width:197px" %)Double word|(% rowspan="2" %)Number of pulses of slave axis segment N|(% rowspan="2" %)32-bit integer
1964 |S0+n*6+5
1965 |S0+n*6+6|(% style="width:333px" %)Curve type of segment N|(% style="width:197px" %)Single word|*1|
1966 |S0+n*6+7|(% style="width:333px" %)Resolution of segment N|(% style="width:197px" %)Single word|*2|
1967
1968 Curve type: Different values represent different curve types.
1969
1970 0 = uniform acceleration, 1 = S acceleration and deceleration (uniform acceleration), 2 = cycloid, 3 = uniform speed.
1971
1972 The resolution range is 0-511, the total resolution of all segments does not exceed the total resolution set by [S0]. if the resolution of all segments is set to 0, the total resolution set by [S0] split equally. When the curve type is cycloid, the corresponding resolution range is 3-511.W
1973
1974 Refer to the setting method of PLC Editor to generate a table based on the given key points and the given function relationship. The parameter setting is the same as the setting method of the upper computer. The editing interface of the upper computer is shown below. When the table is generated in K2 mode, The generated result is similar to the table result set by the relevant parameters of the upper computer. This mode expands the function of the table generated by the lower computer through the key points. In the key point curve, the spindle must have an increasing relationship, that is, the spindle pulse number of the next point must be greater than the spindle pulse number of the previous point, otherwise an error will be reported.
1975
1976 **{{id name="4.2_案例"/}}(2) Case**
1977
1978 1) Specified key points parameters
1979
1980 When the spindle has 0-600 pulses, the slave axis stops at position 0;
1981
1982 When the spindle has 600-1500 pulses, the slave axis moves to the position 2000;
1983
1984 When the spindle is 1500-1700 pulses, the slave axis stops at position 2000;
1985
1986 When the spindle has 1700-1900 pulses, the slave axis will return to position 600;
1987
1988 When the spindle has 1900-2000 pulses, the slave axis returns to position 0.
1989
1990 2) Specified key points for tabulation
1991
1992 Use PLC Editor software to create ECAM table, and set the parameter value of each key point in the table.
1993
1994 (% style="text-align:center" %)
1995 [[image:09_html_b99e5227a35871ab.png||class="img-thumbnail" height="295" width="400"]]
1996
1997 Then set the starting address of the parameter, check the ECam0 form in [Electronic Cam] when downloading, the system will automatically fill in the data of the above form into the corresponding parameter address.
1998
1999 3) Specified key point parameters table
2000
2001 (((
2002 (% class="table-bordered" %)
2003 |**Address**|**Instruction**|**Set value**|**Address**|**Instruction**|**Set value**
2004 |S0|Curve generation result| |S0+19|Resolution of segment 2|0
2005 |S0+1|Error parameter location| |S0+20|(% rowspan="2" %)Spindle position of segment 3|(% rowspan="2" %)1700
2006 |S0+2|Total resolution|100|S0+21
2007 |S0+3|Number of key point|1-10|S0+22|(% rowspan="2" %)Slave axis position of segment 3|(% rowspan="2" %)2000
2008 |S0+4|(% rowspan="2" %)Initial position of slave axis|(% rowspan="2" %)——|S0+23
2009 |S0+5|S0+24|Curve type of segment 3|0
2010 |S0+6|Spindle position of segment 0|Reserved|S0+25|Resolution of segment 3|0
2011 |S0+7|Slave axis position of segment 0|Reserved|S0+26|(% rowspan="2" %)Spindle position of segment 4|(% rowspan="2" %)1900
2012 |S0+8|(% rowspan="2" %)Spindle position of segment 1|(% rowspan="2" %)600|S0+27
2013 |S0+9|S0+28|(% rowspan="2" %)Slave axis position of segment 4|(% rowspan="2" %)600
2014 |S0+10|(% rowspan="2" %)Slave axis position of segment 1|(% rowspan="2" %)0|S0+29
2015 |S0+11|S0+30|Curve type of segment 4|0
2016 |S0+12|Curve type of segment 1|0|S0+31|Resolution of segment 4|0
2017 |S0+13|Resolution of segment 1|0|S0+32|(% rowspan="2" %)Spindle position of segment 5|(% rowspan="2" %)2000
2018 |S0+14|(% rowspan="2" %)Spindle position of segment 2|(% rowspan="2" %)1500|S0+33
2019 |S0+15|S0+34|(% rowspan="2" %)Slave axis position of segment 5|(% rowspan="2" %)0
2020 |S0+16|(% rowspan="2" %)Slave axis position of segment 2|(% rowspan="2" %)1200|S0+35
2021 |S0+17|S0+36|Curve type of segment 5|0
2022 |S0+18|Curve type of segment 2|0|S0+37|Resolution of segment 5|0
2023 )))
2024
2025 4) The table generated by specified key points is shown as below.
2026
2027 (% style="text-align:center" %)
2028 [[image:09_html_7f4633272893860d.gif||class="img-thumbnail"]]
2029
2030 5) If you do not need to fill in the data in the form, you can use the Circuit program to replace the form data:
2031
2032 (% style="text-align:center" %)
2033 [[image:09_html_b7baa900608277e3.png||class="img-thumbnail" width="500"]]
2034
2035
2036 (% style="text-align:center" %)
2037 [[image:09_html_5d035bd757aecfde.png||class="img-thumbnail"]]
2038
2039 {{id name="_Toc12352"/}}{{id name="_Toc28842"/}}{{id name="_Toc1624"/}}{{id name="四、特殊地址"/}}**Special address**
2040
2041 (% class="table-bordered" %)
2042 |**Devices**|**Content**
2043 |SD881 (high byte), SD880 (low byte)|Y000 Output pulse number. Decrease when reversed. (Use 32 bits)
2044 |SD941 (high byte), SD940 (low byte)|Y001 Output pulse number. Decrease when reversed. (Use 32 bits)
2045 |SD1001 (high byte), SD1000 (low byte)|Y002 Output pulse number. Decrease when reversed. (Use 32 bits)
2046 |SD1061 (high byte), SD1060 (low byte)|Y003 output pulse number. Decrease when reversed. (Use 32 bits)
2047 |SD1121 (high byte), SD1120 (low byte)|Y004 Output pulse number. Decrease when reversed. (Use 32 bits)
2048 |SD1181 (high byte), SD1180 (low byte)|Y005 Output pulse number. Decrease when reversed. (Use 32 bits)
2049 |SD1241 (high byte), SD1240 (low byte)|Y006 Number of output pulses. Decrease when reversed. (Use 32 bits)
2050 |SD1301 (high byte), SD1300 (low byte)|Y007 Output pulse number. Decrease when reversed. (Use 32 bits)
2051
2052 (% class="table-bordered" %)
2053 |**Devices**|**Content**|**Devices**|**Content**
2054 |SM882|Y000 Pulse output stop (stop immediately)|SM880|Y000 monitoring during pulse output (BUSY/READY)
2055 |SM942|Y001 Pulse output stop (stop immediately)|SM940|Y001 Monitoring during pulse output (BUSY/READY)
2056 |SM1002|Y002 Pulse output stop (stop immediately)|SM1000|Y002 Monitoring during pulse output (BUSY/READY)
2057 |SM1062|Y003 Pulse output stop (stop immediately)|SM1060|Y003 Monitoring during pulse output (BUSY/READY)
2058 |SM1122|Y004 Pulse output stop (stop immediately)|SM1120|Y004 Monitoring during pulse output (BUSY/READY)
2059 |SM1182|Y005 Pulse output stop (stop immediately)|SM1180|Y005 Monitoring during pulse output (BUSY/READY)
2060 |SM1242|Y006 Pulse output stop (stop immediately)|SM1240|Y006 Monitoring during pulse output (BUSY/READY)
2061 |SM1302|Y007 Pulse output stop (stop immediately)|SM1300|Y007 Monitoring during pulse output (BUSY/READY)
2062
2063 {{id name="_Toc1201"/}}{{id name="_Toc27506"/}}{{id name="_Toc19492"/}}{{id name="1、飞剪参数表"/}}**Appendix**
2064
2065 **Rotary saw parameter table**
2066
2067 (% class="table-bordered" %)
2068 |(% colspan="5" %)**Rotary saw curve parameter setting**
2069 |(% style="width:117px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:162px" %)**Name**|**Format**|**Instruction**
2070 |(% rowspan="2" style="width:117px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:162px" %)Spindle length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The moving cut length of the feeding axis moving. Unit: pulse.
2071 |(% style="width:94px" %)Address 1
2072 |(% rowspan="2" style="width:117px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:162px" %)Slave length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: pulse. Range [-2,000,000,000, 2,000,000,000]
2073 |(% style="width:94px" %)Address 3
2074 |(% rowspan="2" style="width:117px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:162px" %)Slave sync length|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone is smaller than the slave axis length, generally set to 1/3 of the slave axis length. (When the new S type rotary saw is selected, the value satisfies 40 *sync ratio<=sync length< slave axis length-2. ). Sync area range: 0<sync area length<~|slave axis length~|
2075 |(% style="width:94px" %)Address 5
2076 |(% rowspan="2" style="width:117px" %)Parameter 4|(% style="width:94px" %)
2077 Address 6|(% rowspan="2" style="width:162px" %)Slave axis sync magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2078 Calculation method one:
2079
2080 In the synchronization zone, the speed of the master axis and the slave axis are equal, and the sync magnification calculation method:
2081
2082 V1(V2)=Master (slave) axis speed
2083
2084 F1(F2)=Master (slave) axis speed (Hz)
2085
2086 D1(D2)=Master (slave) axis diameter
2087
2088 R1 (R2) = master (slave) axis pulse number per revolution
2089
2090 Calculation method two:
2091
2092 Slave axis sync magnification=the number of pulses required by 1mm slave axis/the number of pulses required by 1mm spindle
2093 )))
2094 |(% style="width:94px" %)Address 7
2095 |(% rowspan="2" style="width:117px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:162px" %)Slave axis maximum magnification limit|(% rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of spindle
2096 |(% style="width:94px" %)Address 9
2097 |(% style="width:117px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:162px" %)Acceleration curve|Integer|(((
2098 0: Constant acceleration curve, the speed curve is T type
2099
2100 1: Constant jerk curve, the speed curve is S type
2101
2102 2: reserved
2103
2104 3: reserved
2105
2106 4: New S rotary saw curve (synchronization zone is in the middle), see appendix for details. Current curve only supports CAM curve as 0.
2107 )))
2108 |(% style="width:117px" %)Parameter 7|(% style="width:94px" %)Address 11|(% style="width:162px" %)CAM curve|Integer|(((
2109 Start, stop, and various curve selections of different synchronization zone positions:
2110
2111 0: LeftCAM synchronization area is on the front curve;
2112
2113 1: MidCAMall;
2114
2115 2: MidCAMBegin start curve;
2116
2117 3: MidCAMEnd end curve;
2118
2119 4: RightCAM synchronization area is on the back curve;
2120
2121 BIT[15]=1: Continuing the previous data, used for splicing curves, such as setting the subdivision of the curve, the total resolution range of all splicing curves is 31 to 1024, and the two rotary saw curves are spliced into a shearing curve
2122 )))
2123 |(% style="width:117px" %)Parameter 8|(% style="width:94px" %)Address 12|(% style="width:162px" %)Resolution|Integer|(((
2124 Range [31,511], of which 20 synchronization areas;
2125
2126 When CAM curve is selected as MdiCAMall (resolution range is [54, 511])
2127 )))
2128 |(% style="width:117px" %) |(% style="width:94px" %)Address 13|(% style="width:162px" %)Reserved|Retained|Reserved
2129 |(% rowspan="2" style="width:117px" %)Parameter 9|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:162px" %)Synchronization zone start position|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated start position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2130 |(% style="width:94px" %)Address 15
2131 |(% rowspan="2" style="width:117px" %)Parameter 10|(% style="width:94px" %)Address 16|(% rowspan="2" style="width:162px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area could be used to set the lower limit of the synchronization area.
2132 |(% style="width:94px" %)Address 17
2133 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 18|(% rowspan="2" style="width:162px" %)Slave axis minimum limit operation magnification|(% rowspan="2" %)Floating|(% rowspan="2" %)It is valid only when parameter 6 acceleration curve is set to 4. Make sure that the actual maximum speed of the slave axis cannot be less than this value magnification corresponds to the speed so as to adjust the slope of the deceleration section.
2134 |(% style="width:94px" %)Address 19
2135 |(% rowspan="2" style="width:117px" %)Parameter 11|(% style="width:94px" %)Address 20|(% rowspan="2" style="width:162px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2136 The maximum magnification of the actual operation of slave axis:
2137
2138 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2139 )))
2140 |(% style="width:94px" %)Address 21
2141
2142 **{{id name="2、追剪参数表"/}}9.2.5.2 Flying saw parameter table**
2143
2144 (% class="table-bordered" %)
2145 |(% colspan="6" %)**Parameter setting of flying saw curve**
2146 |(% style="width:113px" %)**Parameter**|(% style="width:94px" %)**Offset address**|(% style="width:199px" %)**Name**|(% colspan="2" %)**Format**|**Instruction**
2147 |(% rowspan="2" style="width:113px" %)Parameter 1|(% style="width:94px" %)Address 0|(% rowspan="2" style="width:199px" %)Spindle length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The cutting length of the feeding axis moving. Unit: Pulse.
2148 |(% style="width:94px" %)Address 1
2149 |(% rowspan="2" style="width:113px" %)Parameter 2|(% style="width:94px" %)Address 2|(% rowspan="2" style="width:199px" %)Slave length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The circumference of the cutting axis (including the tool length). Unit: Pulse. Range [-2,000,000,000, 2,000,000,000]
2150 |(% style="width:94px" %)Address 3
2151 |(% rowspan="2" style="width:113px" %)Parameter 3|(% style="width:94px" %)Address 4|(% rowspan="2" style="width:199px" %)Slave synchronization length|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)The length of the slave axis synchronization zone. Synchronization area range: 0<synchronization area length<~|slave axis length/2~|
2152 |(% style="width:94px" %)Address 5
2153 |(% rowspan="2" style="width:113px" %)Parameter 4|(% style="width:94px" %)Address 6|(% rowspan="2" style="width:199px" %)Slave axis synchronization magnification|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)(((
2154 Calculation method one:
2155
2156 In the synchronization zone, the speed of master axis and the slave axis are equal, and the synchronization magnification calculation method is as below.
2157
2158 [[image:09_html_abe2ece300f76c28.jpg]]
2159
2160 among them
2161
2162 V1(V2)=Master (slave) axis speed
2163
2164 F1(F2)=Master (slave) axis speed (Hz)
2165
2166 D1(D2)=Master (slave) axis diameter
2167
2168 R1 (R2) = master (slave) axis pulse number per revolution
2169
2170 Calculation method two:
2171
2172 Slave axis synchronization magnification=1mm The number of pulses required by the slave axis/1mm The number of pulses required by the spindle
2173 )))
2174 |(% style="width:94px" %)Address 7
2175 |(% rowspan="2" style="width:113px" %)Parameter 5|(% style="width:94px" %)Address 8|(% rowspan="2" style="width:199px" %)Slave axis maximum magnification limit|(% colspan="2" rowspan="2" %)Floating|(% rowspan="2" %)Maximum magnification = maximum speed of slave axis/maximum speed of main axis
2176 |(% style="width:94px" %)Address 9
2177 |(% rowspan="2" style="width:113px" %)Parameter 6|(% style="width:94px" %)Address 10|(% style="width:199px" %)Acceleration curve|(% colspan="2" %)Integer|(((
2178 0: constant acceleration curve, the speed curve is T type
2179
2180 1: Constant jerk curve, the speed curve is S type
2181 )))
2182 |(% style="width:94px" %)Address 11|(% style="width:199px" %)CAM curve|(% colspan="2" %)Integer|Start, stop, and various curve selections for different synchronization zone positions: (currently only one type is supported, the tracking RightCam and the return LeftCam curve type are defaulted and can not be set)
2183 |(% style="width:113px" %)Parameter 7|(% style="width:94px" %)Address 12|(% style="width:199px" %)Resolution|(% colspan="2" %)Integer|Range [62,511]
2184 |(% style="width:113px" %) |(% style="width:94px" %)Address 13|(% style="width:199px" %)Reserved|(% colspan="2" %)Reserved|Reserved
2185 |(% rowspan="2" style="width:113px" %)Parameter 8|(% style="width:94px" %)Address 14|(% rowspan="2" style="width:199px" %)Synchronization zone start position|(% colspan="2" rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is generated correctly, the calculated starting position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2186 |(% style="width:94px" %)Address 15
2187 |(% rowspan="2" style="width:113px" %)Parameter 9|(% style="width:94px" %)Address 16|(% colspan="2" rowspan="2" style="width:199px" %)End of synchronization zone|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)After the curve is correctly generated, the calculated end position of the spindle synchronization area can be used to set the lower limit of the synchronization area.
2188 |(% style="width:94px" %)Address 17
2189 |(% rowspan="2" style="width:113px" %)Parameter 11|(% style="width:94px" %)Address 20|(% colspan="2" rowspan="2" style="width:199px" %)The maximum magnification of the actual operation of slave axis|(% rowspan="2" %)Floating|(% rowspan="2" %)(((
2190 The maximum magnification of the actual operation of slave axis:
2191
2192 It is sync magnification when it is long material, and it is between sync magnification and maximum limit magnification when it is short material.
2193 )))
2194 |(% style="width:94px" %)Address 21
2195
2196 **{{id name="OLE_LINK387"/}}S type acceleration and deceleration curve parameter table**
2197
2198 (% class="table-bordered" %)
2199 |(% colspan="7" %)**S type acceleration and deceleration curve parameter setting**
2200 |(% style="width:110px" %)**Parameter**|(% style="width:104px" %)**Offset address**|(% style="width:252px" %)**Name**|**Format**|**Instruction**|**Unit**|**Range**
2201 |(% rowspan="2" style="width:110px" %)Parameter 1|(% style="width:104px" %)Address 0|(% rowspan="2" style="width:252px" %)Total number of pulses (length)|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Total number of output pulses|(% rowspan="2" %)Pulse|(% rowspan="2" %)1 to 2147483647
2202 |(% style="width:104px" %)Address 1
2203 |(% rowspan="2" style="width:110px" %)Parameter 2|(% style="width:104px" %)Address 2|(% rowspan="2" style="width:252px" %)Set the maximum speed of pulse|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Set the highest frequency of pulses|(% rowspan="2" %)Hz|(% rowspan="2" %)1 to 200000
2204 |(% style="width:104px" %)Address 3
2205 |(% rowspan="2" style="width:110px" %)Parameter 3|(% style="width:104px" %)Address 4|(% rowspan="2" style="width:252px" %)Reserved|(% rowspan="2" %)Retained|(% rowspan="2" %)Reserved|(% rowspan="2" %) |(% rowspan="2" %)2 to 32767
2206 |(% style="width:104px" %)Address 5
2207 |(% style="width:110px" %)Parameter 4|(% style="width:104px" %)Address 6|(% style="width:252px" %)Accelerated time|16-bit integer|Pulse acceleration time|ms|2 to 32767
2208 |(% style="width:110px" %)Parameter 5|(% style="width:104px" %)Address 7|(% style="width:252px" %)Deceleration time|16-bit integer|Pulse deceleration time|ms|50 to 511
2209 |(% style="width:110px" %)Parameter 6|(% style="width:104px" %)Address 8|(% style="width:252px" %)Resolution|16-bit integer|Pulse resolution|Length|51 to 512
2210 |(% style="width:110px" %)Parameter 7|(% style="width:104px" %)Address 9|(% style="width:252px" %)Reserved|Reserved|Reserved| |
2211 |(% rowspan="2" style="width:110px" %)Parameter 8|(% style="width:104px" %)Address 10|(% rowspan="2" style="width:252px" %)Number of pulses of spindle in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of spindle in the last segment (high and low)|(% rowspan="2" %)Pulse|(% rowspan="8" %)
2212 \\Internally generated
2213 |(% style="width:104px" %)Address 11
2214 |(% rowspan="2" style="width:110px" %)Parameter 9|(% style="width:104px" %)Address 12|(% rowspan="2" style="width:252px" %)Number of pulses of slave axis in the last segment|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)Number of pulses of slave axis in the last segment(high and low)|(% rowspan="2" %)Pulse
2215 |(% style="width:104px" %)Address 13
2216 |(% rowspan="2" style="width:110px" %)Parameter 10|(% style="width:104px" %)Address 14|(% rowspan="2" style="width:252px" %)Uniform time|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The time span when outputting pulses at a constant speed|(% rowspan="2" %)Pulse
2217 |(% style="width:104px" %)Address 15
2218 |(% rowspan="2" style="width:110px" %)Parameter 11|(% style="width:104px" %)Address 16|(% rowspan="2" style="width:252px" %)Maximum speed|(% rowspan="2" %)32-bit integer|(% rowspan="2" %)The maximum speed of curve during operation|(% rowspan="2" %)Hz
2219 |(% style="width:104px" %)Address 17
2220 |(% style="width:110px" %)Parameter 12|(% style="width:104px" %)Address 18|(% style="width:252px" %)Reserved| | | |
2221 |(% style="width:110px" %)Parameter 13|(% style="width:104px" %)Address 19|(% style="width:252px" %)Curve generation result| | | |
2222
2223 **{{id name="4、指定关键点生成表格"/}}4 Specified key points generate a table**
2224
2225 (% class="table-bordered" %)
2226 |(% colspan="6" %)**Specified key points generate table parameters**
2227 |(% colspan="2" %)**Address**|**Name**|**Length**|**Instruction**|**Range**
2228 |(% colspan="2" %)S0|Curve generation result|Single word|(((
2229 ~>0: The curve is generated successfully
2230
2231 <0: Failed to generate the curve
2232 )))|
2233 |(% colspan="2" %)S0+1|Error parameter location|Single word| |
2234 |(% colspan="2" %)S0+2|Total resolution|Single word| |10 to 511
2235 |(% colspan="2" %)S0+3|Number of key points (n)|Single word| |1 to 10
2236 |(% colspan="2" %)S0+4|(% rowspan="2" %)Start position of slave axis|(% rowspan="2" %)Double word|(% rowspan="2" %)Set the start offset position of slave axis|(% rowspan="2" %)Reserved
2237 |(% colspan="2" %)S0+5
2238 |(% colspan="2" %)S0+6|Spindle segment 0|Single word|(% rowspan="2" %)The master/slave axis of segment 0 is always 0|(% rowspan="2" %)Reserved
2239 |(% colspan="2" %)S0+7|Slave axis segment 0|Single word
2240 |(% rowspan="6" %)(((
2241
2242
2243 Key
2244
2245 point 1
2246 )))|S0+8|(% rowspan="2" %)Spindle segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 1|(% rowspan="2" %)32-bit integer
2247 |S0+9
2248 |S0+10|(% rowspan="2" %)Slave axis segment 1|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 1|(% rowspan="2" %)32-bit integer
2249 |S0+11
2250 |S0+12|Curve type of segment 1|Single word|*1|
2251 |S0+13|Resolution of segment 1|Single word|*2|
2252 |(% rowspan="6" %)(((
2253
2254
2255 Key
2256
2257 Point 2
2258 )))|S0+14|(% rowspan="2" %)Spindle segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment 2|(% rowspan="2" %)32-bit integer
2259 |S0+15
2260 |S0+16|(% rowspan="2" %)Slave axis segment 2|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment 2|(% rowspan="2" %)32-bit integer
2261 |S0+17
2262 |S0+18|Curve type of segment 2|Single word|*1|
2263 |S0+19|Resolution of segment 2|Single word|*2|
2264 | |......|......|....|......|......
2265 |(% rowspan="6" %)(((
2266
2267
2268 Key
2269
2270 point N
2271 )))|S0+n*6+2|(% rowspan="2" %)Spindle segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of spindle segment N|(% rowspan="2" %)32-bit integer
2272 |S0+n*6+3
2273 |S0+n*6+4|(% rowspan="2" %)Slave axis segment N|(% rowspan="2" %)Double word|(% rowspan="2" %)The number of pulse of slave axis segment N|(% rowspan="2" %)32-bit integer
2274 |S0+n*6+5
2275 |S0+n*6+6|Curve type of segment N|Single word|*1|
2276 |S0+n*6+7|Resolution of segment N|Single word|*2|