Changes for page 06 Control Mode
Last modified by Mora Zhou on 2023/12/21 15:45
Summary
-
Page properties (3 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo.01 VD1 User Manual.WebHome 1 +Servo.Manual.01 VD1 User Manual.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki.a dmin1 +XWiki.Mora - Content
-
... ... @@ -1,17 +1,17 @@ 1 -= ** 6.1Basic Setting** =1 += **Basic Setting** = 2 2 3 -== ** 6.1.1Check Before Running** ==3 +== **Check Before Running** == 4 4 5 5 (% class="table-bordered" %) 6 6 |=**NO.**|=**Activity** 7 7 |(% colspan="2" %)Wiring 8 -|1|The servo drive’s control circuit power input terminals (L1C, L2C) and main circuit power input terminals(L1,L2,L3) are connected correctly. 8 +|1|The servo drive’s control circuit power input terminals (L1C, L2C) and main circuit power input terminals(L1, L2, L3) are connected correctly. 9 9 |2|((( 10 10 The main circuit output terminals U, V, W of the servo drive are properly 11 11 12 12 connected to the power cables U, V, W of the servo motor in correct phase sequence 13 13 ))) 14 -|3|No short circuit exists in the main circuit power input terminals (L1,L2,L3) and output terminals (U, V, W) of the servo drive. 14 +|3|No short circuit exists in the main circuit power input terminals (L1, L2, L3) and output terminals (U, V, W) of the servo drive. 15 15 |4|((( 16 16 The signal wires of the servo drive are connected correctly. The external 17 17 ... ... @@ -19,22 +19,18 @@ 19 19 ))) 20 20 |5|The servo drive and motor are grounded reliably. 21 21 |6|((( 22 -The jumper between terminals C and D has been removed when the 23 - 24 -external regenerative resistor is used. 22 +The jumper between terminals C and D has been removed when the external regenerative resistor is used. 25 25 ))) 26 26 |7|The cable tension is within the permissible range. 27 27 |8|The wiring terminals have been insulated. 28 28 |(% colspan="2" %)Environment and mechanical conditions 29 29 |1|((( 30 -No foreign objects, such as wire end or metal powder, which may cause 31 - 32 -short circuit of the signal wire and power cables, exist inside and outside of the servo drive. 28 +No foreign objects, such as wire end or metal powder, which may cause short circuit of the signal wire and power cables, exist inside and outside of the servo drive. 33 33 ))) 34 34 |2|The servo drive or external regenerative resistor is not placed on flammable objects. 35 35 |3|Installation and shaft and mechanical connection are reliable. 36 36 37 -== ** 6.1.2Power Supply Connection** ==33 +== **Power Supply Connection** == 38 38 39 39 **Connect the power supply of the control circuit (L1C, L2C) and main circuit:** 40 40 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 **Turn off the S-ON signal** 48 48 49 -== ** 6.1.3Jogging** ==45 +== **Jogging** == 50 50 51 51 Jog operation could be realized in two ways, one is panel jog operation, and the jog operation could be realized through the buttons on the servo panel. the other is jog operation through the debug tool running on pc. 52 52 ... ... @@ -66,7 +66,7 @@ 66 66 67 67 **Time** 68 68 )))|=**Range**|=**Function**|=**Unit**|=**Default** 69 -|P10-1|JOG speed|During running|Immediate|0 ~~3000|(((65 +|P10-1|JOG speed|During running|Immediate|0-3000|((( 70 70 Set the jogging 71 71 72 72 speed value ... ... @@ -76,7 +76,7 @@ 76 76 77 77 Open We-con servo debugging tool, set the speed value of the jog in the "Set Speed" in the "Manual Operation" column, and then click the "Servo On" button on the interface. Click "Forward" or "Reverse" button to realize forward/reverse jogging. When the "servo off" button is clicked, the jog mode is exited. 78 78 79 -== ** 6.1.4Selection of Rotating Direction** ==75 +== **Selection of Rotating Direction** == 80 80 81 81 Set [P0-4] to change the motor rotating direction without changing the polarity of the input reference. 82 82 ... ... @@ -96,7 +96,7 @@ 96 96 Power-on 97 97 98 98 again 99 -)))|(% style="width:69px" %)0 ~~1|(((95 +)))|(% style="width:69px" %)0-1|((( 100 100 Forward direction:viewed from the motor shaft. 101 101 102 102 0: CW direction as the forward direction ... ... @@ -108,7 +108,7 @@ 108 108 109 109 Limit switches (positive over travel POT and reverse over travel NOT), POT has the same direction set in [P0-4](Rotating direction selection). 110 110 111 -== ** 6.1.5Braking resistor** ==107 +== **Braking resistor** == 112 112 113 113 When the servo motor is in the generator state when decelerating or stopping, the motor would transfer the energy back to the driver, which would increase the bus voltage. When the bus voltage exceeds the braking point, the driver could use the braking resistor to consume the energy. The braking resistor could be built-in or external, but it couldnot be used at the same time. When the external braking resistor is connected, the jumper on the servo drive needs to be removed. 114 114 ... ... @@ -126,7 +126,7 @@ 126 126 127 127 **Time** 128 128 )))|=(% style="width: 83px;" %)**Range**|=(% style="width: 418px;" %)**Function**|=**Unit**|=**Default** 129 -|(% style="width:81px" %)P0-9|(% style="width:220px" %)Braking resistance|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0 ~~3|(% style="width:418px" %)(((125 +|(% style="width:81px" %)P0-9|(% style="width:220px" %)Braking resistance|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0-3|(% style="width:418px" %)((( 130 130 0- Use built-in braking resistor. 131 131 132 132 1- Use external braking resistor and natural cooling. ... ... @@ -135,18 +135,18 @@ 135 135 136 136 3- No braking resistors are used, all rely on capacitor absorption. 137 137 )))|-|0 138 -|(% style="width:81px" %)P0-10|(% style="width:220px" %)External braking resistance|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0 ~~65535|(% style="width:418px" %)set the resistance value of the external braking resistor.|Ω|50139 -|(% style="width:81px" %)P0-11|(% style="width:220px" %)External braking resistor power|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0 ~~65535|(% style="width:418px" %)Used to set the power of external braking resistor.|W|100134 +|(% style="width:81px" %)P0-10|(% style="width:220px" %)External braking resistance|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0-65535|(% style="width:418px" %)set the resistance value of the external braking resistor.|Ω|50 135 +|(% style="width:81px" %)P0-11|(% style="width:220px" %)External braking resistor power|(% style="width:81px" %)At stop|(% style="width:83px" %)Immediate|(% style="width:83px" %)0-65535|(% style="width:418px" %)Used to set the power of external braking resistor.|W|100 140 140 141 141 **Braking resistor selection process** 142 142 143 143 (% style="text-align:center" %) 144 -[[image:Braking resistor.png|| class="img-thumbnail" height="1197" width="800"]]140 +[[image:Braking resistor.png||height="1197" width="800" class="img-thumbnail"]] 145 145 146 146 147 147 **VD1 750W drive brake resistance calculation formula** 148 148 149 -750W motor inertia 145 +750W motor inertia: 1.82*10^^-4^^ kg m^^2^^ 150 150 151 151 Total load inertia J,,L,, = load inertia ratio * 1.82*10^^-4^^ 152 152 ... ... @@ -162,7 +162,7 @@ 162 162 163 163 which is:[[image:VD1 750W 驱动器制动电阻计算公式_html_506c1de75a99e6fa.gif||class="img-thumbnail"]] 164 164 165 -== ** 6.1.6Servo Running** ==161 +== **Servo Running** == 166 166 167 167 1. Turn on the S-ON signal 168 168 ... ... @@ -177,11 +177,11 @@ 177 177 1. Power-on time sequence 178 178 179 179 (% style="text-align:center" %) 180 -[[image:5.Basic Setting_html_f889a9585b78ace9.jpg|| class="img-thumbnail" height="371" width="700"]]176 +[[image:5.Basic Setting_html_f889a9585b78ace9.jpg||height="371" width="700" class="img-thumbnail"]] 181 181 182 182 Figure 6-1 Power-on time sequence 183 183 184 -== ** 6.1.7Servo Stop** ==180 +== **Servo Stop** == 185 185 186 186 Servo stop includes coast to stop and zero-speed stop based on the stop mode, and de energized state and position lock based on the stop state. 187 187 ... ... @@ -269,17 +269,15 @@ 269 269 270 270 11: INH, Position reference inhibited 271 271 272 -12: VSSEL, Damp control switch( not implemented yet)268 +12: VSSEL, Damp control switch(Not implemented yet) 273 273 274 -13: INSPD1, Internal speed command selection 1( not implemented yet)270 +13: INSPD1, Internal speed command selection 1(Not implemented yet) 275 275 276 -14: INSPD2, Internal speed command selection 2 272 +14: INSPD2, Internal speed command selection 2(Not implemented yet) 277 277 278 - (not implemented yet)274 +15: INSPD3, Internal speed command selection 3(Not implemented yet) 279 279 280 -15: INSPD3, Internal speed command selection 3(not implemented yet) 281 - 282 -16: J-SEL, Inertia ratio switch(not implemented yet) 276 +16: J-SEL, Inertia ratio switch(Not implemented yet) 283 283 )))|-|03-POT 284 284 |(% style="width:73px" %)P6-9|(% style="width:134px" %)DI_3 logic selection|(% style="width:114px" %)During running|(% style="width:85px" %)((( 285 285 Power-on ... ... @@ -288,9 +288,9 @@ 288 288 )))|(% style="width:69px" %)0~~1|(% style="width:490px" %)((( 289 289 DI port input logic validity function selection. 290 290 291 -0: Normal open input. Active when off ( switch closed).285 +0: Normal open input. Active when off (Switch closed). 292 292 293 -1: Normal closed input. Active when on ( switch open).287 +1: Normal closed input. Active when on (Switch open). 294 294 )))|-|0 295 295 |(% style="width:73px" %)P6-10|(% style="width:134px" %)DI_3 input source selection|(% style="width:114px" %)During running|(% style="width:85px" %)((( 296 296 Power-on ... ... @@ -363,7 +363,7 @@ 363 363 364 364 If the machine breaks down, the servo would perform fault shutdown operation. The current shutdown mode is fixed to free stop mode, and the motor shaft remains free. 365 365 366 -= ** 6.2Position mode** =360 += **Position mode** = 367 367 368 368 Position control mode is the most important and commonly used control mode of servo system. Position control refers to controlling the position of the motor through position commands, determining the target position of the motor based on the total number of position commands, and the frequency of the position command determines the rotation speed of the motor. The servo drive could achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used in applications requiring positioning control, such as manipulators, chip mounters, engraving machines, CNC machine tools, etc. 369 369 ... ... @@ -370,16 +370,16 @@ 370 370 **The block diagram of position control is as follows:** 371 371 372 372 (% style="text-align:center" %) 373 -[[image:1649921243846-652.png|| class="img-thumbnail" height="272" width="800"]]367 +[[image:1649921243846-652.png||height="272" width="800" class="img-thumbnail"]] 374 374 375 375 Figure 6-2 Position control diagram 376 376 377 -== ** 6.2.1Position Reference Input Setting** ==371 +== **Position Reference Input Setting** == 378 378 379 379 The servo drive has 1 set of pulse input terminals for receiving position pulse input (through the CN2 terminal of the drive) 380 380 381 381 (% style="text-align:center" %) 382 -[[image:1649921251765-622.png|| class="img-thumbnail" height="525" width="600"]]376 +[[image:1649921251765-622.png||height="525" width="600" class="img-thumbnail"]] 383 383 384 384 The reference from the host controller could be differential output or open collector output. The maximum input frequency is shown in** the following table:** 385 385 ... ... @@ -391,12 +391,12 @@ 391 391 1. **Low-speed Pulse Input **Differential drive mode 392 392 393 393 (% style="text-align:center" %) 394 -[[image:1649921259462-732.png|| class="img-thumbnail" height="468" width="700"]]388 +[[image:1649921259462-732.png||height="468" width="700" class="img-thumbnail"]] 395 395 396 396 1. **OC mode** 397 397 398 398 (% style="text-align:center" %) 399 -[[image:1649921266972-816.png|| class="img-thumbnail" height="472" width="700"]]393 +[[image:1649921266972-816.png||height="472" width="700" class="img-thumbnail"]] 400 400 401 401 1. Position pulse selection 402 402 ... ... @@ -461,7 +461,7 @@ 461 461 Filtering time is necessary for the reference input pin to prevent external interference input to the driver and affect the control of the motor. The signal input and output waveforms with filtering enabled are shown in** the following figure:** 462 462 463 463 (% style="text-align:center" %) 464 -[[image:1649921315771-948.png|| class="img-thumbnail" height="328" width="800"]]458 +[[image:1649921315771-948.png||height="328" width="800" class="img-thumbnail"]] 465 465 466 466 Figure 6-3 Filtering signal waveform 467 467 ... ... @@ -494,7 +494,7 @@ 494 494 3: High (0.4) 495 495 )))|-|2 496 496 497 -== ** 6.2.2Electronic Gear Ratio** ==491 +== **Electronic Gear Ratio** == 498 498 499 499 **[Glossary]** 500 500 ... ... @@ -513,7 +513,7 @@ 513 513 The setting range of the electronic gear ratio should** **meet **the following conditions**: 514 514 515 515 (% style="text-align:center" %) 516 -[[image:1649921327785-423.png|| class="img-thumbnail" height="63" width="500"]]510 +[[image:1649921327785-423.png||height="63" width="500" class="img-thumbnail"]] 517 517 518 518 Otherwise, it would display [Er. 35] "Electronic gear ratio setting over limit" fault. 519 519 ... ... @@ -520,7 +520,7 @@ 520 520 **Electronic gear ratio setting Flowchart:** 521 521 522 522 (% style="text-align:center" %) 523 -[[image:1649921334117-284.png|| class="img-thumbnail" height="857" width="300"]]517 +[[image:1649921334117-284.png||height="857" width="300" class="img-thumbnail"]] 524 524 525 525 Figure 6-4 Electronic gear ratio setting flowchart 526 526 ... ... @@ -570,7 +570,7 @@ 570 570 It is valid when P0-16=0 571 571 )))|(% style="width:58px" %)-|(% style="width:51px" %)1 572 572 573 -== ** 6.2.3Position Reference Filter** ==567 +== **Position Reference Filter** == 574 574 575 575 This function filters the position references (encoder unit) divided or multiplied by the electronic gear ratio. It involves the first-order filter and average filter. 576 576 ... ... @@ -585,7 +585,7 @@ 585 585 The filter time is not as long as possible. The longer the filter time, the longer the delay time and the longer the response time. 586 586 587 587 (% style="text-align:center" %) 588 -[[image:1649921346187-572.png|| class="img-thumbnail" height="305" width="700"]]582 +[[image:1649921346187-572.png||height="305" width="700" class="img-thumbnail"]] 589 589 590 590 Figure 6-5 position reference filter 591 591 ... ... @@ -605,18 +605,18 @@ 605 605 |P4-2|Position command first-order low-pass filter|At stop|Immediate|0~~128|For pulse command input filtering|ms|0 606 606 |P4-3|Position command average filtering time constant|At stop|Immediate|0~~1000|For pulse command input filtering|ms|20 607 607 608 -== ** 6.2.4Position Deviation Clear** ==602 +== **Position Deviation Clear** == 609 609 610 610 Position deviation = Position reference – Position feedback (encoder unit) 611 611 612 612 The position deviation clear function refers to the function that the drive clears the deviation register in the position mode. The function of clearing position deviation could be realized through DI terminal. 613 613 614 -== ** 6.2.5Frequency-Division Output** ==608 +== **Frequency-Division Output** == 615 615 616 616 The encoder pulse is output as a quadrature differential signal after divided by the internal circuit of the servo driver. The phase and frequency of the frequency-divided signal could be set by parameters. The source of frequency division output could be set by function code, and the setting of different sources makes the function of frequency division output more widely used. 617 617 618 618 (% style="text-align:center" %) 619 -[[image:1649921354912-251.png|| class="img-thumbnail" height="385" width="500"]]613 +[[image:1649921354912-251.png||height="385" width="500" class="img-thumbnail"]] 620 620 621 621 Figure 6-6 diagram of frequency division output wiring 622 622 ... ... @@ -674,7 +674,7 @@ 674 674 1-Z Active when pulse is low 675 675 )))|-|0 676 676 677 -== ** 6.2.6Position-relevant DO output function** ==671 +== **Position-relevant DO output function** == 678 678 679 679 The feedback value of the position command is compared with different thresholds, and the DO signal could be output for the host controller to use. 680 680 ... ... @@ -687,7 +687,7 @@ 687 687 **The functional schematic diagram is as follows:** 688 688 689 689 (% style="text-align:center" %) 690 -[[image:1649921403464-270.png|| class="img-thumbnail" height="393" width="600"]]684 +[[image:1649921403464-270.png||height="393" width="600" class="img-thumbnail"]] 691 691 692 692 Figure 6-7 positioning completed diagram 693 693 ... ... @@ -694,7 +694,7 @@ 694 694 When using the positioning completion / proximity function, you could also set positioning completion, positioning proximity conditions, window, and hold time. The diagram of window filtering time is shown in** the figure below:** 695 695 696 696 (% style="text-align:center" %) 697 -[[image:1649921410286-328.png|| class="img-thumbnail" height="429" width="750"]]691 +[[image:1649921410286-328.png||height="429" width="750" class="img-thumbnail"]] 698 698 699 699 Figure 6-8 diagram of positioning completion signal output with window filtering time 700 700 ... ... @@ -787,18 +787,18 @@ 787 787 788 788 ---- 789 789 790 -== ** 6.2.7 [[Servo position control case>>doc:Servo.3\. Demos.01 VD1/VD2 Servo Position control.WebHome]]** ==784 +== **Servo position control case** == 791 791 792 792 **Introduction** 793 793 794 794 This case uses three commonly used PLC positioning instructions to implement the servo position control mode actions. 795 795 796 -== ** 6.2.8I/O wiring** ==790 +== **I/O wiring** == 797 797 798 798 (% style="text-align:center" %) 799 -[[image:1649921424832-617.png|| class="img-thumbnail" height="473" width="700"]]793 +[[image:1649921424832-617.png||height="473" width="700" class="img-thumbnail"]] 800 800 801 -== ** 6.2.9Servo parameter setting** ==795 +== **Servo parameter setting** == 802 802 803 803 **Step 1**:Power on the servo, set the M key on the panel of the servo drive, set the value of function code P0-1 to 1, and 1 is the position control mode; 804 804 ... ... @@ -812,7 +812,7 @@ 812 812 Control mode 813 813 814 814 (default setting) 815 -)))|(% style="width:126px" %)At stop|(% style="width:130px" %)Power-on again|(% style="width:87px" %)1 ~~10|(% style="width:369px" %)(((809 +)))|(% style="width:126px" %)At stop|(% style="width:130px" %)Power-on again|(% style="width:87px" %)1-10|(% style="width:369px" %)((( 816 816 1: Position control mode 817 817 818 818 2: Speed control mode ... ... @@ -838,7 +838,7 @@ 838 838 Power-on 839 839 840 840 again 841 -)))|(% style="width:81px" %)0 ~~1|(% style="width:433px" %)(((835 +)))|(% style="width:81px" %)0-1|(% style="width:433px" %)((( 842 842 Forward direction:viewed from the motor shaft. 843 843 844 844 0: CW direction as the forward direction ... ... @@ -860,7 +860,9 @@ 860 860 861 861 **Step 4**:Set the value of the function code P13-1 to choose whether VDI1 is valid at high or low levels. 862 862 857 +{{info}} 863 863 **✎Note:** the value of function code P6-02 should be set to 1. Only in this way can the motor rotate. 859 +{{/info}} 864 864 865 865 (% class="table-bordered" %) 866 866 |=(% style="width: 74px;" %)**Code**|=(% style="width: 142px;" %)**Function**|=(% style="width: 116px;" %)**Effective time**|=(% style="width: 76px;" %)**Default**|=(% style="width: 70px;" %)**Range**|=(% style="width: 548px;" %)**Description**|=**Unit** ... ... @@ -898,12 +898,12 @@ 898 898 16: J-SEL, Inertia ratio switch(not implemented yet) 899 899 )))| 900 900 901 -== ** 6.2.10PLC Project** ==897 +== **PLC Project** == 902 902 903 903 (% style="text-align:center" %) 904 -[[image:1649921441261-362.png|| class="img-thumbnail" height="256" width="800"]]900 +[[image:1649921441261-362.png||height="256" width="800" class="img-thumbnail"]] 905 905 906 -== ** 6.2.11Explanation** ==902 +== **Explanation** == 907 907 908 908 The program uses M0,M1,M2 as the switch button of three modes of actions. 909 909 ... ... @@ -913,7 +913,7 @@ 913 913 914 914 When M2 is turned on, the Y0 servo motor moves to the absolute position of 2000 at the speed of 4000 pulses, and Y3 represents the direction of the motor. 915 915 916 -= ** 6.3Speed mode** =912 += **Speed mode** = 917 917 918 918 Speed control refers to control the speed of the machine through the speed reference. Through internal digital setting, analog voltage or communication, the servo drive could achieve fast and precise control of the mechanical speed. Therefore, the speed control mode is mainly used to control the rotation speed, or use the host controller to realize the position control, and the host controller output is used as the speed reference, such as analog engraving and milling machine. 919 919 ... ... @@ -920,7 +920,7 @@ 920 920 The speed control block diagram is **as follows:** 921 921 922 922 (% style="text-align:center" %) 923 -[[image:1649921468579-521.png|| class="img-thumbnail" height="255" width="800"]]919 +[[image:1649921468579-521.png||height="255" width="800" class="img-thumbnail"]] 924 924 925 925 Figure1 speed control diagram 926 926 ... ... @@ -942,10 +942,10 @@ 942 942 3: Torque control mode 943 943 )))|-|1 944 944 945 -== ** 6.3.1Speed Reference Input Setting** ==941 +== **Speed Reference Input Setting** == 946 946 947 947 (% style="text-align:center" %) 948 -[[image:1649921476490-234.png|| class="img-thumbnail" height="392" width="600"]]944 +[[image:1649921476490-234.png||height="392" width="600" class="img-thumbnail"]] 949 949 950 950 Speed Reference Source 951 951 ... ... @@ -986,7 +986,7 @@ 986 986 **Analog voltage setting method**: 987 987 988 988 (% style="text-align:center" %) 989 -[[image:1649921484882-112.png|| class="img-thumbnail" height="855" width="250"]]985 +[[image:1649921484882-112.png||height="855" width="250" class="img-thumbnail"]] 990 990 991 991 Figure 2 flowchart of setting speed reference by analog voltage 992 992 ... ... @@ -1003,7 +1003,7 @@ 1003 1003 **Dead zone: **Input voltage range of the analog channel when the sampling voltage is zero. 1004 1004 1005 1005 (% style="text-align:center" %) 1006 -[[image:1649921492713-261.png|| class="img-thumbnail" height="415" width="700"]]1002 +[[image:1649921492713-261.png||height="415" width="700" class="img-thumbnail"]] 1007 1007 1008 1008 Figure 3 Analog signal after-offset 1009 1009 ... ... @@ -1033,7 +1033,7 @@ 1033 1033 |(% style="width:61px" %)P5-9|(% style="width:194px" %)Analog 10V for speed value|At stop|Immediate|1000~~4500|Set the speed value corresponding to analog 10V|rpm|3000 1034 1034 |(% style="width:61px" %)P5-10|(% style="width:194px" %)Analog 10V for torque value|At stop|Immediate|0~~3000|Set the torque value corresponding to analog 10V|0.1%|1000 1035 1035 1036 -== ** 6.3.2Acceleration and deceleration time setting** ==1032 +== **Acceleration and deceleration time setting** == 1037 1037 1038 1038 The acceleration/deceleration time setting refers to convert a speed command with a relatively high acceleration into a speed command with a relatively gentle acceleration, so as to achieve the purpose of controlling the acceleration. 1039 1039 ... ... @@ -1040,7 +1040,7 @@ 1040 1040 In the speed control mode, excessive acceleration of the speed command would cause the vibration. At this time, increase the acceleration or deceleration time to achieve a smooth speed change of the motor and avoid mechanical damage caused by the above situation. 1041 1041 1042 1042 (% style="text-align:center" %) 1043 -[[image:1649921501713-829.png|| class="img-thumbnail" height="387" width="600"]]1039 +[[image:1649921501713-829.png||height="387" width="600" class="img-thumbnail"]] 1044 1044 1045 1045 Figure 4 diagram of acc. and dec. time 1046 1046 ... ... @@ -1059,7 +1059,7 @@ 1059 1059 |(% style="width:65px" %)P1-3|(% style="width:136px" %)Acc. time|During running|Immediate|0~~65535|Acceleration time from 0 to 1000rpm in speed command mode|ms|50 1060 1060 |(% style="width:65px" %)P1-4|(% style="width:136px" %)Dec. time|During running|Immediate|0~~65535|Deceleration time from 1000 to 0 rpm in speed command mode|ms|50 1061 1061 1062 -== ** 6.3.3Speed Reference Limitation** ==1058 +== **Speed Reference Limitation** == 1063 1063 1064 1064 The servo drive could display the value of the speed reference in speed mode. 1065 1065 ... ... @@ -1087,7 +1087,7 @@ 1087 1087 |(% style="width:74px" %)P1-12|(% style="width:210px" %)Forward speed threshold|During running|Immediate|0~~3000|Set forward speed limit|rpm|3000 1088 1088 |(% style="width:74px" %)P1-13|(% style="width:210px" %)Reverse speed threshold|During running|Immediate|0~~3000|Set reverse speed limit|rpm|3000 1089 1089 1090 -== ** 6.3.4Zero Speed Clamp Function** ==1086 +== **Zero Speed Clamp Function** == 1091 1091 1092 1092 Zero speed clamping function means that when the zero speed clamping signal (ZCLAMP) is valid, when the absolute value of the speed reference is lower than the zero speed clamping speed value, the servo motor is in the locked state. At this time, the servo drive is in position lock mode, and the speed reference is invalid. 1093 1093 ... ... @@ -1111,11 +1111,11 @@ 1111 1111 |(% style="width:69px" %)P1-22|(% style="width:176px" %)Speed threshold for zero|During running|Immediate|0~~1000|Set the speed threshold of the zero speed clamp function|rpm|20 1112 1112 1113 1113 (% style="text-align:center" %) 1114 -[[image:1649921513950-217.png|| class="img-thumbnail" height="388" width="600"]]1110 +[[image:1649921513950-217.png||height="388" width="600" class="img-thumbnail"]] 1115 1115 1116 1116 Figure 5 Zero Speed Clamp waveform 1117 1117 1118 -== ** 6.3.5Speed-relevant DO Signals** ==1114 +== **Speed-relevant DO Signals** == 1119 1119 1120 1120 Different DO signals are output to the host controller based on comparison between the speed feedback after filter and different thresholds. We need to assign different function for the DO terminals and set the valid logic. 1121 1121 ... ... @@ -1124,7 +1124,7 @@ 1124 1124 After the speed reference is filtered, the absolute value of the actual speed of the servo motor reaches [P5-16] (rotation detection speed threshold), then the motor is considered to be rotating. At this time, the DO terminal of the servo drive could output a rotation detection signal. Conversely, when the actual rotation speed of the servo motor does not reach [P5-16], it is considered that the motor is not rotating. 1125 1125 1126 1126 (% style="text-align:center" %) 1127 -[[image:1649921523559-858.png|| class="img-thumbnail" height="236" width="600"]]1123 +[[image:1649921523559-858.png||height="236" width="600" class="img-thumbnail"]] 1128 1128 1129 1129 Figure 6-14 motor rotation DO signal 1130 1130 ... ... @@ -1144,7 +1144,7 @@ 1144 1144 The absolute value of the actual speed of the servo motor is less than a certain threshold [P5-19], it is considered that the servo motor stops rotating, and the DO terminal of the servo drive could output a zero speed signal at this time. Conversely, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero speed signal is invalid. 1145 1145 1146 1146 (% style="text-align:center" %) 1147 -[[image:1649921531202-104.png|| class="img-thumbnail" height="373" width="600"]]1143 +[[image:1649921531202-104.png||height="373" width="600" class="img-thumbnail"]] 1148 1148 1149 1149 Figure 6 zero speed signal waveform 1150 1150 ... ... @@ -1164,7 +1164,7 @@ 1164 1164 In speed control, when the absolute value of the difference between the motor speed after filter and the speed reference satisfies the setting of [P5-17], the actual motor speed is considered to reach the speed reference. At this moment, the servo drive outputs the speed consistent signal. When the absolute value of the difference between the motor speed after filter and the speed reference exceeds the setting of [P5-17], the speed consistent signal is inactive. 1165 1165 1166 1166 (% style="text-align:center" %) 1167 -[[image:1649921539069-575.png|| class="img-thumbnail" height="366" width="600"]]1163 +[[image:1649921539069-575.png||height="366" width="600" class="img-thumbnail"]] 1168 1168 1169 1169 Figure 7 Speed Consistent Waveform 1170 1170 ... ... @@ -1184,7 +1184,7 @@ 1184 1184 When the absolute value of the motor speed after filter exceeds the setting of[P4-16],the motor speed is considered to reach the desired value. At this moment, the servo drive outputs the speed reached signal. When the absolute value of the motor speed after filter is smaller than or equal to the setting of[P4-16], the speed reached signal is inactive. 1185 1185 1186 1186 (% style="text-align:center" %) 1187 -[[image:1649921547861-635.png|| class="img-thumbnail" height="323" width="600"]]1183 +[[image:1649921547861-635.png||height="323" width="600" class="img-thumbnail"]] 1188 1188 1189 1189 Figure 6-17 Speed reached signal waveform 1190 1190 ... ... @@ -1199,7 +1199,7 @@ 1199 1199 |(% style="width:71px" %)P5-18|(% style="width:274px" %)Speed approaching signal threshold|During running|Immediate|10~~6000|Speed reached signal threshhold|rpm|100 1200 1200 |(% style="width:71px" %)P7-18|(% style="width:274px" %)DO_1 function selection |During running|Power on again|128~~142|136-V-NEAR speed near |-|136 1201 1201 1202 -= ** 6.4Torque mode** =1198 += **Torque mode** = 1203 1203 1204 1204 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current could achieve the control of the torque. Torque control refers to controlling the output torque of the motor through a torque reference. Torque reference could be given by internal command and analog voltage. 1205 1205 ... ... @@ -1206,14 +1206,14 @@ 1206 1206 **The torque control block diagram is as follows**: 1207 1207 1208 1208 (% style="text-align:center" %) 1209 -[[image:1649921574316-568.png|| class="img-thumbnail" height="230" width="700"]]1205 +[[image:1649921574316-568.png||height="230" width="700" class="img-thumbnail"]] 1210 1210 1211 -== ** 6.4.1Torque Reference Input Setting** ==1207 +== **Torque Reference Input Setting** == 1212 1212 1213 1213 (% style="text-align:center" %) 1214 -[[image:1649921579089-736.png|| class="img-thumbnail" height="379" width="600"]]1210 +[[image:1649921579089-736.png||height="379" width="600" class="img-thumbnail"]] 1215 1215 1216 -== ** 6.4.2Torque reference source** ==1212 +== **Torque reference source** == 1217 1217 1218 1218 In the torque control mode, there are two sources of torque reference, which could be set through [P1-7].** Relevant function codes:** 1219 1219 ... ... @@ -1263,7 +1263,7 @@ 1263 1263 0 1264 1264 ))) 1265 1265 1266 -== ** 6.4.3Digital setting** ==1262 +== **Digital setting** == 1267 1267 1268 1268 The source of the torque reference is an internal command, which is set through function code [P1-8]. **Relevant function codes:** 1269 1269 ... ... @@ -1305,7 +1305,7 @@ 1305 1305 0 1306 1306 ))) 1307 1307 1308 -== ** 6.4.4Analog voltage setting** ==1304 +== **Analog voltage setting** == 1309 1309 1310 1310 (% class="table-bordered" %) 1311 1311 |=((( ... ... @@ -1570,7 +1570,7 @@ 1570 1570 **Operation flowchart of setting torque reference by analog voltage:** 1571 1571 1572 1572 (% style="text-align:center" %) 1573 -[[image:1649921591828-681.png|| class="img-thumbnail" height="1010" width="250"]]1569 +[[image:1649921591828-681.png||height="1010" width="250" class="img-thumbnail"]] 1574 1574 1575 1575 flowchart of setting torque reference by analog voltage 1576 1576 ... ... @@ -1581,7 +1581,7 @@ 1581 1581 **Dead zone:** input voltage range of the analog channel when the sampling voltage is zero 1582 1582 1583 1583 (% style="text-align:center" %) 1584 -[[image:1649921598803-241.png|| class="img-thumbnail" height="369" width="600"]]1580 +[[image:1649921598803-241.png||height="369" width="600" class="img-thumbnail"]] 1585 1585 1586 1586 Analog signal waveform after-offset 1587 1587 ... ... @@ -1589,7 +1589,7 @@ 1589 1589 1590 1590 **Relevant function codes:** 1591 1591 1592 -== ** 6.4.5Torque Reference Filter** ==1588 +== **Torque Reference Filter** == 1593 1593 1594 1594 In the torque mode, the servo drive could realize low-pass filtering of the torque command, which reduces the vibration of the servo motor. 1595 1595 ... ... @@ -1596,13 +1596,13 @@ 1596 1596 **Relevant function codes:** 1597 1597 1598 1598 (% style="text-align:center" %) 1599 -[[image:1649921605656-975.png|| class="img-thumbnail" height="369" width="600"]]1595 +[[image:1649921605656-975.png||height="369" width="600" class="img-thumbnail"]] 1600 1600 1601 1601 Diagram of torque reference first-order filter 1602 1602 1603 1603 If the setting value of the filter time constant is too large, the responsiveness would be reduced. Please set it while confirming the responsiveness. 1604 1604 1605 -== ** 6.4.6Torque Reference Limit** ==1601 +== **Torque Reference Limit** == 1606 1606 1607 1607 When the absolute value of the torque reference input from the host controller or output by the speed regulator is larger than the absolute value of the torque reference limit, the actual torque reference of the servo drive is restricted to the torque reference limit. Otherwise, the torque reference input from the host controller or output by the speed regulator is used. 1608 1608 ... ... @@ -1609,11 +1609,11 @@ 1609 1609 Only one torque reference limit is valid at a moment. Both positive and negative torque limits does not exceed the maximum torques of the servo drive and motor and ±300.0% of the rated torque. 1610 1610 1611 1611 (% style="text-align:center" %) 1612 -[[image:1649921617358-189.png|| class="img-thumbnail" height="358" width="700"]]1608 +[[image:1649921617358-189.png||height="358" width="700" class="img-thumbnail"]] 1613 1613 1614 1614 Torque setting and limit 1615 1615 1616 -== ** 6.4.7Torque Limit Source** ==1612 +== **Torque Limit Source** == 1617 1617 1618 1618 (% class="table-bordered" %) 1619 1619 |=((( ... ... @@ -1718,7 +1718,7 @@ 1718 1718 3000 1719 1719 ))) 1720 1720 1721 -== ** 6.4.8Torque Limit DO Signal** ==1717 +== **Torque Limit DO Signal** == 1722 1722 1723 1723 When the torque reference reaches the torque limit value, the driver outputs a torque limit signal (138-T-LIMIT torque limit) to the host controller and determines the DO terminal logic. 1724 1724 ... ... @@ -1732,7 +1732,7 @@ 1732 1732 )))|=**Range**|=**Function**|=**Unit**|=**Default** 1733 1733 |(% style="width:89px" %)P6-26|(% style="width:220px" %)DO_1 function selection |During running|Power on again|128~~142|138-T-LIMIT torque limit|-|138 1734 1734 1735 -== ** 6.4.9Torque related DO output function** ==1731 +== **Torque related DO output function** == 1736 1736 1737 1737 The feedback value of the torque reference is compared with different thresholds, and the DO signal could be output to the host controller to use. Assign the DO terminals of the servo drive to different functions and set the valid logic. 1738 1738 ... ... @@ -1739,7 +1739,7 @@ 1739 1739 Torch reach signal 1740 1740 1741 1741 (% style="text-align:center" %) 1742 -[[image:1649921631575-959.png|| class="img-thumbnail" height="414" width="600"]]1738 +[[image:1649921631575-959.png||height="414" width="600" class="img-thumbnail"]] 1743 1743 1744 1744 Torch reach signal waveform 1745 1745