Changes for page 06 Control Mode
Last modified by Mora Zhou on 2023/12/21 15:45
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,6 @@ 1 -= ** 6.1Basic Setting** =1 += **Basic Setting** = 2 2 3 -== ** 6.1.1Check Before Running** ==3 +== **Check Before Running** == 4 4 5 5 (% class="table-bordered" %) 6 6 |=**NO.**|=**Activity** ... ... @@ -30,7 +30,7 @@ 30 30 |2|The servo drive or external regenerative resistor is not placed on flammable objects. 31 31 |3|Installation and shaft and mechanical connection are reliable. 32 32 33 -== ** 6.1.2Power Supply Connection** ==33 +== **Power Supply Connection** == 34 34 35 35 **Connect the power supply of the control circuit (L1C, L2C) and main circuit:** 36 36 ... ... @@ -42,7 +42,7 @@ 42 42 43 43 **Turn off the S-ON signal** 44 44 45 -== ** 6.1.3Jogging** ==45 +== **Jogging** == 46 46 47 47 Jog operation could be realized in two ways, one is panel jog operation, and the jog operation could be realized through the buttons on the servo panel. the other is jog operation through the debug tool running on pc. 48 48 ... ... @@ -72,7 +72,7 @@ 72 72 73 73 Open We-con servo debugging tool, set the speed value of the jog in the "Set Speed" in the "Manual Operation" column, and then click the "Servo On" button on the interface. Click "Forward" or "Reverse" button to realize forward/reverse jogging. When the "servo off" button is clicked, the jog mode is exited. 74 74 75 -== ** 6.1.4Selection of Rotating Direction** ==75 +== **Selection of Rotating Direction** == 76 76 77 77 Set [P0-4] to change the motor rotating direction without changing the polarity of the input reference. 78 78 ... ... @@ -104,7 +104,7 @@ 104 104 105 105 Limit switches (positive over travel POT and reverse over travel NOT), POT has the same direction set in [P0-4](Rotating direction selection). 106 106 107 -== ** 6.1.5Braking resistor** ==107 +== **Braking resistor** == 108 108 109 109 When the servo motor is in the generator state when decelerating or stopping, the motor would transfer the energy back to the driver, which would increase the bus voltage. When the bus voltage exceeds the braking point, the driver could use the braking resistor to consume the energy. The braking resistor could be built-in or external, but it couldnot be used at the same time. When the external braking resistor is connected, the jumper on the servo drive needs to be removed. 110 110 ... ... @@ -158,7 +158,7 @@ 158 158 159 159 which is:[[image:VD1 750W 驱动器制动电阻计算公式_html_506c1de75a99e6fa.gif||class="img-thumbnail"]] 160 160 161 -== ** 6.1.6Servo Running** ==161 +== **Servo Running** == 162 162 163 163 1. Turn on the S-ON signal 164 164 ... ... @@ -173,11 +173,11 @@ 173 173 1. Power-on time sequence 174 174 175 175 (% style="text-align:center" %) 176 -[[image:5.Basic Setting_html_f889a9585b78ace9.jpg|| class="img-thumbnail" height="371" width="700"]]176 +[[image:5.Basic Setting_html_f889a9585b78ace9.jpg||height="371" width="700" class="img-thumbnail"]] 177 177 178 178 Figure 6-1 Power-on time sequence 179 179 180 -== ** 6.1.7Servo Stop** ==180 +== **Servo Stop** == 181 181 182 182 Servo stop includes coast to stop and zero-speed stop based on the stop mode, and de energized state and position lock based on the stop state. 183 183 ... ... @@ -265,17 +265,15 @@ 265 265 266 266 11: INH, Position reference inhibited 267 267 268 -12: VSSEL, Damp control switch( not implemented yet)268 +12: VSSEL, Damp control switch(Not implemented yet) 269 269 270 -13: INSPD1, Internal speed command selection 1( not implemented yet)270 +13: INSPD1, Internal speed command selection 1(Not implemented yet) 271 271 272 -14: INSPD2, Internal speed command selection 2 272 +14: INSPD2, Internal speed command selection 2(Not implemented yet) 273 273 274 - (not implemented yet)274 +15: INSPD3, Internal speed command selection 3(Not implemented yet) 275 275 276 -15: INSPD3, Internal speed command selection 3(not implemented yet) 277 - 278 -16: J-SEL, Inertia ratio switch(not implemented yet) 276 +16: J-SEL, Inertia ratio switch(Not implemented yet) 279 279 )))|-|03-POT 280 280 |(% style="width:73px" %)P6-9|(% style="width:134px" %)DI_3 logic selection|(% style="width:114px" %)During running|(% style="width:85px" %)((( 281 281 Power-on ... ... @@ -284,9 +284,9 @@ 284 284 )))|(% style="width:69px" %)0~~1|(% style="width:490px" %)((( 285 285 DI port input logic validity function selection. 286 286 287 -0: Normal open input. Active when off ( switch closed).285 +0: Normal open input. Active when off (Switch closed). 288 288 289 -1: Normal closed input. Active when on ( switch open).287 +1: Normal closed input. Active when on (Switch open). 290 290 )))|-|0 291 291 |(% style="width:73px" %)P6-10|(% style="width:134px" %)DI_3 input source selection|(% style="width:114px" %)During running|(% style="width:85px" %)((( 292 292 Power-on ... ... @@ -359,7 +359,7 @@ 359 359 360 360 If the machine breaks down, the servo would perform fault shutdown operation. The current shutdown mode is fixed to free stop mode, and the motor shaft remains free. 361 361 362 -= ** 6.2Position mode** =360 += **Position mode** = 363 363 364 364 Position control mode is the most important and commonly used control mode of servo system. Position control refers to controlling the position of the motor through position commands, determining the target position of the motor based on the total number of position commands, and the frequency of the position command determines the rotation speed of the motor. The servo drive could achieve fast and accurate control of the position and speed of the machine. Therefore, the position control mode is mainly used in applications requiring positioning control, such as manipulators, chip mounters, engraving machines, CNC machine tools, etc. 365 365 ... ... @@ -366,16 +366,16 @@ 366 366 **The block diagram of position control is as follows:** 367 367 368 368 (% style="text-align:center" %) 369 -[[image:1649921243846-652.png|| class="img-thumbnail" height="272" width="800"]]367 +[[image:1649921243846-652.png||height="272" width="800" class="img-thumbnail"]] 370 370 371 371 Figure 6-2 Position control diagram 372 372 373 -== ** 6.2.1Position Reference Input Setting** ==371 +== **Position Reference Input Setting** == 374 374 375 375 The servo drive has 1 set of pulse input terminals for receiving position pulse input (through the CN2 terminal of the drive) 376 376 377 377 (% style="text-align:center" %) 378 -[[image:1649921251765-622.png|| class="img-thumbnail" height="525" width="600"]]376 +[[image:1649921251765-622.png||height="525" width="600" class="img-thumbnail"]] 379 379 380 380 The reference from the host controller could be differential output or open collector output. The maximum input frequency is shown in** the following table:** 381 381 ... ... @@ -387,12 +387,12 @@ 387 387 1. **Low-speed Pulse Input **Differential drive mode 388 388 389 389 (% style="text-align:center" %) 390 -[[image:1649921259462-732.png|| class="img-thumbnail" height="468" width="700"]]388 +[[image:1649921259462-732.png||height="468" width="700" class="img-thumbnail"]] 391 391 392 392 1. **OC mode** 393 393 394 394 (% style="text-align:center" %) 395 -[[image:1649921266972-816.png|| class="img-thumbnail" height="472" width="700"]]393 +[[image:1649921266972-816.png||height="472" width="700" class="img-thumbnail"]] 396 396 397 397 1. Position pulse selection 398 398 ... ... @@ -457,7 +457,7 @@ 457 457 Filtering time is necessary for the reference input pin to prevent external interference input to the driver and affect the control of the motor. The signal input and output waveforms with filtering enabled are shown in** the following figure:** 458 458 459 459 (% style="text-align:center" %) 460 -[[image:1649921315771-948.png|| class="img-thumbnail" height="328" width="800"]]458 +[[image:1649921315771-948.png||height="328" width="800" class="img-thumbnail"]] 461 461 462 462 Figure 6-3 Filtering signal waveform 463 463 ... ... @@ -490,7 +490,7 @@ 490 490 3: High (0.4) 491 491 )))|-|2 492 492 493 -== ** 6.2.2Electronic Gear Ratio** ==491 +== **Electronic Gear Ratio** == 494 494 495 495 **[Glossary]** 496 496 ... ... @@ -509,7 +509,7 @@ 509 509 The setting range of the electronic gear ratio should** **meet **the following conditions**: 510 510 511 511 (% style="text-align:center" %) 512 -[[image:1649921327785-423.png|| class="img-thumbnail" height="63" width="500"]]510 +[[image:1649921327785-423.png||height="63" width="500" class="img-thumbnail"]] 513 513 514 514 Otherwise, it would display [Er. 35] "Electronic gear ratio setting over limit" fault. 515 515 ... ... @@ -516,7 +516,7 @@ 516 516 **Electronic gear ratio setting Flowchart:** 517 517 518 518 (% style="text-align:center" %) 519 -[[image:1649921334117-284.png|| class="img-thumbnail" height="857" width="300"]]517 +[[image:1649921334117-284.png||height="857" width="300" class="img-thumbnail"]] 520 520 521 521 Figure 6-4 Electronic gear ratio setting flowchart 522 522 ... ... @@ -566,7 +566,7 @@ 566 566 It is valid when P0-16=0 567 567 )))|(% style="width:58px" %)-|(% style="width:51px" %)1 568 568 569 -== ** 6.2.3Position Reference Filter** ==567 +== **Position Reference Filter** == 570 570 571 571 This function filters the position references (encoder unit) divided or multiplied by the electronic gear ratio. It involves the first-order filter and average filter. 572 572 ... ... @@ -581,7 +581,7 @@ 581 581 The filter time is not as long as possible. The longer the filter time, the longer the delay time and the longer the response time. 582 582 583 583 (% style="text-align:center" %) 584 -[[image:1649921346187-572.png|| class="img-thumbnail" height="305" width="700"]]582 +[[image:1649921346187-572.png||height="305" width="700" class="img-thumbnail"]] 585 585 586 586 Figure 6-5 position reference filter 587 587 ... ... @@ -601,18 +601,18 @@ 601 601 |P4-2|Position command first-order low-pass filter|At stop|Immediate|0~~128|For pulse command input filtering|ms|0 602 602 |P4-3|Position command average filtering time constant|At stop|Immediate|0~~1000|For pulse command input filtering|ms|20 603 603 604 -== ** 6.2.4Position Deviation Clear** ==602 +== **Position Deviation Clear** == 605 605 606 606 Position deviation = Position reference – Position feedback (encoder unit) 607 607 608 608 The position deviation clear function refers to the function that the drive clears the deviation register in the position mode. The function of clearing position deviation could be realized through DI terminal. 609 609 610 -== ** 6.2.5Frequency-Division Output** ==608 +== **Frequency-Division Output** == 611 611 612 612 The encoder pulse is output as a quadrature differential signal after divided by the internal circuit of the servo driver. The phase and frequency of the frequency-divided signal could be set by parameters. The source of frequency division output could be set by function code, and the setting of different sources makes the function of frequency division output more widely used. 613 613 614 614 (% style="text-align:center" %) 615 -[[image:1649921354912-251.png|| class="img-thumbnail" height="385" width="500"]]613 +[[image:1649921354912-251.png||height="385" width="500" class="img-thumbnail"]] 616 616 617 617 Figure 6-6 diagram of frequency division output wiring 618 618 ... ... @@ -670,7 +670,7 @@ 670 670 1-Z Active when pulse is low 671 671 )))|-|0 672 672 673 -== ** 6.2.6Position-relevant DO output function** ==671 +== **Position-relevant DO output function** == 674 674 675 675 The feedback value of the position command is compared with different thresholds, and the DO signal could be output for the host controller to use. 676 676 ... ... @@ -683,7 +683,7 @@ 683 683 **The functional schematic diagram is as follows:** 684 684 685 685 (% style="text-align:center" %) 686 -[[image:1649921403464-270.png|| class="img-thumbnail" height="393" width="600"]]684 +[[image:1649921403464-270.png||height="393" width="600" class="img-thumbnail"]] 687 687 688 688 Figure 6-7 positioning completed diagram 689 689 ... ... @@ -690,7 +690,7 @@ 690 690 When using the positioning completion / proximity function, you could also set positioning completion, positioning proximity conditions, window, and hold time. The diagram of window filtering time is shown in** the figure below:** 691 691 692 692 (% style="text-align:center" %) 693 -[[image:1649921410286-328.png|| class="img-thumbnail" height="429" width="750"]]691 +[[image:1649921410286-328.png||height="429" width="750" class="img-thumbnail"]] 694 694 695 695 Figure 6-8 diagram of positioning completion signal output with window filtering time 696 696 ... ... @@ -783,18 +783,18 @@ 783 783 784 784 ---- 785 785 786 -== ** 6.2.7Servo position control case** ==784 +== **Servo position control case** == 787 787 788 788 **Introduction** 789 789 790 790 This case uses three commonly used PLC positioning instructions to implement the servo position control mode actions. 791 791 792 -== ** 6.2.8I/O wiring** ==790 +== **I/O wiring** == 793 793 794 794 (% style="text-align:center" %) 795 -[[image:1649921424832-617.png|| class="img-thumbnail" height="473" width="700"]]793 +[[image:1649921424832-617.png||height="473" width="700" class="img-thumbnail"]] 796 796 797 -== ** 6.2.9Servo parameter setting** ==795 +== **Servo parameter setting** == 798 798 799 799 **Step 1**:Power on the servo, set the M key on the panel of the servo drive, set the value of function code P0-1 to 1, and 1 is the position control mode; 800 800 ... ... @@ -856,7 +856,9 @@ 856 856 857 857 **Step 4**:Set the value of the function code P13-1 to choose whether VDI1 is valid at high or low levels. 858 858 857 +{{info}} 859 859 **✎Note:** the value of function code P6-02 should be set to 1. Only in this way can the motor rotate. 859 +{{/info}} 860 860 861 861 (% class="table-bordered" %) 862 862 |=(% style="width: 74px;" %)**Code**|=(% style="width: 142px;" %)**Function**|=(% style="width: 116px;" %)**Effective time**|=(% style="width: 76px;" %)**Default**|=(% style="width: 70px;" %)**Range**|=(% style="width: 548px;" %)**Description**|=**Unit** ... ... @@ -894,12 +894,12 @@ 894 894 16: J-SEL, Inertia ratio switch(not implemented yet) 895 895 )))| 896 896 897 -== ** 6.2.10PLC Project** ==897 +== **PLC Project** == 898 898 899 899 (% style="text-align:center" %) 900 -[[image:1649921441261-362.png|| class="img-thumbnail" height="256" width="800"]]900 +[[image:1649921441261-362.png||height="256" width="800" class="img-thumbnail"]] 901 901 902 -== ** 6.2.11Explanation** ==902 +== **Explanation** == 903 903 904 904 The program uses M0,M1,M2 as the switch button of three modes of actions. 905 905 ... ... @@ -909,7 +909,7 @@ 909 909 910 910 When M2 is turned on, the Y0 servo motor moves to the absolute position of 2000 at the speed of 4000 pulses, and Y3 represents the direction of the motor. 911 911 912 -= ** 6.3Speed mode** =912 += **Speed mode** = 913 913 914 914 Speed control refers to control the speed of the machine through the speed reference. Through internal digital setting, analog voltage or communication, the servo drive could achieve fast and precise control of the mechanical speed. Therefore, the speed control mode is mainly used to control the rotation speed, or use the host controller to realize the position control, and the host controller output is used as the speed reference, such as analog engraving and milling machine. 915 915 ... ... @@ -916,7 +916,7 @@ 916 916 The speed control block diagram is **as follows:** 917 917 918 918 (% style="text-align:center" %) 919 -[[image:1649921468579-521.png|| class="img-thumbnail" height="255" width="800"]]919 +[[image:1649921468579-521.png||height="255" width="800" class="img-thumbnail"]] 920 920 921 921 Figure1 speed control diagram 922 922 ... ... @@ -938,10 +938,10 @@ 938 938 3: Torque control mode 939 939 )))|-|1 940 940 941 -== ** 6.3.1Speed Reference Input Setting** ==941 +== **Speed Reference Input Setting** == 942 942 943 943 (% style="text-align:center" %) 944 -[[image:1649921476490-234.png|| class="img-thumbnail" height="392" width="600"]]944 +[[image:1649921476490-234.png||height="392" width="600" class="img-thumbnail"]] 945 945 946 946 Speed Reference Source 947 947 ... ... @@ -982,7 +982,7 @@ 982 982 **Analog voltage setting method**: 983 983 984 984 (% style="text-align:center" %) 985 -[[image:1649921484882-112.png|| class="img-thumbnail" height="855" width="250"]]985 +[[image:1649921484882-112.png||height="855" width="250" class="img-thumbnail"]] 986 986 987 987 Figure 2 flowchart of setting speed reference by analog voltage 988 988 ... ... @@ -999,7 +999,7 @@ 999 999 **Dead zone: **Input voltage range of the analog channel when the sampling voltage is zero. 1000 1000 1001 1001 (% style="text-align:center" %) 1002 -[[image:1649921492713-261.png|| class="img-thumbnail" height="415" width="700"]]1002 +[[image:1649921492713-261.png||height="415" width="700" class="img-thumbnail"]] 1003 1003 1004 1004 Figure 3 Analog signal after-offset 1005 1005 ... ... @@ -1029,7 +1029,7 @@ 1029 1029 |(% style="width:61px" %)P5-9|(% style="width:194px" %)Analog 10V for speed value|At stop|Immediate|1000~~4500|Set the speed value corresponding to analog 10V|rpm|3000 1030 1030 |(% style="width:61px" %)P5-10|(% style="width:194px" %)Analog 10V for torque value|At stop|Immediate|0~~3000|Set the torque value corresponding to analog 10V|0.1%|1000 1031 1031 1032 -== ** 6.3.2Acceleration and deceleration time setting** ==1032 +== **Acceleration and deceleration time setting** == 1033 1033 1034 1034 The acceleration/deceleration time setting refers to convert a speed command with a relatively high acceleration into a speed command with a relatively gentle acceleration, so as to achieve the purpose of controlling the acceleration. 1035 1035 ... ... @@ -1036,7 +1036,7 @@ 1036 1036 In the speed control mode, excessive acceleration of the speed command would cause the vibration. At this time, increase the acceleration or deceleration time to achieve a smooth speed change of the motor and avoid mechanical damage caused by the above situation. 1037 1037 1038 1038 (% style="text-align:center" %) 1039 -[[image:1649921501713-829.png|| class="img-thumbnail" height="387" width="600"]]1039 +[[image:1649921501713-829.png||height="387" width="600" class="img-thumbnail"]] 1040 1040 1041 1041 Figure 4 diagram of acc. and dec. time 1042 1042 ... ... @@ -1055,7 +1055,7 @@ 1055 1055 |(% style="width:65px" %)P1-3|(% style="width:136px" %)Acc. time|During running|Immediate|0~~65535|Acceleration time from 0 to 1000rpm in speed command mode|ms|50 1056 1056 |(% style="width:65px" %)P1-4|(% style="width:136px" %)Dec. time|During running|Immediate|0~~65535|Deceleration time from 1000 to 0 rpm in speed command mode|ms|50 1057 1057 1058 -== ** 6.3.3Speed Reference Limitation** ==1058 +== **Speed Reference Limitation** == 1059 1059 1060 1060 The servo drive could display the value of the speed reference in speed mode. 1061 1061 ... ... @@ -1083,7 +1083,7 @@ 1083 1083 |(% style="width:74px" %)P1-12|(% style="width:210px" %)Forward speed threshold|During running|Immediate|0~~3000|Set forward speed limit|rpm|3000 1084 1084 |(% style="width:74px" %)P1-13|(% style="width:210px" %)Reverse speed threshold|During running|Immediate|0~~3000|Set reverse speed limit|rpm|3000 1085 1085 1086 -== ** 6.3.4Zero Speed Clamp Function** ==1086 +== **Zero Speed Clamp Function** == 1087 1087 1088 1088 Zero speed clamping function means that when the zero speed clamping signal (ZCLAMP) is valid, when the absolute value of the speed reference is lower than the zero speed clamping speed value, the servo motor is in the locked state. At this time, the servo drive is in position lock mode, and the speed reference is invalid. 1089 1089 ... ... @@ -1107,11 +1107,11 @@ 1107 1107 |(% style="width:69px" %)P1-22|(% style="width:176px" %)Speed threshold for zero|During running|Immediate|0~~1000|Set the speed threshold of the zero speed clamp function|rpm|20 1108 1108 1109 1109 (% style="text-align:center" %) 1110 -[[image:1649921513950-217.png|| class="img-thumbnail" height="388" width="600"]]1110 +[[image:1649921513950-217.png||height="388" width="600" class="img-thumbnail"]] 1111 1111 1112 1112 Figure 5 Zero Speed Clamp waveform 1113 1113 1114 -== ** 6.3.5Speed-relevant DO Signals** ==1114 +== **Speed-relevant DO Signals** == 1115 1115 1116 1116 Different DO signals are output to the host controller based on comparison between the speed feedback after filter and different thresholds. We need to assign different function for the DO terminals and set the valid logic. 1117 1117 ... ... @@ -1120,7 +1120,7 @@ 1120 1120 After the speed reference is filtered, the absolute value of the actual speed of the servo motor reaches [P5-16] (rotation detection speed threshold), then the motor is considered to be rotating. At this time, the DO terminal of the servo drive could output a rotation detection signal. Conversely, when the actual rotation speed of the servo motor does not reach [P5-16], it is considered that the motor is not rotating. 1121 1121 1122 1122 (% style="text-align:center" %) 1123 -[[image:1649921523559-858.png|| class="img-thumbnail" height="236" width="600"]]1123 +[[image:1649921523559-858.png||height="236" width="600" class="img-thumbnail"]] 1124 1124 1125 1125 Figure 6-14 motor rotation DO signal 1126 1126 ... ... @@ -1140,7 +1140,7 @@ 1140 1140 The absolute value of the actual speed of the servo motor is less than a certain threshold [P5-19], it is considered that the servo motor stops rotating, and the DO terminal of the servo drive could output a zero speed signal at this time. Conversely, if the absolute value of the actual speed of the servo motor is not less than this value, it is considered that the motor is not at a standstill and the zero speed signal is invalid. 1141 1141 1142 1142 (% style="text-align:center" %) 1143 -[[image:1649921531202-104.png|| class="img-thumbnail" height="373" width="600"]]1143 +[[image:1649921531202-104.png||height="373" width="600" class="img-thumbnail"]] 1144 1144 1145 1145 Figure 6 zero speed signal waveform 1146 1146 ... ... @@ -1160,7 +1160,7 @@ 1160 1160 In speed control, when the absolute value of the difference between the motor speed after filter and the speed reference satisfies the setting of [P5-17], the actual motor speed is considered to reach the speed reference. At this moment, the servo drive outputs the speed consistent signal. When the absolute value of the difference between the motor speed after filter and the speed reference exceeds the setting of [P5-17], the speed consistent signal is inactive. 1161 1161 1162 1162 (% style="text-align:center" %) 1163 -[[image:1649921539069-575.png|| class="img-thumbnail" height="366" width="600"]]1163 +[[image:1649921539069-575.png||height="366" width="600" class="img-thumbnail"]] 1164 1164 1165 1165 Figure 7 Speed Consistent Waveform 1166 1166 ... ... @@ -1180,7 +1180,7 @@ 1180 1180 When the absolute value of the motor speed after filter exceeds the setting of[P4-16],the motor speed is considered to reach the desired value. At this moment, the servo drive outputs the speed reached signal. When the absolute value of the motor speed after filter is smaller than or equal to the setting of[P4-16], the speed reached signal is inactive. 1181 1181 1182 1182 (% style="text-align:center" %) 1183 -[[image:1649921547861-635.png|| class="img-thumbnail" height="323" width="600"]]1183 +[[image:1649921547861-635.png||height="323" width="600" class="img-thumbnail"]] 1184 1184 1185 1185 Figure 6-17 Speed reached signal waveform 1186 1186 ... ... @@ -1195,7 +1195,7 @@ 1195 1195 |(% style="width:71px" %)P5-18|(% style="width:274px" %)Speed approaching signal threshold|During running|Immediate|10~~6000|Speed reached signal threshhold|rpm|100 1196 1196 |(% style="width:71px" %)P7-18|(% style="width:274px" %)DO_1 function selection |During running|Power on again|128~~142|136-V-NEAR speed near |-|136 1197 1197 1198 -= ** 6.4Torque mode** =1198 += **Torque mode** = 1199 1199 1200 1200 The current of the servo motor has a linear relationship with the torque. Therefore, the control of the current could achieve the control of the torque. Torque control refers to controlling the output torque of the motor through a torque reference. Torque reference could be given by internal command and analog voltage. 1201 1201 ... ... @@ -1202,14 +1202,14 @@ 1202 1202 **The torque control block diagram is as follows**: 1203 1203 1204 1204 (% style="text-align:center" %) 1205 -[[image:1649921574316-568.png|| class="img-thumbnail" height="230" width="700"]]1205 +[[image:1649921574316-568.png||height="230" width="700" class="img-thumbnail"]] 1206 1206 1207 -== ** 6.4.1Torque Reference Input Setting** ==1207 +== **Torque Reference Input Setting** == 1208 1208 1209 1209 (% style="text-align:center" %) 1210 -[[image:1649921579089-736.png|| class="img-thumbnail" height="379" width="600"]]1210 +[[image:1649921579089-736.png||height="379" width="600" class="img-thumbnail"]] 1211 1211 1212 -== ** 6.4.2Torque reference source** ==1212 +== **Torque reference source** == 1213 1213 1214 1214 In the torque control mode, there are two sources of torque reference, which could be set through [P1-7].** Relevant function codes:** 1215 1215 ... ... @@ -1259,7 +1259,7 @@ 1259 1259 0 1260 1260 ))) 1261 1261 1262 -== ** 6.4.3Digital setting** ==1262 +== **Digital setting** == 1263 1263 1264 1264 The source of the torque reference is an internal command, which is set through function code [P1-8]. **Relevant function codes:** 1265 1265 ... ... @@ -1301,7 +1301,7 @@ 1301 1301 0 1302 1302 ))) 1303 1303 1304 -== ** 6.4.4Analog voltage setting** ==1304 +== **Analog voltage setting** == 1305 1305 1306 1306 (% class="table-bordered" %) 1307 1307 |=((( ... ... @@ -1566,7 +1566,7 @@ 1566 1566 **Operation flowchart of setting torque reference by analog voltage:** 1567 1567 1568 1568 (% style="text-align:center" %) 1569 -[[image:1649921591828-681.png|| class="img-thumbnail" height="1010" width="250"]]1569 +[[image:1649921591828-681.png||height="1010" width="250" class="img-thumbnail"]] 1570 1570 1571 1571 flowchart of setting torque reference by analog voltage 1572 1572 ... ... @@ -1577,7 +1577,7 @@ 1577 1577 **Dead zone:** input voltage range of the analog channel when the sampling voltage is zero 1578 1578 1579 1579 (% style="text-align:center" %) 1580 -[[image:1649921598803-241.png|| class="img-thumbnail" height="369" width="600"]]1580 +[[image:1649921598803-241.png||height="369" width="600" class="img-thumbnail"]] 1581 1581 1582 1582 Analog signal waveform after-offset 1583 1583 ... ... @@ -1585,7 +1585,7 @@ 1585 1585 1586 1586 **Relevant function codes:** 1587 1587 1588 -== ** 6.4.5Torque Reference Filter** ==1588 +== **Torque Reference Filter** == 1589 1589 1590 1590 In the torque mode, the servo drive could realize low-pass filtering of the torque command, which reduces the vibration of the servo motor. 1591 1591 ... ... @@ -1592,13 +1592,13 @@ 1592 1592 **Relevant function codes:** 1593 1593 1594 1594 (% style="text-align:center" %) 1595 -[[image:1649921605656-975.png|| class="img-thumbnail" height="369" width="600"]]1595 +[[image:1649921605656-975.png||height="369" width="600" class="img-thumbnail"]] 1596 1596 1597 1597 Diagram of torque reference first-order filter 1598 1598 1599 1599 If the setting value of the filter time constant is too large, the responsiveness would be reduced. Please set it while confirming the responsiveness. 1600 1600 1601 -== ** 6.4.6Torque Reference Limit** ==1601 +== **Torque Reference Limit** == 1602 1602 1603 1603 When the absolute value of the torque reference input from the host controller or output by the speed regulator is larger than the absolute value of the torque reference limit, the actual torque reference of the servo drive is restricted to the torque reference limit. Otherwise, the torque reference input from the host controller or output by the speed regulator is used. 1604 1604 ... ... @@ -1605,11 +1605,11 @@ 1605 1605 Only one torque reference limit is valid at a moment. Both positive and negative torque limits does not exceed the maximum torques of the servo drive and motor and ±300.0% of the rated torque. 1606 1606 1607 1607 (% style="text-align:center" %) 1608 -[[image:1649921617358-189.png|| class="img-thumbnail" height="358" width="700"]]1608 +[[image:1649921617358-189.png||height="358" width="700" class="img-thumbnail"]] 1609 1609 1610 1610 Torque setting and limit 1611 1611 1612 -== ** 6.4.7Torque Limit Source** ==1612 +== **Torque Limit Source** == 1613 1613 1614 1614 (% class="table-bordered" %) 1615 1615 |=((( ... ... @@ -1714,7 +1714,7 @@ 1714 1714 3000 1715 1715 ))) 1716 1716 1717 -== ** 6.4.8Torque Limit DO Signal** ==1717 +== **Torque Limit DO Signal** == 1718 1718 1719 1719 When the torque reference reaches the torque limit value, the driver outputs a torque limit signal (138-T-LIMIT torque limit) to the host controller and determines the DO terminal logic. 1720 1720 ... ... @@ -1728,7 +1728,7 @@ 1728 1728 )))|=**Range**|=**Function**|=**Unit**|=**Default** 1729 1729 |(% style="width:89px" %)P6-26|(% style="width:220px" %)DO_1 function selection |During running|Power on again|128~~142|138-T-LIMIT torque limit|-|138 1730 1730 1731 -== ** 6.4.9Torque related DO output function** ==1731 +== **Torque related DO output function** == 1732 1732 1733 1733 The feedback value of the torque reference is compared with different thresholds, and the DO signal could be output to the host controller to use. Assign the DO terminals of the servo drive to different functions and set the valid logic. 1734 1734 ... ... @@ -1735,7 +1735,7 @@ 1735 1735 Torch reach signal 1736 1736 1737 1737 (% style="text-align:center" %) 1738 -[[image:1649921631575-959.png|| class="img-thumbnail" height="414" width="600"]]1738 +[[image:1649921631575-959.png||height="414" width="600" class="img-thumbnail"]] 1739 1739 1740 1740 Torch reach signal waveform 1741 1741