Wiki source code of 07 Adjustments

Version 20.1 by Karen on 2023/05/15 14:34

Show last authors
1 = **Overview** =
2
3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4
5 (% style="text-align:center" %)
6 (((
7 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 )))
10
11 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
12
13 (% class="box infomessage" %)
14 (((
15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 )))
17
18 (% class="table-bordered" style="margin-right:auto" %)
19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 |(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
25
26 Table 7-1 Description of gain adjustment process
27
28 = **Inertia recognition** =
29
30 Load inertia ratio P03-01 refers to:
31
32 (% style="text-align:center" %)
33 [[image:image-20220611152902-1.png||class="img-thumbnail"]]
34
35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36
37 (% class="warning" %)|(((
38 (% style="text-align:center" %)
39 [[image:image-20220611152918-2.png]]
40 )))
41 |(((
42 **Before performing online load inertia recognition, the following conditions should be met:**
43
44 * The maximum speed of the motor should be greater than 300rpm;
45 * The actual load inertia ratio is between 0.00 and 100.00;
46 * The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 * The backlash of the load transmission mechanism is within a certain range;
48
49 **The motor's runable stroke should meet two requirements:**
50
51 * There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 * Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 * Meet the requirement of inertia recognition turns P03-05.
54 * Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 * During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
56 )))
57
58 The related function codes are shown in the table below.
59
60 (% class="table-bordered" %)
61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
62 **Setting method**
63 )))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
64 **Effective time**
65 )))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
67 Operation setting
68 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
69 Effective immediately
70 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
72 Inertia recognition turns
73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 Shutdown setting
75 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
76 Effective immediately
77 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
79 Inertia recognition maximum speed
80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 Shutdown setting
82 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
83 Effective immediately
84 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
85 Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86
87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
88 )))|(% style="text-align:center; vertical-align:middle" %)rpm
89 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
90 Parameter recognition rotation direction
91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 Shutdown setting
93 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
94 Effective immediately
95 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
96 0: Forward and reverse reciprocating rotation
97
98 1: Forward one-way rotation
99
100 2: Reverse one-way rotation
101 )))|(% style="text-align:center; vertical-align:middle" %)-
102
103 Table 7-2 Related parameters of gain adjustment
104
105 = **Gain adjustment** =
106
107 In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.
108
109 Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.
110
111 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
112
113 == Automatic gain adjustment ==
114
115 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
116
117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118
119 (% class="table-bordered" style="margin-right:auto" %)
120 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 |(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122
123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124
125 (% class="table-bordered" %)
126 |=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 |=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 |=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 |=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
130
131 Table 7-3 Experience reference of rigidity grade
132
133 When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.
134
135 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
136
137 * Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 * Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 * Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
144
145 (% class="table-bordered" %)
146 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
147 |(((
148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149
150 ✎For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".
151 )))
152
153 (% class="table-bordered" %)
154 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
155 **Setting method**
156 )))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
157 **Effective time**
158 )))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 |=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
160 Operation setting
161 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
162 Effective immediately
163 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
167 )))|(% style="text-align:center; vertical-align:middle" %)-
168
169 Table 7-4 Details of self-adjusting mode selection parameters
170
171 == Manual gain adjustment ==
172
173 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
174
175 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
176
177 (% style="text-align:center" %)
178 (((
179 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 )))
182
183 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
184
185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186
187 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.
188
189 (% class="table-bordered" %)
190 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
198
199 **Speed loop gain**
200
201 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
202
203 (% class="table-bordered" %)
204 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
205 **Setting method**
206 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
207 **Effective time**
208 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
210 Operation setting
211 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
212 Effective immediately
213 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
215 Operation setting
216 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
217 Effective immediately
218 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
219
220 Table 7-5 Speed loop gain parameters
221
222 (% style="text-align:center" %)
223 (((
224 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 )))
227
228 **Speed loop integral time constant**
229
230 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
231
232 (% class="table-bordered" %)
233 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
234 **Setting method**
235 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
236 **Effective time**
237 )))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
239 1st speed loop integral time constant
240 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
241 Operation setting
242 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
243 Effective immediately
244 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 0.1ms
246 )))
247 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
248 2nd speed loop integral time constant
249 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
250 Operation setting
251 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
252 Effective immediately
253 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 0.1ms
255 )))
256
257 Table 7-6 Speed loop integral time constant parameters
258
259 (% style="text-align:center" %)
260 (((
261 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 )))
264
265 **Position loop gain**
266
267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268
269 (% class="table-bordered" %)
270 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
271 **Setting method**
272 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
273 **Effective time**
274 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
276 Operation setting
277 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
278 Effective immediately
279 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
281 Operation setting
282 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
283 Effective immediately
284 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
285
286 Table 7-7 Position loop gain parameters
287
288 (% style="text-align:center" %)
289 (((
290 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 )))
293
294 **Torque instruction filter time**
295
296 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
297
298 (% class="table-bordered" %)
299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
300 **Setting method**
301 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
302 **Effective time**
303 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
305 Operation setting
306 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
307 Effective immediately
308 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309
310 Table 7-8 Details of torque filter time constant parameters
311
312 == **Feedforward gain** ==
313
314 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
315
316 Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
317
318 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
319
320 (% class="table-bordered" %)
321 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
323 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
324
325 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
326 )))
327 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
328
329 Table 7-9 Speed feedforward parameters
330
331 (% style="text-align:center" %)
332 (((
333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
335 )))
336
337
338 (% class="table-bordered" %)
339 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
342
343 Table 7-10 Torque feedforward parameters
344
345 == **Model Tracking Control Function** ==
346
347 Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
348
349 (% style="text-align:center" %)
350 (((
351 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
352 [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]]
353 )))
354
355 The usage method and conditions of model tracking control:
356
357 ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
358
359 2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load).
360
361 3. Set P2-20=1 to enable the function of model tracking control.
362
363 4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
364
365 5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
366
367 **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
368
369 (% class="table-bordered" %)
370 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
371 **Setting method**
372 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
373 **Effective time**
374 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
375 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
376 Effective immediately
377 )))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
378 |P2-21|Model tracking control gain|Shutdown setting|(((
379 Effective immediately
380 )))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
381 |P2-22|Model tracking control gain compensation|Shutdown setting|(((
382 Effective immediately
383 )))|1000|500 to 2000|0.10%
384
385 (% class="table-bordered" %)
386 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
387 **Setting method**
388 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
389 **Effective time**
390 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
391 |P2-23|Model tracking control forward rotation bias|(((
392 Operation setting
393 )))|(((
394 Effective immediately
395 )))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
396 |P2-24|Model tracking control reverses rotation bias|(((
397 Operation setting
398 )))|(((
399 Effective immediately
400 )))|1000|0 to 10000|0.10%
401 |P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
402 Effective immediately
403 )))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
404
405 Please refer to the following for an example of the procedure of adjusting servo gain.
406
407 |**Step**|**Content**
408 |1|Please try to set the correct load inertia ratio parameter P3-1.
409 |2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
410 |3|Turn on the model tracking function, set P2-20 to 1.
411 |4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
412 |5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
413 |6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
414
415 == **Gain switching** ==
416
417 Gain switching function:
418
419 ●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
420
421 ●Switch to a higher gain in the motor stationary state to shorten the positioning time;
422
423 ●Switch to a higher gain in the motor running state to get better command tracking performance;
424
425 ●Switch different gain settings by external signals depending on the load connected.
426
427 (1) Gain switching parameter setting
428
429 ①When P02-07=0
430
431 Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
432
433 (% style="text-align:center" %)
434 [[image:20230515-8.png]]
435
436 ② When P02-07=1
437
438 The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
439
440 (% style="text-align:center" %)
441 [[image:20230515-9.png]]
442
443 Figure 7-9 Flow chart of gain switching when P02-07=1
444
445 |(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
446 |(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
447 |(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
448 |(% style="width:72px" %)(((
449
450
451
452
453
454
455 2
456 )))|(% style="width:146px" %)(((
457
458
459
460
461
462
463 Large torque command
464 )))|[[image:image-20230515140641-1.png]]
465 |(% style="width:72px" %)(((
466
467
468
469
470
471
472
473 3
474 )))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
475 |(% style="width:72px" %)(((
476
477
478
479
480
481
482 4
483 )))|(% style="width:146px" %)(((
484
485
486
487
488
489
490 Large speed command
491 )))|[[image:image-20230515140641-3.png]]
492
493 |(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
494 |(% style="width:74px" %)(((
495
496
497
498
499
500 5
501 )))|(% style="width:176px" %)(((
502
503
504
505
506
507 Fast actual speed
508 )))|(((
509
510
511 [[image:image-20230515140641-4.png]]
512 )))
513 |(% style="width:74px" %)(((
514
515
516
517
518
519
520
521 6
522 )))|(% style="width:176px" %)(((
523
524
525
526
527
528
529
530 Speed command change rate is large
531 )))|[[image:image-20230515140641-5.png]]
532 |(% style="width:74px" %)(((
533
534
535
536
537
538
539 7
540
541
542 )))|(% style="width:176px" %)(((
543
544
545
546
547
548
549 Large position deviation
550 )))|[[image:image-20230515140641-6.png]]
551 |(% style="width:74px" %)(((
552
553
554
555
556
557 8
558 )))|(% style="width:176px" %)(((
559
560
561
562
563
564 Position command
565 )))|[[image:image-20230515140641-7.png]]
566
567 |(% style="width:73px" %)(((
568
569
570
571
572
573
574 9
575 )))|(% style="width:154px" %)(((
576
577
578
579
580
581
582 Positioning completed
583 )))|[[image:image-20230515140641-8.png]]
584 |(% style="width:73px" %)(((
585
586
587 10
588
589
590 )))|(% style="width:154px" %)(((
591
592
593 Position command + actual speed
594 )))|(((
595
596
597 Refer to the chart below
598 )))
599
600 (% style="text-align:center" %)
601 [[image:20230515-10.png]]
602
603 Figure 7-10 P02-08=10 Position command + actual speed gain description
604
605 (2) Description of related parameters
606
607 |(% rowspan="2" style="width:68px" %)
608 **P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
609 |(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
610 |(% colspan="8" %)(((
611 Set the switching mode of the second gain.
612
613 |**Setting value**|**Function**
614 |0|(((
615 The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
616
617 DI logic invalid: PI control;
618
619 DI logic valid: PI control.
620 )))
621 |1|The first gain and the second gain are switched by the setting value of P02-08.
622 )))
623
624 |(% rowspan="2" %)
625 **P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
626 |Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
627 |(% colspan="8" %)(((
628 Set the conditions for gain switching.
629
630 |Setting value|Gain switching conditions|Details
631 |0|The default is the first gain|Fixed use of the first gain
632 |1|Switch by DI port|(((
633 Use DI function 10 (GAIN-SEL, gain switching);
634
635 DI logic is invalid: the first gain (P02-01~~P02-03);
636
637 DI logic is valid: the second gain (P02-04~~P02-06).
638 )))
639 |2|Large torque command|(((
640 In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
641
642 In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
643
644
645 )))
646 |3|Large actual torque|(((
647 In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
648
649 In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
650
651
652 )))
653 |4|Large speed command|(((
654 In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
655
656 In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
657
658
659 )))
660 |5|Large actual speed|(((
661 In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
662
663 In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
664
665
666 )))
667 |(((
668
669
670 6
671 )))|(((
672
673
674 Large rate of change in speed command
675 )))|(((
676 In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
677
678 In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
679
680
681 )))
682 |(((
683
684
685 7
686 )))|(((
687
688
689 Large position deviation
690 )))|(((
691 In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
692
693 In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
694 )))
695 |8|Position command|(((
696 In the previous first gain, if the position command is not 0, switch to the second gain;
697
698 In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
699 )))
700 |(((
701
702
703 9
704 )))|(((
705
706
707 Positioning complete
708 )))|(((
709 In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
710
711
712 )))
713 |(((
714
715
716 10
717 )))|(((
718
719
720 Position command + actual speed
721 )))|(((
722 In the previous first gain, if the position command is not 0, the second gain is switched;
723
724 In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
725
726
727 )))
728
729
730 )))
731
732 |(% rowspan="2" %)
733 **P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
734 |Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
735 |(% colspan="8" %)(((
736 The duration of the switching condition required for the second gain to switch back to the first gain.
737
738 [[image:image-20230515140953-9.png]]
739
740 **✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
741 )))
742
743 |(% rowspan="2" %)
744 **P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
745 |Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
746 |(% colspan="8" %)(((
747 Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
748
749 [[image:image-20230515140953-10.png]]
750 )))
751
752 |(% rowspan="2" %)
753 **P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
754 |Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
755 |(% colspan="8" %)(((
756 Set the hysteresis to meet the gain switching condition.
757
758 [[image:image-20230515140953-11.png]]
759 )))
760
761 |(% rowspan="2" %)
762 **P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
763 |Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
764 |(% colspan="8" %)(((
765 Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
766
767 [[image:image-20230515140953-12.png]]
768
769 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
770 )))
771
772
773
774 == **Model Tracking Control Function** ==
775
776 Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
777
778 (% style="text-align:center" %)
779 [[image:20230515-7.png]]
780
781 The usage method and conditions of model tracking control:
782
783 ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
784
785 2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
786
787 3. Set P2-20=1 to enable the function of model tracking control.
788
789 4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
790
791 5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
792
793 **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
794
795 |**Function code**|**Name**|(((
796 **Setting**
797
798 **method**
799 )))|(((
800 **Effective**
801
802 **time**
803 )))|**Default**|**Range**|**Definition**|**Unit**
804 |P2-20|Model tracking control function|Shutdown setting|(((
805 Effective
806
807 immediately
808 )))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
809 |P2-21|Model tracking control gain|Shutdown setting|(((
810 Effective
811
812 immediately
813 )))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
814 |P2-22|Model tracking control gain compensation|Shutdown setting|(((
815 Effective
816
817 immediately
818 )))|1000|500 to 2000|0.10%
819
820 |**Function code**|**Name**|(((
821 **Setting**
822
823 **method**
824 )))|(((
825 **Effective**
826
827 **time**
828 )))|**Default**|**Range**|**Definition**|**Unit**
829 |P2-23|Model tracking control forward rotation bias|(((
830 Operation
831
832 setting
833 )))|(((
834 Effective
835
836 immediately
837 )))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
838 |P2-24|Model tracking control reverses rotation bias|(((
839 Operation
840
841 setting
842 )))|(((
843 Effective
844
845 immediately
846 )))|1000|0 to 10000|0.10%
847 |P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
848 Effective
849
850 immediately
851 )))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
852
853 Please refer to the following for an example of the procedure of adjusting servo gain.
854
855 |**Step**|**Content**
856 |1|Please try to set the correct load inertia ratio parameter P3-1.
857 |2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
858 |3|Turn on the model tracking function, set P2-20 to 1.
859 |4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
860 |5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
861 |6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
862
863 == **Gain switching** ==
864
865 Gain switching function:
866
867 ●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
868
869 ●Switch to a higher gain in the motor stationary state to shorten the positioning time;
870
871 ●Switch to a higher gain in the motor running state to get better command tracking performance;
872
873 ●Switch different gain settings by external signals depending on the load connected.
874
875 (1) Gain switching parameter setting
876
877 ①When P02-07=0
878
879 Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
880
881 (% style="text-align:center" %)
882 [[image:20230515-8.png]]
883
884 ② When P02-07=1
885
886 The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
887
888 (% style="text-align:center" %)
889 [[image:20230515-9.png]]
890
891 Figure 7-9 Flow chart of gain switching when P02-07=1
892
893 |(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
894 |(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
895 |(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
896 |(% style="width:72px" %)(((
897
898
899
900
901
902
903 2
904 )))|(% style="width:146px" %)(((
905
906
907
908
909
910
911 Large torque command
912 )))|[[image:image-20230515140641-1.png]]
913 |(% style="width:72px" %)(((
914
915
916
917
918
919
920
921 3
922 )))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
923 |(% style="width:72px" %)(((
924
925
926
927
928
929
930 4
931 )))|(% style="width:146px" %)(((
932
933
934
935
936
937
938 Large speed command
939 )))|[[image:image-20230515140641-3.png]]
940
941 |(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
942 |(% style="width:74px" %)(((
943
944
945
946
947
948 5
949 )))|(% style="width:176px" %)(((
950
951
952
953
954
955 Fast actual speed
956 )))|(((
957
958
959 [[image:image-20230515140641-4.png]]
960 )))
961 |(% style="width:74px" %)(((
962
963
964
965
966
967
968
969 6
970 )))|(% style="width:176px" %)(((
971
972
973
974
975
976
977
978 Speed command change rate is large
979 )))|[[image:image-20230515140641-5.png]]
980 |(% style="width:74px" %)(((
981
982
983
984
985
986
987 7
988
989
990 )))|(% style="width:176px" %)(((
991
992
993
994
995
996
997 Large position deviation
998 )))|[[image:image-20230515140641-6.png]]
999 |(% style="width:74px" %)(((
1000
1001
1002
1003
1004
1005 8
1006 )))|(% style="width:176px" %)(((
1007
1008
1009
1010
1011
1012 Position command
1013 )))|[[image:image-20230515140641-7.png]]
1014
1015 |(% style="width:73px" %)(((
1016
1017
1018
1019
1020
1021
1022 9
1023 )))|(% style="width:154px" %)(((
1024
1025
1026
1027
1028
1029
1030 Positioning completed
1031 )))|[[image:image-20230515140641-8.png]]
1032 |(% style="width:73px" %)(((
1033
1034
1035 10
1036
1037
1038 )))|(% style="width:154px" %)(((
1039
1040
1041 Position command + actual speed
1042 )))|(((
1043
1044
1045 Refer to the chart below
1046 )))
1047
1048 (% style="text-align:center" %)
1049 [[image:20230515-10.png]]
1050
1051 Figure 7-10 P02-08=10 Position command + actual speed gain description
1052
1053 (2) Description of related parameters
1054
1055 |(% rowspan="2" style="width:68px" %)
1056 **P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1057 |(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
1058 |(% colspan="8" %)(((
1059 Set the switching mode of the second gain.
1060
1061 |**Setting value**|**Function**
1062 |0|(((
1063 The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
1064
1065 DI logic invalid: PI control;
1066
1067 DI logic valid: PI control.
1068 )))
1069 |1|The first gain and the second gain are switched by the setting value of P02-08.
1070 )))
1071
1072 |(% rowspan="2" %)
1073 **P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1074 |Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
1075 |(% colspan="8" %)(((
1076 Set the conditions for gain switching.
1077
1078 |Setting value|Gain switching conditions|Details
1079 |0|The default is the first gain|Fixed use of the first gain
1080 |1|Switch by DI port|(((
1081 Use DI function 10 (GAIN-SEL, gain switching);
1082
1083 DI logic is invalid: the first gain (P02-01~~P02-03);
1084
1085 DI logic is valid: the second gain (P02-04~~P02-06).
1086 )))
1087 |2|Large torque command|(((
1088 In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
1089
1090 In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
1091
1092
1093 )))
1094 |3|Large actual torque|(((
1095 In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
1096
1097 In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1098
1099
1100 )))
1101 |4|Large speed command|(((
1102 In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
1103
1104 In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1105
1106
1107 )))
1108 |5|Large actual speed|(((
1109 In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
1110
1111 In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1112
1113
1114 )))
1115 |(((
1116
1117
1118 6
1119 )))|(((
1120
1121
1122 Large rate of change in speed command
1123 )))|(((
1124 In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
1125
1126 In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1127
1128
1129 )))
1130 |(((
1131
1132
1133 7
1134 )))|(((
1135
1136
1137 Large position deviation
1138 )))|(((
1139 In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
1140
1141 In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1142 )))
1143 |8|Position command|(((
1144 In the previous first gain, if the position command is not 0, switch to the second gain;
1145
1146 In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
1147 )))
1148 |(((
1149
1150
1151 9
1152 )))|(((
1153
1154
1155 Positioning complete
1156 )))|(((
1157 In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
1158
1159
1160 )))
1161 |(((
1162
1163
1164 10
1165 )))|(((
1166
1167
1168 Position command + actual speed
1169 )))|(((
1170 In the previous first gain, if the position command is not 0, the second gain is switched;
1171
1172 In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
1173
1174
1175 )))
1176
1177
1178 )))
1179
1180 |(% rowspan="2" %)
1181 **P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1182 |Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
1183 |(% colspan="8" %)(((
1184 The duration of the switching condition required for the second gain to switch back to the first gain.
1185
1186 [[image:image-20230515140953-9.png]]
1187
1188 **✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
1189 )))
1190
1191 |(% rowspan="2" %)
1192 **P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1193 |Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
1194 |(% colspan="8" %)(((
1195 Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
1196
1197 [[image:image-20230515140953-10.png]]
1198 )))
1199
1200 |(% rowspan="2" %)
1201 **P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1202 |Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
1203 |(% colspan="8" %)(((
1204 Set the hysteresis to meet the gain switching condition.
1205
1206 [[image:image-20230515140953-11.png]]
1207 )))
1208
1209 |(% rowspan="2" %)
1210 **P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1211 |Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
1212 |(% colspan="8" %)(((
1213 Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
1214
1215 [[image:image-20230515140953-12.png]]
1216
1217 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
1218 )))
1219
1220
1221
1222 = **Mechanical resonance suppression** =
1223
1224 == Mechanical resonance suppression methods ==
1225
1226 When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
1227
1228 **Torque instruction filter**
1229
1230 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
1231
1232 (% style="text-align:center" %)
1233 [[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
1234
1235 **Notch filter**
1236
1237 The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
1238
1239 == Notch filter ==
1240
1241 The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
1242
1243 **Width grade of notch filter**
1244
1245 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
1246
1247 (% style="text-align:center" %)
1248 [[image:image-20220706155836-6.png||class="img-thumbnail"]]
1249
1250 In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
1251
1252 **Depth grade of notch filter**
1253
1254 The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
1255
1256 When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
1257
1258 (% style="text-align:center" %)
1259 (((
1260 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1261 [[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
1262 )))
1263
1264
1265 (% style="text-align:center" %)
1266 (((
1267 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1268 [[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
1269 )))
1270
1271
1272 (% class="table-bordered" %)
1273 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
1274 **Setting method**
1275 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
1276 **Effective time**
1277 )))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
1278 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1279 Operation setting
1280 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1281 Effective immediately
1282 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1283 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1284 Operation setting
1285 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1286 Effective immediately
1287 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1288 1. 0: all truncated
1289 1. 100: all passed
1290 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1291 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1292 Operation setting
1293 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1294 Effective immediately
1295 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1296 1. 0: 0.5 times the bandwidth
1297 1. 4: 1 times the bandwidth
1298 1. 8: 2 times the bandwidth
1299 1. 12: 4 times the bandwidth
1300 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1301 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1302 Operation setting
1303 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1304 Effective immediately
1305 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1306 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1307 Operation setting
1308 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1309 Effective immediately
1310 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1311 1. 0: all truncated
1312 1. 100: all passed
1313 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1314 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1315 Operation setting
1316 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1317 Effective immediately
1318 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1319 1. 0: 0.5 times the bandwidth
1320 1. 4: 1 times the bandwidth
1321 1. 8: 2 times the bandwidth
1322 1. 12: 4 times the bandwidth
1323 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1324
1325 Table 7-11 Notch filter function code parameters