Wiki source code of 07 Adjustments

Version 36.3 by Karen on 2023/05/15 16:59

Show last authors
1 = **Overview** =
2
3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4
5 (% style="text-align:center" %)
6 (((
7 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 )))
10
11 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
12
13 (% class="box infomessage" %)
14 (((
15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 )))
17
18 (% class="table-bordered" style="margin-right:auto" %)
19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 |(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 |(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
25
26 Table 7-1 Description of gain adjustment process
27
28 = **Inertia recognition** =
29
30 Load inertia ratio P03-01 refers to:
31
32 (% style="text-align:center" %)
33 [[image:image-20220611152902-1.png||class="img-thumbnail"]]
34
35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36
37 (% class="warning" %)|(((
38 (% style="text-align:center" %)
39 [[image:image-20220611152918-2.png]]
40 )))
41 |(((
42 **Before performing online load inertia recognition, the following conditions should be met:**
43
44 * The maximum speed of the motor should be greater than 300rpm;
45 * The actual load inertia ratio is between 0.00 and 100.00;
46 * The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 * The backlash of the load transmission mechanism is within a certain range;
48
49 **The motor's runable stroke should meet two requirements:**
50
51 * There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 * Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 * Meet the requirement of inertia recognition turns P03-05.
54 * Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 * During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
56 )))
57
58 The related function codes are shown in the table below.
59
60 (% class="table-bordered" %)
61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
62 **Setting method**
63 )))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
64 **Effective time**
65 )))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
67 Operation setting
68 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
69 Effective immediately
70 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
72 Inertia recognition turns
73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 Shutdown setting
75 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
76 Effective immediately
77 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
79 Inertia recognition maximum speed
80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 Shutdown setting
82 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
83 Effective immediately
84 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
85 Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86
87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
88 )))|(% style="text-align:center; vertical-align:middle" %)rpm
89 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
90 Parameter recognition rotation direction
91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 Shutdown setting
93 )))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
94 Effective immediately
95 )))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
96 0: Forward and reverse reciprocating rotation
97
98 1: Forward one-way rotation
99
100 2: Reverse one-way rotation
101 )))|(% style="text-align:center; vertical-align:middle" %)-
102
103 Table 7-2 Related parameters of gain adjustment
104
105 = **Gain adjustment** =
106
107 In order to optimize the responsiveness of the servo drive, the servo gain set in the servo drive needs to be adjusted. Servo gain needs to set multiple parameter combinations, which will affect each other. Therefore, the adjustment of servo gain must consider the relationship between each parameter.
108
109 Under normal circumstances, high-rigidity machinery can improve the response performance by increasing the servo gain. But for machines with lower rigidity, when the servo gain is increased, vibration may occur, and then affects the increase in gain. Therefore, selecting appropriate servo gain parameters can achieve higher response and stable performance.
110
111 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
112
113 == Automatic gain adjustment ==
114
115 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
116
117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118
119 (% class="table-bordered" style="margin-right:auto" %)
120 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 |(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122
123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124
125 (% class="table-bordered" %)
126 |=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 |=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 |=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 |=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
130
131 Table 7-3 Experience reference of rigidity grade
132
133 When the function code P03-03 is set to 0, the gain parameters are stored in the first gain by modifying the rigidity grade.
134
135 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
136
137 * Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 * Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 * Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
144
145 (% class="table-bordered" %)
146 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
147 |(((
148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149
150 ✎For the detailed operation of the host computer debugging software, please refer to "Wecon Servo Debugging Platform User Manual".
151 )))
152
153 (% class="table-bordered" %)
154 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
155 **Setting method**
156 )))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
157 **Effective time**
158 )))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 |=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
160 Operation setting
161 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
162 Effective immediately
163 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
167 )))|(% style="text-align:center; vertical-align:middle" %)-
168
169 Table 7-4 Details of self-adjusting mode selection parameters
170
171 == Manual gain adjustment ==
172
173 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
174
175 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
176
177 (% style="text-align:center" %)
178 (((
179 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 )))
182
183 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
184
185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186
187 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.
188
189 (% class="table-bordered" %)
190 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 |=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
198
199 **Speed loop gain**
200
201 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
202
203 (% class="table-bordered" %)
204 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
205 **Setting method**
206 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
207 **Effective time**
208 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
210 Operation setting
211 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
212 Effective immediately
213 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
215 Operation setting
216 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
217 Effective immediately
218 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
219
220 Table 7-5 Speed loop gain parameters
221
222 (% style="text-align:center" %)
223 (((
224 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 )))
227
228 **Speed loop integral time constant**
229
230 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
231
232 (% class="table-bordered" %)
233 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
234 **Setting method**
235 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
236 **Effective time**
237 )))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
239 1st speed loop integral time constant
240 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
241 Operation setting
242 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
243 Effective immediately
244 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 0.1ms
246 )))
247 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
248 2nd speed loop integral time constant
249 )))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
250 Operation setting
251 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
252 Effective immediately
253 )))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 0.1ms
255 )))
256
257 Table 7-6 Speed loop integral time constant parameters
258
259 (% style="text-align:center" %)
260 (((
261 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 )))
264
265 **Position loop gain**
266
267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268
269 (% class="table-bordered" %)
270 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
271 **Setting method**
272 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
273 **Effective time**
274 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
276 Operation setting
277 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
278 Effective immediately
279 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
281 Operation setting
282 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
283 Effective immediately
284 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
285
286 Table 7-7 Position loop gain parameters
287
288 (% style="text-align:center" %)
289 (((
290 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 )))
293
294 **Torque instruction filter time**
295
296 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
297
298 (% class="table-bordered" %)
299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
300 **Setting method**
301 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
302 **Effective time**
303 )))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
305 Operation setting
306 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
307 Effective immediately
308 )))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309
310 Table 7-8 Details of torque filter time constant parameters
311
312 == **Feedforward gain** ==
313
314 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
315
316 Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
317
318 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
319
320 (% class="table-bordered" %)
321 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
323 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
324
325 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
326 )))
327 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
328
329 Table 7-9 Speed feedforward parameters
330
331 (% style="text-align:center" %)
332 (((
333 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
335 )))
336
337
338 (% class="table-bordered" %)
339 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 |=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
342
343 Table 7-10 Torque feedforward parameters
344
345 == **Model Tracking Control Function** ==
346
347 Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
348
349 (% style="text-align:center" %)
350 (((
351 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
352 [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]]
353 )))
354
355 The usage method and conditions of model tracking control:
356
357 ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
358
359 2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load).
360
361 3. Set P2-20=1 to enable the function of model tracking control.
362
363 4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
364
365 5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
366
367 (% class="box infomessage" %)
368 (((
369 **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
370 )))
371
372 (% class="table-bordered" %)
373 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
374 **Setting method**
375 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
376 **Effective time**
377 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
378 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
379 Shutdown setting
380 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
381 Effective immediately
382 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.|
383 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
384 Shutdown setting
385 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
386 Effective immediately
387 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s
388 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
389 Shutdown setting
390 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
391 Effective immediately
392 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10%
393
394 (% class="table-bordered" %)
395 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
396 **Setting method**
397 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
398 **Effective time**
399 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
400 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|(((
401 Operation setting
402 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
403 Effective immediately
404 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
405 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|(((
406 Operation setting
407 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
408 Effective immediately
409 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="text-align:center; vertical-align:middle" %)0.10%
410 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
411 Effective immediately
412 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
413
414 Please refer to the following for an example of the procedure of adjusting servo gain.
415
416 (% style="width:1508px" %)
417 |=(% style="text-align:center; vertical-align:middle; width:80px" %)**Step**|=(% style="text-align:center; vertical-align:middle; width:1420px" %)**Content**
418 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)1|Please try to set the correct load inertia ratio parameter P3-1.
419 |=(% style="text-align:center; vertical-align:middle; width:80px" %)2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
420 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)3|Turn on the model tracking function, set P2-20 to 1.
421 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring.
422 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
423 |=(% style="text-align: center; vertical-align: middle; width: 80px;" %)6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
424
425 == **Gain switching** ==
426
427 **Gain switching function:**
428
429 ● Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
430
431 ● Switch to a higher gain in the motor stationary state to shorten the positioning time;
432
433 ● Switch to a higher gain in the motor running state to get better command tracking performance;
434
435 ● Switch different gain settings by external signals depending on the load connected.
436
437 **Gain switching parameter setting**
438
439 ①When P02-07=0
440
441 Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
442
443 (% style="text-align:center" %)
444 (((
445 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
446 [[image:20230515-8.png||height="378" id="20230515-8.png" width="363"]]
447 )))
448
449 ② When P02-07=1
450
451 The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
452
453 (% style="text-align:center" %)
454 (((
455 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
456 [[**Figure 7-9 Flow chart of gain switching when P02-07=1**>>image:20230515-9.png||id="20230515-9.png"]]
457 )))
458
459 |=(% style="text-align:center; vertical-align:middle; width:100px" %)**P02-08**|=(% style="text-align: center; vertical-align: middle; width: 238px" %)**Content**|=(% style="text-align: center; vertical-align: middle; width: 1108px" %)**Diagram**
460 |=(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle" %)Fixed use of the first gain|~-~-
461 |=(% style="text-align:center; vertical-align:middle" %)1|(% style="text-align:center; vertical-align:middle" %)Switching with DI|~-~-
462 |=(% style="text-align:center; vertical-align:middle" %)(((
463 2
464 )))|(% style="text-align:center; vertical-align:middle" %)(((
465 Large torque command
466 )))|(% style="vertical-align:middle; width:1108px" %) [[image:image-20230515140641-1.png]]
467 |=(% style="text-align:center; vertical-align:middle;width:74px" %)(((
468 3
469 )))|(% style="text-align:center; vertical-align:middle" %)Large actual torque|(% style="width:1108px" %)[[image:image-20230515140641-2.png]]
470 |=(% style="text-align:center; vertical-align:middle;width:74px" %)(((
471 4
472 )))|(% style="width:238px" %)(((
473 Large speed command
474 )))|(% style="width:1108px" %)[[image:image-20230515140641-3.png]]
475 |=(% style="text-align:center; vertical-align:middle;width:74px" %)(((
476 5
477 )))|(% style="width:238px" %)(((
478 Fast actual speed
479 )))|(((
480 [[image:image-20230515140641-4.png]]
481 )))
482 |=(% style="text-align:center; vertical-align:middle;width:74px" %)(((
483 6
484 )))|(% style="width:1108px" %)(((
485 Speed command change rate is large
486 )))|[[image:image-20230515140641-5.png]]
487 |=(% style="width:74px" %)(((
488 7
489 )))|(% style="width:238px" %)(((
490
491 Large position deviation
492 )))|[[image:image-20230515140641-6.png]]
493 |=(% style="width:74px" %)(((
494 8
495 )))|(% style="width:238px" %)(((
496 Position command
497 )))|[[image:image-20230515140641-7.png]]
498 |=(% style="width:74px" %)(((
499 9
500 )))|(% style="width:238px" %)(((
501 Positioning completed
502 )))|(% style="width:1108px" %)[[image:image-20230515140641-8.png]]
503 |=(% style="width:74px" %)(((
504 10
505 )))|(% style="width:238px" %)(((
506 Position command + actual speed
507 )))|(% style="width:1108px" %)(((
508 Refer to the chart below
509 )))
510
511 (% style="text-align:center" %)
512 [[image:20230515-10.png]]
513
514 Figure 7-10 P02-08=10 Position command + actual speed gain description
515
516 Description of related parameters
517
518 |(% rowspan="2" style="width:68px" %)
519 **P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
520 |(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
521 |(% colspan="8" %)(((
522 Set the switching mode of the second gain.
523
524 |**Setting value**|**Function**
525 |0|(((
526 The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
527
528 DI logic invalid: PI control;
529
530 DI logic valid: PI control.
531 )))
532 |1|The first gain and the second gain are switched by the setting value of P02-08.
533 )))
534
535 |(% rowspan="2" %)
536 **P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
537 |Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
538 |(% colspan="8" %)(((
539 Set the conditions for gain switching.
540
541 |Setting value|Gain switching conditions|Details
542 |0|The default is the first gain|Fixed use of the first gain
543 |1|Switch by DI port|(((
544 Use DI function 10 (GAIN-SEL, gain switching);
545
546 DI logic is invalid: the first gain (P02-01~~P02-03);
547
548 DI logic is valid: the second gain (P02-04~~P02-06).
549 )))
550 |2|Large torque command|(((
551 In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
552
553 In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
554
555
556 )))
557 |3|Large actual torque|(((
558 In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
559
560 In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
561
562
563 )))
564 |4|Large speed command|(((
565 In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
566
567 In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
568
569
570 )))
571 |5|Large actual speed|(((
572 In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
573
574 In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
575
576
577 )))
578 |(((
579
580
581 6
582 )))|(((
583
584
585 Large rate of change in speed command
586 )))|(((
587 In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
588
589 In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
590
591
592 )))
593 |(((
594
595
596 7
597 )))|(((
598
599
600 Large position deviation
601 )))|(((
602 In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
603
604 In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
605 )))
606 |8|Position command|(((
607 In the previous first gain, if the position command is not 0, switch to the second gain;
608
609 In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
610 )))
611 |(((
612
613
614 9
615 )))|(((
616
617
618 Positioning complete
619 )))|(((
620 In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
621
622
623 )))
624 |(((
625
626
627 10
628 )))|(((
629
630
631 Position command + actual speed
632 )))|(((
633 In the previous first gain, if the position command is not 0, the second gain is switched;
634
635 In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
636
637
638 )))
639
640
641 )))
642
643 |(% rowspan="2" %)
644 **P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
645 |Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
646 |(% colspan="8" %)(((
647 The duration of the switching condition required for the second gain to switch back to the first gain.
648
649 [[image:image-20230515140953-9.png]]
650
651 **✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
652 )))
653
654 |(% rowspan="2" %)
655 **P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
656 |Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
657 |(% colspan="8" %)(((
658 Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
659
660 [[image:image-20230515140953-10.png]]
661 )))
662
663 |(% rowspan="2" %)
664 **P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
665 |Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
666 |(% colspan="8" %)(((
667 Set the hysteresis to meet the gain switching condition.
668
669 [[image:image-20230515140953-11.png]]
670 )))
671
672 |(% rowspan="2" %)
673 **P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
674 |Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
675 |(% colspan="8" %)(((
676 Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
677
678 [[image:image-20230515140953-12.png]]
679
680 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
681 )))
682
683 == **Model Tracking Control Function** ==
684
685 Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
686
687 (% style="text-align:center" %)
688 [[image:20230515-7.png]]
689
690 The usage method and conditions of model tracking control:
691
692 ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
693
694 2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
695
696 3. Set P2-20=1 to enable the function of model tracking control.
697
698 4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
699
700 5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
701
702 **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
703
704 |**Function code**|**Name**|(((
705 **Setting**
706
707 **method**
708 )))|(((
709 **Effective**
710
711 **time**
712 )))|**Default**|**Range**|**Definition**|**Unit**
713 |P2-20|Model tracking control function|Shutdown setting|(((
714 Effective
715
716 immediately
717 )))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
718 |P2-21|Model tracking control gain|Shutdown setting|(((
719 Effective
720
721 immediately
722 )))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
723 |P2-22|Model tracking control gain compensation|Shutdown setting|(((
724 Effective
725
726 immediately
727 )))|1000|500 to 2000|0.10%
728
729 |**Function code**|**Name**|(((
730 **Setting**
731
732 **method**
733 )))|(((
734 **Effective**
735
736 **time**
737 )))|**Default**|**Range**|**Definition**|**Unit**
738 |P2-23|Model tracking control forward rotation bias|(((
739 Operation
740
741 setting
742 )))|(((
743 Effective
744
745 immediately
746 )))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
747 |P2-24|Model tracking control reverses rotation bias|(((
748 Operation
749
750 setting
751 )))|(((
752 Effective
753
754 immediately
755 )))|1000|0 to 10000|0.10%
756 |P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
757 Effective
758
759 immediately
760 )))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
761
762 Please refer to the following for an example of the procedure of adjusting servo gain.
763
764 |**Step**|**Content**
765 |1|Please try to set the correct load inertia ratio parameter P3-1.
766 |2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
767 |3|Turn on the model tracking function, set P2-20 to 1.
768 |4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
769 |5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
770 |6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
771
772 == **Gain switching** ==
773
774 Gain switching function:
775
776 ●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
777
778 ●Switch to a higher gain in the motor stationary state to shorten the positioning time;
779
780 ●Switch to a higher gain in the motor running state to get better command tracking performance;
781
782 ●Switch different gain settings by external signals depending on the load connected.
783
784 (1) Gain switching parameter setting
785
786 ①When P02-07=0
787
788 Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
789
790 (% style="text-align:center" %)
791 [[image:20230515-8.png]]
792
793 ② When P02-07=1
794
795 The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
796
797 (% style="text-align:center" %)
798 [[image:20230515-9.png]]
799
800 Figure 7-9 Flow chart of gain switching when P02-07=1
801
802 |(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
803 |(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
804 |(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
805 |(% style="width:72px" %)(((
806
807
808
809
810
811
812 2
813 )))|(% style="width:146px" %)(((
814
815
816
817
818
819
820 Large torque command
821 )))|[[image:image-20230515140641-1.png]]
822 |(% style="width:72px" %)(((
823
824
825
826
827
828
829
830 3
831 )))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
832 |(% style="width:72px" %)(((
833
834
835
836
837
838
839 4
840 )))|(% style="width:146px" %)(((
841
842
843
844
845
846
847 Large speed command
848 )))|[[image:image-20230515140641-3.png]]
849
850 |(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
851 |(% style="width:74px" %)(((
852
853
854
855
856
857 5
858 )))|(% style="width:176px" %)(((
859
860
861
862
863
864 Fast actual speed
865 )))|(((
866
867
868 [[image:image-20230515140641-4.png]]
869 )))
870 |(% style="width:74px" %)(((
871
872
873
874
875
876
877
878 6
879 )))|(% style="width:176px" %)(((
880
881
882
883
884
885
886
887 Speed command change rate is large
888 )))|[[image:image-20230515140641-5.png]]
889 |(% style="width:74px" %)(((
890
891
892
893
894
895
896 7
897
898
899 )))|(% style="width:176px" %)(((
900
901
902
903
904
905
906 Large position deviation
907 )))|[[image:image-20230515140641-6.png]]
908 |(% style="width:74px" %)(((
909
910
911
912
913
914 8
915 )))|(% style="width:176px" %)(((
916
917
918
919
920
921 Position command
922 )))|[[image:image-20230515140641-7.png]]
923
924 |(% style="width:73px" %)(((
925
926
927
928
929
930
931 9
932 )))|(% style="width:154px" %)(((
933
934
935
936
937
938
939 Positioning completed
940 )))|[[image:image-20230515140641-8.png]]
941 |(% style="width:73px" %)(((
942
943
944 10
945
946
947 )))|(% style="width:154px" %)(((
948
949
950 Position command + actual speed
951 )))|(((
952
953
954 Refer to the chart below
955 )))
956
957 (% style="text-align:center" %)
958 [[image:20230515-10.png]]
959
960 Figure 7-10 P02-08=10 Position command + actual speed gain description
961
962 (2) Description of related parameters
963
964 |(% rowspan="2" style="width:68px" %)
965 **P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
966 |(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
967 |(% colspan="8" %)(((
968 Set the switching mode of the second gain.
969
970 |**Setting value**|**Function**
971 |0|(((
972 The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
973
974 DI logic invalid: PI control;
975
976 DI logic valid: PI control.
977 )))
978 |1|The first gain and the second gain are switched by the setting value of P02-08.
979 )))
980
981 |(% rowspan="2" %)
982 **P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
983 |Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
984 |(% colspan="8" %)(((
985 Set the conditions for gain switching.
986
987 |Setting value|Gain switching conditions|Details
988 |0|The default is the first gain|Fixed use of the first gain
989 |1|Switch by DI port|(((
990 Use DI function 10 (GAIN-SEL, gain switching);
991
992 DI logic is invalid: the first gain (P02-01~~P02-03);
993
994 DI logic is valid: the second gain (P02-04~~P02-06).
995 )))
996 |2|Large torque command|(((
997 In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
998
999 In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
1000
1001
1002 )))
1003 |3|Large actual torque|(((
1004 In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
1005
1006 In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1007
1008
1009 )))
1010 |4|Large speed command|(((
1011 In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
1012
1013 In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1014
1015
1016 )))
1017 |5|Large actual speed|(((
1018 In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
1019
1020 In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1021
1022
1023 )))
1024 |(((
1025
1026
1027 6
1028 )))|(((
1029
1030
1031 Large rate of change in speed command
1032 )))|(((
1033 In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
1034
1035 In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1036
1037
1038 )))
1039 |(((
1040
1041
1042 7
1043 )))|(((
1044
1045
1046 Large position deviation
1047 )))|(((
1048 In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
1049
1050 In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1051 )))
1052 |8|Position command|(((
1053 In the previous first gain, if the position command is not 0, switch to the second gain;
1054
1055 In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
1056 )))
1057 |(((
1058
1059
1060 9
1061 )))|(((
1062
1063
1064 Positioning complete
1065 )))|(((
1066 In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
1067
1068
1069 )))
1070 |(((
1071
1072
1073 10
1074 )))|(((
1075
1076
1077 Position command + actual speed
1078 )))|(((
1079 In the previous first gain, if the position command is not 0, the second gain is switched;
1080
1081 In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
1082
1083
1084 )))
1085
1086
1087 )))
1088
1089 |(% rowspan="2" %)
1090 **P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1091 |Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
1092 |(% colspan="8" %)(((
1093 The duration of the switching condition required for the second gain to switch back to the first gain.
1094
1095 [[image:image-20230515140953-9.png]]
1096
1097 **✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
1098 )))
1099
1100 |(% rowspan="2" %)
1101 **P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1102 |Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
1103 |(% colspan="8" %)(((
1104 Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
1105
1106 [[image:image-20230515140953-10.png]]
1107 )))
1108
1109 |(% rowspan="2" %)
1110 **P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1111 |Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
1112 |(% colspan="8" %)(((
1113 Set the hysteresis to meet the gain switching condition.
1114
1115 [[image:image-20230515140953-11.png]]
1116 )))
1117
1118 |(% rowspan="2" %)
1119 **P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1120 |Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
1121 |(% colspan="8" %)(((
1122 Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
1123
1124 [[image:image-20230515140953-12.png]]
1125
1126 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
1127 )))
1128
1129 = **Mechanical resonance suppression** =
1130
1131 == Mechanical resonance suppression methods ==
1132
1133 When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
1134
1135 **Torque instruction filter**
1136
1137 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
1138
1139 (% style="text-align:center" %)
1140 [[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
1141
1142 **Notch filter**
1143
1144 The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
1145
1146 == Notch filter ==
1147
1148 The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
1149
1150 **Width grade of notch filter**
1151
1152 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
1153
1154 (% style="text-align:center" %)
1155 [[image:image-20220706155836-6.png||class="img-thumbnail"]]
1156
1157 In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
1158
1159 **Depth grade of notch filter**
1160
1161 The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
1162
1163 When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
1164
1165 (% style="text-align:center" %)
1166 (((
1167 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1168 [[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
1169 )))
1170
1171
1172 (% style="text-align:center" %)
1173 (((
1174 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1175 [[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
1176 )))
1177
1178
1179 (% class="table-bordered" %)
1180 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
1181 **Setting method**
1182 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
1183 **Effective time**
1184 )))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
1185 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1186 Operation setting
1187 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1188 Effective immediately
1189 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1190 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1191 Operation setting
1192 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1193 Effective immediately
1194 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1195 1. 0: all truncated
1196 1. 100: all passed
1197 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1198 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1199 Operation setting
1200 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1201 Effective immediately
1202 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1203 1. 0: 0.5 times the bandwidth
1204 1. 4: 1 times the bandwidth
1205 1. 8: 2 times the bandwidth
1206 1. 12: 4 times the bandwidth
1207 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1208 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1209 Operation setting
1210 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1211 Effective immediately
1212 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1213 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1214 Operation setting
1215 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1216 Effective immediately
1217 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1218 1. 0: all truncated
1219 1. 100: all passed
1220 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1221 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1222 Operation setting
1223 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
1224 Effective immediately
1225 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1226 1. 0: 0.5 times the bandwidth
1227 1. 4: 1 times the bandwidth
1228 1. 8: 2 times the bandwidth
1229 1. 12: 4 times the bandwidth
1230 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1231
1232 Table 7-11 Notch filter function code parameters
1233 ~)~)~)