Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
From version 10.1
edited by Joey
on 2022/06/10 15:34
on 2022/06/10 15:34
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20220611152630-1.png
- image-20220611152634-2.png
- image-20220611152902-1.png
- image-20220611152918-2.png
- image-20220706152743-1.jpeg
- image-20220706153140-2.jpeg
- image-20220706153656-3.jpeg
- image-20220706155307-4.jpeg
- image-20220706155820-5.jpeg
- image-20220706155836-6.png
- image-20220706155946-7.png
- image-20220706155952-8.png
- image-20220706160046-9.png
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Servo. 2\. UserManual.06VD2 SA SeriesServo Drives Manual (Full V1\.1).WebHome1 +Servo.Manual.02 VD2 SA Series.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Joey1 +XWiki.Stone - Content
-
... ... @@ -3,21 +3,25 @@ 3 3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1. 4 4 5 5 (% style="text-align:center" %) 6 -[[image:image-20220608174118-1.png]] 6 +((( 7 +(% class="wikigeneratedid" style="display:inline-block" %) 8 +[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 +))) 7 7 8 -Figure 7-1 Gain adjustment process 9 - 10 10 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered. 11 11 13 +(% class="box infomessage" %) 14 +((( 12 12 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below. 16 +))) 13 13 14 14 (% class="table-bordered" %) 15 -|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter** 16 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>> http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__17 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>> http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__18 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>> http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__19 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>> http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__20 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>> http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__19 +|=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ 22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__ 23 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__ 24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 21 21 22 22 Table 7-1 Description of gain adjustment process 23 23 ... ... @@ -25,52 +25,46 @@ 25 25 26 26 Load inertia ratio P03-01 refers to: 27 27 28 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_eea1e5e734146443.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_eea1e5e734146443.gif"]] 32 +(% style="text-align:center" %) 33 +[[image:image-20220611152902-1.png]] 29 29 30 30 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software. 31 31 32 32 |((( 33 33 (% style="text-align:center" %) 34 -[[image: http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]39 +[[image:image-20220611152918-2.png]] 35 35 ))) 36 36 |((( 37 37 **Before performing online load inertia recognition, the following conditions should be met:** 38 38 39 -The maximum speed of the motor should be greater than 300rpm; 44 +* The maximum speed of the motor should be greater than 300rpm; 45 +* The actual load inertia ratio is between 0.00 and 100.00; 46 +* The load torque is relatively stable, and the load cannot change drastically during the measurement process; 47 +* The backlash of the load transmission mechanism is within a certain range; 40 40 41 -The actual load inertia ratio is between 0.00 and 100.00; 42 - 43 -The load torque is relatively stable, and the load cannot change drastically during the measurement process; 44 - 45 -The backlash of the load transmission mechanism is within a certain range; 46 - 47 47 **The motor's runable stroke should meet two requirements:** 48 48 49 -There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 50 - 51 -Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 52 - 53 -Meet the requirement of inertia recognition turns P03-05. 54 - 55 -Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 56 - 57 -During the automatic load inertia recognition process, if vibration occurs, the load inertia identification should be stopped immediately. 51 +* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 52 +* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 53 +* Meet the requirement of inertia recognition turns P03-05. 54 +* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 55 +* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately. 58 58 ))) 59 59 60 60 The related function codes are shown in the table below. 61 61 62 62 (% class="table-bordered" %) 63 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 61 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)((( 64 64 **Setting method** 65 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 63 +)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)((( 66 66 **Effective time** 67 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 68 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 65 +)))|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 66 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 69 69 Operation setting 70 70 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 71 71 Effective immediately 72 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %) 200|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.0173 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 70 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01 71 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 74 74 Inertia recognition turns 75 75 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 76 76 Shutdown setting ... ... @@ -77,7 +77,7 @@ 77 77 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 78 78 Effective immediately 79 79 )))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle 80 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 78 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 81 81 Inertia recognition maximum speed 82 82 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 83 83 Shutdown setting ... ... @@ -88,7 +88,7 @@ 88 88 89 89 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value. 90 90 )))|(% style="text-align:center; vertical-align:middle" %)rpm 91 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 89 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 92 92 Parameter recognition rotation direction 93 93 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 94 94 Shutdown setting ... ... @@ -112,7 +112,7 @@ 112 112 113 113 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first. 114 114 115 -== **Automatic gain adjustment**==113 +== Automatic gain adjustment == 116 116 117 117 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability. 118 118 ... ... @@ -119,16 +119,16 @@ 119 119 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system. 120 120 121 121 (% class="table-bordered" %) 122 -|(% style="text-align:center; vertical-align:middle" %)[[image: http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]120 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 123 123 |(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 124 124 125 125 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 126 126 127 127 (% class="table-bordered" %) 128 -|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type** 129 -|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery 130 -|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts 131 -|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection 126 +|=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type** 127 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery 128 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts 129 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection 132 132 133 133 Table 7-3 Experience reference of rigidity grade 134 134 ... ... @@ -136,22 +136,16 @@ 136 136 137 137 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows: 138 138 139 -Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected; 137 +* Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected; 138 +* Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on"; 139 +* Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation; 140 +* Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured. 141 +* Step5 After the inertia recognition test is completed, click "Save Inertia Value"; 142 +* Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement. 143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 140 140 141 -Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on"; 142 - 143 -Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation; 144 - 145 -Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured. 146 - 147 -Step5 After the inertia recognition test is completed, click "Save Inertia Value"; 148 - 149 -Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement. 150 - 151 -Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 152 - 153 153 (% class="table-bordered" %) 154 -|(% style="text-align:center; vertical-align:middle" %)[[image: http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]146 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 155 155 |((( 156 156 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine! 157 157 ... ... @@ -159,26 +159,24 @@ 159 159 ))) 160 160 161 161 (% class="table-bordered" %) 162 -|(% style="text-align:center; vertical-align:middle; width: 121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)(((154 +|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 163 163 **Setting method** 164 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((156 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)((( 165 165 **Effective time** 166 -)))|(% style="text-align:center; vertical-align:middle; width: 110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:65px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:453px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**167 -|(% style="text-align:center; vertical-align:middle; width: 121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)(((158 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 159 +|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 168 168 Operation setting 169 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((161 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)((( 170 170 Effective immediately 171 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)0|(% style="text-align:center; vertical-align:middle; width:65px" %)0 to 2|(% style="width:453px" %)((( 172 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 173 - 174 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 175 - 176 -2: Online automatic parameter self-adjusting mode (Not implemented yet) 163 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)((( 164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 177 177 )))|(% style="text-align:center; vertical-align:middle" %)- 178 178 179 179 Table 7-4 Details of self-adjusting mode selection parameters 180 180 181 -== **Manual gain adjustment**==171 +== Manual gain adjustment == 182 182 183 183 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results. 184 184 ... ... @@ -185,10 +185,11 @@ 185 185 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below. 186 186 187 187 (% style="text-align:center" %) 188 -[[image:image-20220608174209-2.png]] 178 +((( 179 +(% class="wikigeneratedid" style="display:inline-block" %) 180 +[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]] 181 +))) 189 189 190 -Figure 7-2 Basic block diagram of servo loop gain 191 - 192 192 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability! 193 193 194 194 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted. ... ... @@ -196,111 +196,125 @@ 196 196 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below. 197 197 198 198 (% class="table-bordered" %) 199 -|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name** 200 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain 201 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain 202 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant 203 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain 204 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain 205 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant 206 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant 190 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name** 191 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain 192 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain 193 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant 194 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain 195 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain 196 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant 197 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant 207 207 208 -** (1)Speed loop gain**199 +**Speed loop gain** 209 209 210 210 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below. 211 211 212 212 (% class="table-bordered" %) 213 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:1 51px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)(((204 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 214 214 **Setting method** 215 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((206 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 216 216 **Effective time** 217 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**218 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:1 51px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((208 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 209 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 219 219 Operation setting 220 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((211 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 221 221 Effective immediately 222 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz223 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:1 51px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((213 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 214 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 224 224 Operation setting 225 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((216 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 226 226 Effective immediately 227 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz218 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 228 228 229 229 Table 7-5 Speed loop gain parameters 230 230 231 -**(2) Speed loop integral time constant** 222 +(% style="text-align:center" %) 223 +((( 224 +(% class="wikigeneratedid" style="display:inline-block" %) 225 +[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]] 226 +))) 232 232 228 +**Speed loop integral time constant** 229 + 233 233 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below. 234 234 235 235 (% class="table-bordered" %) 236 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((233 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 237 237 **Setting method** 238 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((235 +)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)((( 239 239 **Effective time** 240 -)))|(% style="text-align:center; vertical-align:middle; width:1 14px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**241 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)(((237 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit** 238 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 242 242 1st speed loop integral time constant 243 -)))|(% style="text-align:center; vertical-align:middle; width:1 32px" %)(((240 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 244 244 Operation setting 245 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((242 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 246 246 Effective immediately 247 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 248 -0.1 249 - 250 -ms 244 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 245 +0.1ms 251 251 ))) 252 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)(((247 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 253 253 2nd speed loop integral time constant 254 -)))|(% style="text-align:center; vertical-align:middle; width:1 32px" %)(((249 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 255 255 Operation setting 256 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((251 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 257 257 Effective immediately 258 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 259 -0.1 260 - 261 -ms 253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 254 +0.1ms 262 262 ))) 263 263 264 264 Table 7-6 Speed loop integral time constant parameters 265 265 266 -**(3) Position loop gain** 259 +(% style="text-align:center" %) 260 +((( 261 +(% class="wikigeneratedid" style="display:inline-block" %) 262 +[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]] 263 +))) 267 267 265 +**Position loop gain** 266 + 268 268 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. 269 269 270 270 (% class="table-bordered" %) 271 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 159px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)((( 272 272 **Setting method** 273 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((272 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)((( 274 274 **Effective time** 275 -)))|(% style="text-align:center; vertical-align:middle; width:1 20px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**276 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((274 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 277 277 Operation setting 278 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((277 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 279 279 Effective immediately 280 -)))|(% style="text-align:center; vertical-align:middle; width:1 20px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz281 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 282 282 Operation setting 283 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((282 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 284 284 Effective immediately 285 -)))|(% style="text-align:center; vertical-align:middle; width:1 20px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz284 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 286 286 287 287 Table 7-7 Position loop gain parameters 288 288 289 -**(4) Torque instruction filter time** 288 +(% style="text-align:center" %) 289 +((( 290 +(% class="wikigeneratedid" style="display:inline-block" %) 291 +[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]] 292 +))) 290 290 294 +**Torque instruction filter time** 295 + 291 291 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below. 292 292 293 293 (% class="table-bordered" %) 294 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:1 41px" %)(((299 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 295 295 **Setting method** 296 -)))|(% style="text-align:center; vertical-align:middle; width:1 80px" %)(((301 +)))|=(% style="text-align: center; vertical-align: middle; width: 133px;" %)((( 297 297 **Effective time** 298 -)))|(% style="text-align:center; vertical-align:middle; width:1 39px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**299 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:1 41px" %)(((303 +)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 304 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 300 300 Operation setting 301 -)))|(% style="text-align:center; vertical-align:middle; width:1 80px" %)(((306 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 302 302 Effective immediately 303 -)))|(% style="text-align:center; vertical-align:middle; width:1 39px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms308 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 304 304 305 305 Table 7-8 Details of torque filter time constant parameters 306 306 ... ... @@ -308,21 +308,25 @@ 308 308 309 309 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed. 310 310 311 -Speed feedforward parameters are shown in __ [[Table 7-9>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__.316 +Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__. 312 312 313 313 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration. 314 314 315 315 (% class="table-bordered" %) 316 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description** 317 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)((( 321 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description** 322 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)((( 318 318 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below. 319 319 320 320 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100 321 321 ))) 322 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant 327 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant 323 323 324 324 Table 7-9 Speed feedforward parameters 325 325 331 +[[image:image-20220706155307-4.jpeg]] 332 + 333 +Figure 7-6 Speed feedforward parameters effect illustration 334 + 326 326 (% class="table-bordered" %) 327 327 |(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description** 328 328 |(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point. ... ... @@ -341,11 +341,11 @@ 341 341 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula: 342 342 343 343 (% style="text-align:center" %) 344 -[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/40.png?rev=1.1]]353 +[[image:image-20220706155820-5.jpeg]] 345 345 346 346 **(2) Notch filter** 347 347 348 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>http://docs.we-con.com.cn/ wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_c84670518f0b6362.gif?rev=1.1]]__.357 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__. 349 349 350 350 == **Notch filter** == 351 351 ... ... @@ -356,25 +356,25 @@ 356 356 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch: 357 357 358 358 (% style="text-align:center" %) 359 -[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/41.png?rev=1.1]]368 +[[image:image-20220706155836-6.png]] 360 360 361 -In formula (7-1), [[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/42.png?rev=1.1]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/43.png?rev=1.1]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.370 +In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 362 362 363 363 **(2) Depth grade of notch filter** 364 364 365 365 The depth grade of notch filter represents the ratio relationship between input and output at center frequency. 366 366 367 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>http://docs.we-con.com.cn/ wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_10a8f8c1383fdf94.png?rev=1.1]]__.376 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__. 368 368 369 369 (% style="text-align:center" %) 370 370 [[image:image-20220608174259-3.png]] 371 371 372 -Figure 7- 3Notch characteristics, notch width, and notch depth381 +Figure 7-7 Notch characteristics, notch width, and notch depth 373 373 374 374 (% style="text-align:center" %) 375 -[[image: https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]384 +[[image:image-20220706160046-9.png]] 376 376 377 -Figure 7- 4Frequency characteristics of notch filter386 +Figure 7-8 Frequency characteristics of notch filter 378 378 379 379 (% class="table-bordered" %) 380 380 |(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)((( ... ... @@ -381,26 +381,26 @@ 381 381 **Setting method** 382 382 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 383 383 **Effective time** 384 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:334px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**393 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit** 385 385 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 386 386 Operation setting 387 387 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 388 388 Effective immediately 389 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)300|(% style="text-align:center; vertical-align:middle; width:97px" %)250 to 5000|(% style="width:334px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle" %)Hz398 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz 390 390 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 391 391 Operation setting 392 392 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 393 393 Effective immediately 394 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)100|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 100|(% style="width:334px" %)(((403 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 395 395 0: all truncated 396 396 397 397 100: all passed 398 -)))|(% style="text-align:center; vertical-align:middle" %)- 407 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 399 399 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 400 400 Operation setting 401 401 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 402 402 Effective immediately 403 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)4|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 12|(% style="width:334px" %)(((412 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 404 404 0: 0.5 times the bandwidth 405 405 406 406 4: 1 times the bandwidth ... ... @@ -408,26 +408,26 @@ 408 408 8: 2 times the bandwidth 409 409 410 410 12: 4 times the bandwidth 411 -)))|(% style="text-align:center; vertical-align:middle" %)- 420 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 412 412 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 413 413 Operation setting 414 414 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 415 415 Effective immediately 416 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)500|(% style="text-align:center; vertical-align:middle; width:97px" %)250 to 5000|(% style="width:334px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle" %)Hz425 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz 417 417 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 418 418 Operation setting 419 419 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 420 420 Effective immediately 421 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)100|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 100|(% style="width:334px" %)(((430 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 422 422 0: all truncated 423 423 424 424 100: all passed 425 -)))|(% style="text-align:center; vertical-align:middle" %)- 434 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 426 426 |(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 427 427 Operation setting 428 428 )))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 429 429 Effective immediately 430 -)))|(% style="text-align:center; vertical-align:middle; width:1 07px" %)4|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 12|(% style="width:334px" %)(((439 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 431 431 0: 0.5 times the bandwidth 432 432 433 433 4: 1 times the bandwidth ... ... @@ -435,6 +435,6 @@ 435 435 8: 2 times the bandwidth 436 436 437 437 12: 4 times the bandwidth 438 -)))|(% style="text-align:center; vertical-align:middle" %)- 447 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 439 439 440 440 Table 7-11 Notch filter function code parameters
- image-20220611152630-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611152634-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220611152902-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 KB - Content
- image-20220611152918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Joey - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.8 KB - Content
- image-20220706152743-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.4 KB - Content
- image-20220706153140-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.6 KB - Content
- image-20220706153656-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +30.1 KB - Content
- image-20220706155307-4.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +56.6 KB - Content
- image-20220706155820-5.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.2 KB - Content
- image-20220706155836-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +3.4 KB - Content
- image-20220706155946-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +486 bytes - Content
- image-20220706155952-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +626 bytes - Content
- image-20220706160046-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Stone - Size
-
... ... @@ -1,0 +1,1 @@ 1 +13.1 KB - Content