Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 11.1
edited by Joey
on 2022/06/11 15:27
Change comment: There is no comment for this version
To version 17.1
edited by Stone Wu
on 2022/08/30 11:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome
1 +Servo.Manual.02 VD2 SA Series.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Joey
1 +XWiki.Stone
Content
... ... @@ -3,21 +3,25 @@
3 3  The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4 4  
5 5  (% style="text-align:center" %)
6 -[[image:image-20220608174118-1.png]]
6 +(((
7 +(% class="wikigeneratedid" style="display:inline-block" %)
8 +[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 +)))
7 7  
8 -Figure 7-1 Gain adjustment process
9 -
10 10  The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
11 11  
13 +(% class="box infomessage" %)
14 +(((
12 12  ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 +)))
13 13  
14 14  (% class="table-bordered" %)
15 -|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter**
16 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__
17 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__
18 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__
19 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__
20 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__
19 +|=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
21 21  
22 22  Table 7-1 Description of gain adjustment process
23 23  
... ... @@ -25,52 +25,46 @@
25 25  
26 26  Load inertia ratio P03-01 refers to:
27 27  
28 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_eea1e5e734146443.gif?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_eea1e5e734146443.gif"]]
32 +(% style="text-align:center" %)
33 +[[image:image-20220611152902-1.png]]
29 29  
30 30  The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
31 31  
32 32  |(((
33 33  (% style="text-align:center" %)
34 -[[image:http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_6db94f5d0421f97a.png?rev=1.1||alt="Wecon VD2 SA Series Servo Drives Manual (Full V1.1)_html_6db94f5d0421f97a.png"]]
39 +[[image:image-20220611152918-2.png]]
35 35  )))
36 36  |(((
37 37  **Before performing online load inertia recognition, the following conditions should be met:**
38 38  
39 -The maximum speed of the motor should be greater than 300rpm;
44 +* The maximum speed of the motor should be greater than 300rpm;
45 +* The actual load inertia ratio is between 0.00 and 100.00;
46 +* The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 +* The backlash of the load transmission mechanism is within a certain range;
40 40  
41 -The actual load inertia ratio is between 0.00 and 100.00;
42 -
43 -The load torque is relatively stable, and the load cannot change drastically during the measurement process;
44 -
45 -The backlash of the load transmission mechanism is within a certain range;
46 -
47 47  **The motor's runable stroke should meet two requirements:**
48 48  
49 -There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
50 -
51 -Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
52 -
53 -Meet the requirement of inertia recognition turns P03-05.
54 -
55 -Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
56 -
57 -During the automatic load inertia recognition process, if vibration occurs, the load inertia identification should be stopped immediately.
51 +* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 +* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 +* Meet the requirement of inertia recognition turns P03-05.
54 +* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 +* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
58 58  )))
59 59  
60 60  The related function codes are shown in the table below.
61 61  
62 62  (% class="table-bordered" %)
63 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
61 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
64 64  **Setting method**
65 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
63 +)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)(((
66 66  **Effective time**
67 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
68 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
65 +)))|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
69 69  Operation setting
70 70  )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
71 71  Effective immediately
72 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)200|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
73 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
70 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
74 74  Inertia recognition turns
75 75  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
76 76  Shutdown setting
... ... @@ -77,7 +77,7 @@
77 77  )))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
78 78  Effective immediately
79 79  )))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
80 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
78 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
81 81  Inertia recognition maximum speed
82 82  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
83 83  Shutdown setting
... ... @@ -88,7 +88,7 @@
88 88  
89 89  The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
90 90  )))|(% style="text-align:center; vertical-align:middle" %)rpm
91 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
89 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
92 92  Parameter recognition rotation direction
93 93  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
94 94  Shutdown setting
... ... @@ -112,7 +112,7 @@
112 112  
113 113  The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
114 114  
115 -== **Automatic gain adjustment** ==
113 +== Automatic gain adjustment ==
116 116  
117 117  Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
118 118  
... ... @@ -125,10 +125,10 @@
125 125  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
126 126  
127 127  (% class="table-bordered" %)
128 -|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type**
129 -|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
130 -|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
131 -|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
126 +|=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
132 132  
133 133  Table 7-3 Experience reference of rigidity grade
134 134  
... ... @@ -136,20 +136,14 @@
136 136  
137 137  When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
138 138  
139 -Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
137 +* Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 +* Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 +* Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 +* Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 +* Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 +* Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
140 140  
141 -Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
142 -
143 -Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
144 -
145 -Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
146 -
147 -Step5 After the inertia recognition test is completed, click "Save Inertia Value";
148 -
149 -Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
150 -
151 -Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
152 -
153 153  (% class="table-bordered" %)
154 154  |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
155 155  |(((
... ... @@ -159,26 +159,24 @@
159 159  )))
160 160  
161 161  (% class="table-bordered" %)
162 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
154 +|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
163 163  **Setting method**
164 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
156 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
165 165  **Effective time**
166 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:65px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:453px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
167 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
158 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
159 +|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
168 168  Operation setting
169 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
161 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
170 170  Effective immediately
171 -)))|(% style="text-align:center; vertical-align:middle; width:110px" %)0|(% style="text-align:center; vertical-align:middle; width:65px" %)0 to 2|(% style="width:453px" %)(((
172 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
173 -
174 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
175 -
176 -2: Online automatic parameter self-adjusting mode (Not implemented yet)
163 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((
164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
177 177  )))|(% style="text-align:center; vertical-align:middle" %)-
178 178  
179 179  Table 7-4 Details of self-adjusting mode selection parameters
180 180  
181 -== **Manual gain adjustment** ==
171 +== Manual gain adjustment ==
182 182  
183 183  When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
184 184  
... ... @@ -185,10 +185,11 @@
185 185  The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
186 186  
187 187  (% style="text-align:center" %)
188 -[[image:image-20220608174209-2.png]]
178 +(((
179 +(% class="wikigeneratedid" style="display:inline-block" %)
180 +[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 +)))
189 189  
190 -Figure 7-2 Basic block diagram of servo loop gain
191 -
192 192  The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
193 193  
194 194  The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
... ... @@ -196,111 +196,125 @@
196 196  This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
197 197  
198 198  (% class="table-bordered" %)
199 -|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name**
200 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain
201 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
202 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
203 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
204 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
205 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
206 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant
190 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
207 207  
208 -**(1) Speed loop gain**
199 +**Speed loop gain**
209 209  
210 210  In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
211 211  
212 212  (% class="table-bordered" %)
213 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:151px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
204 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
214 214  **Setting method**
215 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
206 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
216 216  **Effective time**
217 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
218 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:151px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
208 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
219 219  Operation setting
220 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
211 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
221 221  Effective immediately
222 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
223 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:151px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
213 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
224 224  Operation setting
225 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
216 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
226 226  Effective immediately
227 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
218 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
228 228  
229 229  Table 7-5 Speed loop gain parameters
230 230  
231 -**(2) Speed loop integral time constant**
222 +(% style="text-align:center" %)
223 +(((
224 +(% class="wikigeneratedid" style="display:inline-block" %)
225 +[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 +)))
232 232  
228 +**Speed loop integral time constant**
229 +
233 233  The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
234 234  
235 235  (% class="table-bordered" %)
236 -|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
233 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
237 237  **Setting method**
238 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
235 +)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
239 239  **Effective time**
240 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
241 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
237 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
242 242  1st speed loop integral time constant
243 -)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
240 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
244 244  Operation setting
245 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
242 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
246 246  Effective immediately
247 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
248 -0.1
249 -
250 -ms
244 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 +0.1ms
251 251  )))
252 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
247 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
253 253  2nd speed loop integral time constant
254 -)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
249 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
255 255  Operation setting
256 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
251 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
257 257  Effective immediately
258 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
259 -0.1
260 -
261 -ms
253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 +0.1ms
262 262  )))
263 263  
264 264  Table 7-6 Speed loop integral time constant parameters
265 265  
266 -**(3) Position loop gain**
259 +(% style="text-align:center" %)
260 +(((
261 +(% class="wikigeneratedid" style="display:inline-block" %)
262 +[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 +)))
267 267  
265 +**Position loop gain**
266 +
268 268  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
269 269  
270 270  (% class="table-bordered" %)
271 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 159px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
272 272  **Setting method**
273 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
272 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
274 274  **Effective time**
275 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
276 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
274 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
277 277  Operation setting
278 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
277 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
279 279  Effective immediately
280 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
281 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
282 282  Operation setting
283 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
284 284  Effective immediately
285 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
284 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
286 286  
287 287  Table 7-7 Position loop gain parameters
288 288  
289 -**(4) Torque instruction filter time**
288 +(% style="text-align:center" %)
289 +(((
290 +(% class="wikigeneratedid" style="display:inline-block" %)
291 +[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 +)))
290 290  
294 +**Torque instruction filter time**
295 +
291 291  Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
292 292  
293 293  (% class="table-bordered" %)
294 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
299 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
295 295  **Setting method**
296 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
301 +)))|=(% style="text-align: center; vertical-align: middle; width: 133px;" %)(((
297 297  **Effective time**
298 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
299 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
303 +)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
300 300  Operation setting
301 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
306 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
302 302  Effective immediately
303 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
308 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
304 304  
305 305  Table 7-8 Details of torque filter time constant parameters
306 306  
... ... @@ -308,133 +308,132 @@
308 308  
309 309  Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
310 310  
311 -Speed feedforward parameters are shown in __[[Table 7-9>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>http://13.229.109.52:8080/wiki/servo/view/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__.
316 +Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
312 312  
313 313  Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
314 314  
315 315  (% class="table-bordered" %)
316 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
317 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
321 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
318 318  When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
319 319  
320 320  Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
321 321  )))
322 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
327 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
323 323  
324 324  Table 7-9 Speed feedforward parameters
325 325  
331 +(% style="text-align:center" %)
332 +(((
333 +(% class="wikigeneratedid" style="display:inline-block" %)
334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||id="Iimage-20220706155307-4.jpeg"]]
335 +)))
336 +
337 +
326 326  (% class="table-bordered" %)
327 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
328 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
329 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
330 330  
331 331  Table 7-10 Torque feedforward parameters
332 332  
333 333  = **Mechanical resonance suppression** =
334 334  
335 -== **Mechanical resonance suppression methods** ==
347 +== Mechanical resonance suppression methods ==
336 336  
337 337  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
338 338  
339 -**(1) Torque instruction filter**
351 +**Torque instruction filter**
340 340  
341 341  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
342 342  
343 343  (% style="text-align:center" %)
344 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/40.png?rev=1.1]]
356 +[[image:image-20220706155820-5.jpeg]]
345 345  
346 -**(2) Notch filter**
358 +**Notch filter**
347 347  
348 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_c84670518f0b6362.gif?rev=1.1]]__.
360 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
349 349  
350 -== **Notch filter** ==
362 +== Notch filter ==
351 351  
352 352  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
353 353  
354 -**(1) Width grade of notch filter**
366 +**Width grade of notch filter**
355 355  
356 356  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
357 357  
358 358  (% style="text-align:center" %)
359 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/41.png?rev=1.1]]
371 +[[image:image-20220706155836-6.png]]
360 360  
361 -In formula (7-1), [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/42.png?rev=1.1]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/43.png?rev=1.1]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
373 +In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
362 362  
363 -**(2) Depth grade of notch filter**
375 +**Depth grade of notch filter**
364 364  
365 365  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
366 366  
367 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>http://docs.we-con.com.cn/wiki/servo/download/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/WebHome/Wecon%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29_html_10a8f8c1383fdf94.png?rev=1.1]]__.
379 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
368 368  
369 369  (% style="text-align:center" %)
370 370  [[image:image-20220608174259-3.png]]
371 371  
372 -Figure 7-3 Notch characteristics, notch width, and notch depth
384 +Figure 7-7 Notch characteristics, notch width, and notch depth
373 373  
374 374  (% style="text-align:center" %)
375 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]
387 +[[image:image-20220706160046-9.png]]
376 376  
377 -Figure 7-4 Frequency characteristics of notch filter
389 +Figure 7-8 Frequency characteristics of notch filter
378 378  
379 379  (% class="table-bordered" %)
380 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
392 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
381 381  **Setting method**
382 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
394 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
383 383  **Effective time**
384 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:97px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:334px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
385 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
396 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
397 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
386 386  Operation setting
387 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
399 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
388 388  Effective immediately
389 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)300|(% style="text-align:center; vertical-align:middle; width:97px" %)250 to 5000|(% style="width:334px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle" %)Hz
390 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
401 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
402 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
391 391  Operation setting
392 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
404 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
393 393  Effective immediately
394 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)100|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 100|(% style="width:334px" %)(((
395 -0: all truncated
396 -
397 -100: all passed
398 -)))|(% style="text-align:center; vertical-align:middle" %)-
399 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
406 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
407 +1. 0: all truncated
408 +1. 100: all passed
409 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
410 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
400 400  Operation setting
401 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
412 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
402 402  Effective immediately
403 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)4|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 12|(% style="width:334px" %)(((
404 -0: 0.5 times the bandwidth
405 -
406 -4: 1 times the bandwidth
407 -
408 -8: 2 times the bandwidth
409 -
410 -12: 4 times the bandwidth
411 -)))|(% style="text-align:center; vertical-align:middle" %)-
412 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
414 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
415 +1. 0: 0.5 times the bandwidth
416 +1. 4: 1 times the bandwidth
417 +1. 8: 2 times the bandwidth
418 +1. 12: 4 times the bandwidth
419 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
420 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
413 413  Operation setting
414 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
422 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
415 415  Effective immediately
416 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)500|(% style="text-align:center; vertical-align:middle; width:97px" %)250 to 5000|(% style="width:334px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle" %)Hz
417 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
424 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
425 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
418 418  Operation setting
419 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
427 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
420 420  Effective immediately
421 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)100|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 100|(% style="width:334px" %)(((
422 -0: all truncated
423 -
424 -100: all passed
425 -)))|(% style="text-align:center; vertical-align:middle" %)-
426 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
430 +1. 0: all truncated
431 +1. 100: all passed
432 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
433 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
427 427  Operation setting
428 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
435 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
429 429  Effective immediately
430 -)))|(% style="text-align:center; vertical-align:middle; width:107px" %)4|(% style="text-align:center; vertical-align:middle; width:97px" %)0 to 12|(% style="width:334px" %)(((
431 -0: 0.5 times the bandwidth
437 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
438 +1. 0: 0.5 times the bandwidth
439 +1. 4: 1 times the bandwidth
440 +1. 8: 2 times the bandwidth
441 +1. 12: 4 times the bandwidth
442 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
432 432  
433 -4: 1 times the bandwidth
434 -
435 -8: 2 times the bandwidth
436 -
437 -12: 4 times the bandwidth
438 -)))|(% style="text-align:center; vertical-align:middle" %)-
439 -
440 440  Table 7-11 Notch filter function code parameters
image-20220611152902-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 KB
Content
image-20220611152918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Joey
Size
... ... @@ -1,0 +1,1 @@
1 +3.8 KB
Content
image-20220706152743-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +30.4 KB
Content
image-20220706153140-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +28.6 KB
Content
image-20220706153656-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +30.1 KB
Content
image-20220706155307-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +56.6 KB
Content
image-20220706155820-5.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +8.2 KB
Content
image-20220706155836-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +3.4 KB
Content
image-20220706155946-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +486 bytes
Content
image-20220706155952-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +626 bytes
Content
image-20220706160046-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +13.1 KB
Content