Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 14.1
edited by Joey
on 2022/06/18 21:53
Change comment: Renamed from xwiki:Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).07 Adjustments.WebHome
To version 18.2
edited by Karen
on 2023/05/15 14:10
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Servo.2\. User Manual.06 VD2 SA Series Servo Drives Manual (Full V1\.1).WebHome
1 +Servo.Manual.02 VD2 SA Series.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Joey
1 +XWiki.Karen
Content
... ... @@ -3,21 +3,25 @@
3 3  The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4 4  
5 5  (% style="text-align:center" %)
6 -[[image:image-20220608174118-1.png]]
6 +(((
7 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
8 +[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 +)))
7 7  
8 -Figure 7-1 Gain adjustment process
9 -
10 10  The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
11 11  
13 +(% class="box infomessage" %)
14 +(((
12 12  ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 +)))
13 13  
14 -(% class="table-bordered" %)
15 -|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter**
16 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__
17 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__
18 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__
19 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__
20 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__
18 +(% class="table-bordered" style="margin-right:auto" %)
19 +|=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
21 21  
22 22  Table 7-1 Description of gain adjustment process
23 23  
... ... @@ -26,11 +26,11 @@
26 26  Load inertia ratio P03-01 refers to:
27 27  
28 28  (% style="text-align:center" %)
29 -[[image:image-20220611152902-1.png]]
33 +[[image:image-20220611152902-1.png||class="img-thumbnail"]]
30 30  
31 31  The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
32 32  
33 -|(((
37 +(% class="warning" %)|(((
34 34  (% style="text-align:center" %)
35 35  [[image:image-20220611152918-2.png]]
36 36  )))
... ... @@ -37,65 +37,58 @@
37 37  |(((
38 38  **Before performing online load inertia recognition, the following conditions should be met:**
39 39  
40 -The maximum speed of the motor should be greater than 300rpm;
44 +* The maximum speed of the motor should be greater than 300rpm;
45 +* The actual load inertia ratio is between 0.00 and 100.00;
46 +* The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 +* The backlash of the load transmission mechanism is within a certain range;
41 41  
42 -The actual load inertia ratio is between 0.00 and 100.00;
43 -
44 -The load torque is relatively stable, and the load cannot change drastically during the measurement process;
45 -
46 -The backlash of the load transmission mechanism is within a certain range;
47 -
48 48  **The motor's runable stroke should meet two requirements:**
49 49  
50 -There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
51 -
52 -Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 -
54 -Meet the requirement of inertia recognition turns P03-05.
55 -
56 -Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
57 -
58 -During the automatic load inertia recognition process, if vibration occurs, the load inertia identification should be stopped immediately.
51 +* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 +* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 +* Meet the requirement of inertia recognition turns P03-05.
54 +* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 +* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
59 59  )))
60 60  
61 61  The related function codes are shown in the table below.
62 62  
63 63  (% class="table-bordered" %)
64 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
61 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
65 65  **Setting method**
66 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
63 +)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
67 67  **Effective time**
68 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
69 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
65 +)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
70 70  Operation setting
71 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
68 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
72 72  Effective immediately
73 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)200|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
74 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
70 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
75 75  Inertia recognition turns
76 76  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
77 77  Shutdown setting
78 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
75 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
79 79  Effective immediately
80 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
81 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
77 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
82 82  Inertia recognition maximum speed
83 83  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
84 84  Shutdown setting
85 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
82 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
86 86  Effective immediately
87 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
84 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
88 88  Set the allowable maximum motor speed instruction in offline inertia recognition mode.
89 89  
90 90  The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
91 91  )))|(% style="text-align:center; vertical-align:middle" %)rpm
92 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
89 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
93 93  Parameter recognition rotation direction
94 94  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
95 95  Shutdown setting
96 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
93 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
97 97  Effective immediately
98 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
95 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
99 99  0: Forward and reverse reciprocating rotation
100 100  
101 101  1: Forward one-way rotation
... ... @@ -113,23 +113,23 @@
113 113  
114 114  The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
115 115  
116 -== **Automatic gain adjustment** ==
113 +== Automatic gain adjustment ==
117 117  
118 118  Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
119 119  
120 120  The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
121 121  
122 -(% class="table-bordered" %)
123 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
124 -|(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
119 +(% class="table-bordered" style="margin-right:auto" %)
120 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
125 125  
126 126  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
127 127  
128 128  (% class="table-bordered" %)
129 -|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type**
130 -|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
131 -|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
132 -|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
126 +|=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
133 133  
134 134  Table 7-3 Experience reference of rigidity grade
135 135  
... ... @@ -137,22 +137,16 @@
137 137  
138 138  When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows:
139 139  
140 -Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
137 +* Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected;
138 +* Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
139 +* Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
140 +* Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
141 +* Step5 After the inertia recognition test is completed, click "Save Inertia Value";
142 +* Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
141 141  
142 -Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on";
143 -
144 -Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation;
145 -
146 -Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
147 -
148 -Step5 After the inertia recognition test is completed, click "Save Inertia Value";
149 -
150 -Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
151 -
152 -Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
153 -
154 154  (% class="table-bordered" %)
155 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
146 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
156 156  |(((
157 157  ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
158 158  
... ... @@ -160,26 +160,24 @@
160 160  )))
161 161  
162 162  (% class="table-bordered" %)
163 -|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
154 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
164 164  **Setting method**
165 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
156 +)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
166 166  **Effective time**
167 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
168 -|(% style="text-align:center; vertical-align:middle; width:121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
158 +)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 +|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
169 169  Operation setting
170 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
161 +)))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
171 171  Effective immediately
172 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((
173 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
174 -
175 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
176 -
177 -2: Online automatic parameter self-adjusting mode (Not implemented yet)
163 +)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
178 178  )))|(% style="text-align:center; vertical-align:middle" %)-
179 179  
180 180  Table 7-4 Details of self-adjusting mode selection parameters
181 181  
182 -== **Manual gain adjustment** ==
171 +== Manual gain adjustment ==
183 183  
184 184  When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
185 185  
... ... @@ -186,10 +186,11 @@
186 186  The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
187 187  
188 188  (% style="text-align:center" %)
189 -[[image:image-20220608174209-2.png]]
178 +(((
179 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
180 +[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 +)))
190 190  
191 -Figure 7-2 Basic block diagram of servo loop gain
192 -
193 193  The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
194 194  
195 195  The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
... ... @@ -197,111 +197,125 @@
197 197  This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
198 198  
199 199  (% class="table-bordered" %)
200 -|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name**
201 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain
202 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
203 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
204 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
205 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
206 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
207 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant
190 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
208 208  
209 -**(1) Speed loop gain**
199 +**Speed loop gain**
210 210  
211 211  In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
212 212  
213 213  (% class="table-bordered" %)
214 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:151px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
204 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
215 215  **Setting method**
216 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
206 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
217 217  **Effective time**
218 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
219 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:151px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
208 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
220 220  Operation setting
221 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
211 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
222 222  Effective immediately
223 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
224 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:151px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
213 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
225 225  Operation setting
226 -)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
216 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
227 227  Effective immediately
228 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
218 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
229 229  
230 230  Table 7-5 Speed loop gain parameters
231 231  
232 -**(2) Speed loop integral time constant**
222 +(% style="text-align:center" %)
223 +(((
224 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
225 +[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 +)))
233 233  
228 +**Speed loop integral time constant**
229 +
234 234  The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
235 235  
236 236  (% class="table-bordered" %)
237 -|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
233 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
238 238  **Setting method**
239 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
235 +)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
240 240  **Effective time**
241 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
242 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
237 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
243 243  1st speed loop integral time constant
244 -)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
240 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
245 245  Operation setting
246 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
242 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
247 247  Effective immediately
248 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
249 -0.1
250 -
251 -ms
244 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 +0.1ms
252 252  )))
253 -|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
247 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
254 254  2nd speed loop integral time constant
255 -)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
249 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
256 256  Operation setting
257 -)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
251 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
258 258  Effective immediately
259 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
260 -0.1
261 -
262 -ms
253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 +0.1ms
263 263  )))
264 264  
265 265  Table 7-6 Speed loop integral time constant parameters
266 266  
267 -**(3) Position loop gain**
259 +(% style="text-align:center" %)
260 +(((
261 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
262 +[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 +)))
268 268  
265 +**Position loop gain**
266 +
269 269  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
270 270  
271 271  (% class="table-bordered" %)
272 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
273 273  **Setting method**
274 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
272 +)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
275 275  **Effective time**
276 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
277 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
274 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
278 278  Operation setting
279 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
277 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
280 280  Effective immediately
281 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
282 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
283 283  Operation setting
284 -)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
285 285  Effective immediately
286 -)))|(% style="text-align:center; vertical-align:middle; width:120px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
284 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
287 287  
288 288  Table 7-7 Position loop gain parameters
289 289  
290 -**(4) Torque instruction filter time**
288 +(% style="text-align:center" %)
289 +(((
290 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
291 +[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 +)))
291 291  
294 +**Torque instruction filter time**
295 +
292 292  Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
293 293  
294 294  (% class="table-bordered" %)
295 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
299 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
296 296  **Setting method**
297 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
301 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
298 298  **Effective time**
299 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
300 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
303 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
301 301  Operation setting
302 -)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
306 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
303 303  Effective immediately
304 -)))|(% style="text-align:center; vertical-align:middle; width:139px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
308 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
305 305  
306 306  Table 7-8 Details of torque filter time constant parameters
307 307  
... ... @@ -309,133 +309,587 @@
309 309  
310 310  Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
311 311  
312 -Speed feedforward parameters are shown in __[[Table 7-9>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__.
316 +Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
313 313  
314 314  Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
315 315  
316 316  (% class="table-bordered" %)
317 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
318 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
321 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
319 319  When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
320 320  
321 321  Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
322 322  )))
323 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
327 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
324 324  
325 325  Table 7-9 Speed feedforward parameters
326 326  
331 +(% style="text-align:center" %)
332 +(((
333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
335 +)))
336 +
337 +
327 327  (% class="table-bordered" %)
328 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
329 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
330 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
331 331  
332 332  Table 7-10 Torque feedforward parameters
333 333  
345 +== **Model Tracking Control Function** ==
346 +
347 +Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
348 +
349 +(% style="text-align:center" %)
350 +[[image:20230515-7.png]]
351 +
352 +The usage method and conditions of model tracking control:
353 +
354 +~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
355 +
356 +2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
357 +
358 +3. Set P2-20=1 to enable the function of model tracking control.
359 +
360 +4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
361 +
362 +5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
363 +
364 +**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
365 +
366 +|**Function code**|**Name**|(((
367 +**Setting**
368 +
369 +**method**
370 +)))|(((
371 +**Effective**
372 +
373 +**time**
374 +)))|**Default**|**Range**|**Definition**|**Unit**
375 +|P2-20|Model tracking control function|Shutdown setting|(((
376 +Effective
377 +
378 +immediately
379 +)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
380 +|P2-21|Model tracking control gain|Shutdown setting|(((
381 +Effective
382 +
383 +immediately
384 +)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
385 +|P2-22|Model tracking control gain compensation|Shutdown setting|(((
386 +Effective
387 +
388 +immediately
389 +)))|1000|500 to 2000|0.10%
390 +
391 +|**Function code**|**Name**|(((
392 +**Setting**
393 +
394 +**method**
395 +)))|(((
396 +**Effective**
397 +
398 +**time**
399 +)))|**Default**|**Range**|**Definition**|**Unit**
400 +|P2-23|Model tracking control forward rotation bias|(((
401 +Operation
402 +
403 +setting
404 +)))|(((
405 +Effective
406 +
407 +immediately
408 +)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
409 +|P2-24|Model tracking control reverses rotation bias|(((
410 +Operation
411 +
412 +setting
413 +)))|(((
414 +Effective
415 +
416 +immediately
417 +)))|1000|0 to 10000|0.10%
418 +|P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
419 +Effective
420 +
421 +immediately
422 +)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
423 +
424 +Please refer to the following for an example of the procedure of adjusting servo gain.
425 +
426 +|**Step**|**Content**
427 +|1|Please try to set the correct load inertia ratio parameter P3-1.
428 +|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
429 +|3|Turn on the model tracking function, set P2-20 to 1.
430 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
431 +|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
432 +|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
433 +
434 +== **Gain switching** ==
435 +
436 +Gain switching function:
437 +
438 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
439 +
440 +●Switch to a higher gain in the motor stationary state to shorten the positioning time;
441 +
442 +●Switch to a higher gain in the motor running state to get better command tracking performance;
443 +
444 +●Switch different gain settings by external signals depending on the load connected.
445 +
446 +(1) Gain switching parameter setting
447 +
448 +①When P02-07=0
449 +
450 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
451 +
452 +(% style="text-align:center" %)
453 +[[image:20230515-8.png]]
454 +
455 +② When P02-07=1
456 +
457 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
458 +
459 +(% style="text-align:center" %)
460 +[[image:20230515-9.png]]
461 +
462 +Figure 7-9 Flow chart of gain switching when P02-07=1
463 +
464 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
465 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
466 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
467 +|(% style="width:72px" %)(((
468 +
469 +
470 +
471 +
472 +
473 +
474 +2
475 +)))|(% style="width:146px" %)(((
476 +
477 +
478 +
479 +
480 +
481 +
482 +Large torque command
483 +)))|[[image:image-20230515140641-1.png]]
484 +|(% style="width:72px" %)(((
485 +
486 +
487 +
488 +
489 +
490 +
491 +
492 +3
493 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
494 +|(% style="width:72px" %)(((
495 +
496 +
497 +
498 +
499 +
500 +
501 +4
502 +)))|(% style="width:146px" %)(((
503 +
504 +
505 +
506 +
507 +
508 +
509 +Large speed command
510 +)))|[[image:image-20230515140641-3.png]]
511 +
512 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
513 +|(% style="width:74px" %)(((
514 +
515 +
516 +
517 +
518 +
519 +5
520 +)))|(% style="width:176px" %)(((
521 +
522 +
523 +
524 +
525 +
526 +Fast actual speed
527 +)))|(((
528 +
529 +
530 +[[image:image-20230515140641-4.png]]
531 +)))
532 +|(% style="width:74px" %)(((
533 +
534 +
535 +
536 +
537 +
538 +
539 +
540 +6
541 +)))|(% style="width:176px" %)(((
542 +
543 +
544 +
545 +
546 +
547 +
548 +
549 +Speed command change rate is large
550 +)))|[[image:image-20230515140641-5.png]]
551 +|(% style="width:74px" %)(((
552 +
553 +
554 +
555 +
556 +
557 +
558 +7
559 +
560 +
561 +)))|(% style="width:176px" %)(((
562 +
563 +
564 +
565 +
566 +
567 +
568 +Large position deviation
569 +)))|[[image:image-20230515140641-6.png]]
570 +|(% style="width:74px" %)(((
571 +
572 +
573 +
574 +
575 +
576 +8
577 +)))|(% style="width:176px" %)(((
578 +
579 +
580 +
581 +
582 +
583 +Position command
584 +)))|[[image:image-20230515140641-7.png]]
585 +
586 +|(% style="width:73px" %)(((
587 +
588 +
589 +
590 +
591 +
592 +
593 +9
594 +)))|(% style="width:154px" %)(((
595 +
596 +
597 +
598 +
599 +
600 +
601 +Positioning completed
602 +)))|[[image:image-20230515140641-8.png]]
603 +|(% style="width:73px" %)(((
604 +
605 +
606 +10
607 +
608 +
609 +)))|(% style="width:154px" %)(((
610 +
611 +
612 +Position command + actual speed
613 +)))|(((
614 +
615 +
616 +Refer to the chart below
617 +)))
618 +
619 +(% style="text-align:center" %)
620 +[[image:20230515-10.png]]
621 +
622 +Figure 7-10 P02-08=10 Position command + actual speed gain description
623 +
624 +(2) Description of related parameters
625 +
626 +|(% rowspan="2" style="width:68px" %)
627 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
628 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
629 +|(% colspan="8" %)(((
630 +Set the switching mode of the second gain.
631 +
632 +|**Setting value**|**Function**
633 +|0|(((
634 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
635 +
636 +DI logic invalid: PI control;
637 +
638 +DI logic valid: PI control.
639 +)))
640 +|1|The first gain and the second gain are switched by the setting value of P02-08.
641 +)))
642 +
643 +|(% rowspan="2" %)
644 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
645 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
646 +|(% colspan="8" %)(((
647 +Set the conditions for gain switching.
648 +
649 +|Setting value|Gain switching conditions|Details
650 +|0|The default is the first gain|Fixed use of the first gain
651 +|1|Switch by DI port|(((
652 +Use DI function 10 (GAIN-SEL, gain switching);
653 +
654 +DI logic is invalid: the first gain (P02-01~~P02-03);
655 +
656 +DI logic is valid: the second gain (P02-04~~P02-06).
657 +)))
658 +|2|Large torque command|(((
659 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
660 +
661 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
662 +
663 +
664 +)))
665 +|3|Large actual torque|(((
666 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
667 +
668 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
669 +
670 +
671 +)))
672 +|4|Large speed command|(((
673 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
674 +
675 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
676 +
677 +
678 +)))
679 +|5|Large actual speed|(((
680 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
681 +
682 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
683 +
684 +
685 +)))
686 +|(((
687 +
688 +
689 +6
690 +)))|(((
691 +
692 +
693 +Large rate of change in speed command
694 +)))|(((
695 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
696 +
697 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
698 +
699 +
700 +)))
701 +|(((
702 +
703 +
704 +7
705 +)))|(((
706 +
707 +
708 +Large position deviation
709 +)))|(((
710 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
711 +
712 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
713 +)))
714 +|8|Position command|(((
715 +In the previous first gain, if the position command is not 0, switch to the second gain;
716 +
717 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
718 +)))
719 +|(((
720 +
721 +
722 +9
723 +)))|(((
724 +
725 +
726 +Positioning complete
727 +)))|(((
728 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
729 +
730 +
731 +)))
732 +|(((
733 +
734 +
735 +10
736 +)))|(((
737 +
738 +
739 +Position command + actual speed
740 +)))|(((
741 +In the previous first gain, if the position command is not 0, the second gain is switched;
742 +
743 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
744 +
745 +
746 +)))
747 +
748 +
749 +)))
750 +
751 +|(% rowspan="2" %)
752 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
753 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
754 +|(% colspan="8" %)(((
755 +The duration of the switching condition required for the second gain to switch back to the first gain.
756 +
757 +[[image:image-20230515140953-9.png]]
758 +
759 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
760 +)))
761 +
762 +|(% rowspan="2" %)
763 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
764 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
765 +|(% colspan="8" %)(((
766 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
767 +
768 +[[image:image-20230515140953-10.png]]
769 +)))
770 +
771 +|(% rowspan="2" %)
772 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
773 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
774 +|(% colspan="8" %)(((
775 +Set the hysteresis to meet the gain switching condition.
776 +
777 +[[image:image-20230515140953-11.png]]
778 +)))
779 +
780 +|(% rowspan="2" %)
781 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
782 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
783 +|(% colspan="8" %)(((
784 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
785 +
786 +[[image:image-20230515140953-12.png]]
787 +
788 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
789 +)))
790 +
791 +
792 +
793 +
794 +
795 +
334 334  = **Mechanical resonance suppression** =
335 335  
336 -== **Mechanical resonance suppression methods** ==
798 +== Mechanical resonance suppression methods ==
337 337  
338 338  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
339 339  
340 -**(1) Torque instruction filter**
802 +**Torque instruction filter**
341 341  
342 342  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
343 343  
344 344  (% style="text-align:center" %)
345 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/40.png?rev=1.1]]
807 +[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
346 346  
347 -**(2) Notch filter**
809 +**Notch filter**
348 348  
349 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.
811 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
350 350  
351 -== **Notch filter** ==
813 +== Notch filter ==
352 352  
353 353  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
354 354  
355 -**(1) Width grade of notch filter**
817 +**Width grade of notch filter**
356 356  
357 357  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
358 358  
359 359  (% style="text-align:center" %)
360 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/41.png?rev=1.1]]
822 +[[image:image-20220706155836-6.png||class="img-thumbnail"]]
361 361  
362 -In formula (7-1), [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/42.png?rev=1.1]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/43.png?rev=1.1]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
824 +In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
363 363  
364 -**(2) Depth grade of notch filter**
826 +**Depth grade of notch filter**
365 365  
366 366  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
367 367  
368 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__.
830 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
369 369  
370 370  (% style="text-align:center" %)
371 -[[image:image-20220608174259-3.png]]
833 +(((
834 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
835 +[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
836 +)))
372 372  
373 -Figure 7-3 Notch characteristics, notch width, and notch depth
374 374  
375 375  (% style="text-align:center" %)
376 -[[image:https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]
840 +(((
841 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
842 +[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
843 +)))
377 377  
378 -Figure 7-4 Frequency characteristics of notch filter
379 379  
380 380  (% class="table-bordered" %)
381 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
847 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
382 382  **Setting method**
383 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
849 +)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
384 384  **Effective time**
385 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit**
386 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
851 +)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
852 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
387 387  Operation setting
388 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
854 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
389 389  Effective immediately
390 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
391 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
856 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
857 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
392 392  Operation setting
393 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
859 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
394 394  Effective immediately
395 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
396 -0: all truncated
397 -
398 -100: all passed
399 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
400 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
861 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
862 +1. 0: all truncated
863 +1. 100: all passed
864 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
865 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
401 401  Operation setting
402 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
867 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
403 403  Effective immediately
404 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
405 -0: 0.5 times the bandwidth
406 -
407 -4: 1 times the bandwidth
408 -
409 -8: 2 times the bandwidth
410 -
411 -12: 4 times the bandwidth
412 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
413 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
869 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
870 +1. 0: 0.5 times the bandwidth
871 +1. 4: 1 times the bandwidth
872 +1. 8: 2 times the bandwidth
873 +1. 12: 4 times the bandwidth
874 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
875 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
414 414  Operation setting
415 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
877 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
416 416  Effective immediately
417 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
418 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
879 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
880 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
419 419  Operation setting
420 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
882 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
421 421  Effective immediately
422 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
423 -0: all truncated
424 -
425 -100: all passed
426 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
427 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
884 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
885 +1. 0: all truncated
886 +1. 100: all passed
887 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
888 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
428 428  Operation setting
429 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
890 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
430 430  Effective immediately
431 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
432 -0: 0.5 times the bandwidth
892 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
893 +1. 0: 0.5 times the bandwidth
894 +1. 4: 1 times the bandwidth
895 +1. 8: 2 times the bandwidth
896 +1. 12: 4 times the bandwidth
897 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
433 433  
434 -4: 1 times the bandwidth
435 -
436 -8: 2 times the bandwidth
437 -
438 -12: 4 times the bandwidth
439 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
440 -
441 441  Table 7-11 Notch filter function code parameters
20230515-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +10.3 KB
Content
20230515-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +9.9 KB
Content
20230515-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +21.5 KB
Content
20230515-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +18.7 KB
Content
image-20220706152743-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +30.4 KB
Content
image-20220706153140-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +28.6 KB
Content
image-20220706153656-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +30.1 KB
Content
image-20220706155307-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +56.6 KB
Content
image-20220706155820-5.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +8.2 KB
Content
image-20220706155836-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +3.4 KB
Content
image-20220706155946-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +486 bytes
Content
image-20220706155952-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +626 bytes
Content
image-20220706160046-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +13.1 KB
Content
image-20230515140641-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +23.1 KB
Content
image-20230515140641-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +11.9 KB
Content
image-20230515140641-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +12.8 KB
Content
image-20230515140641-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +11.0 KB
Content
image-20230515140641-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +20.5 KB
Content
image-20230515140641-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +18.1 KB
Content
image-20230515140641-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +10.4 KB
Content
image-20230515140641-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +11.4 KB
Content
image-20230515140953-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +23.7 KB
Content
image-20230515140953-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +23.1 KB
Content
image-20230515140953-12.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +14.5 KB
Content
image-20230515140953-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +24.4 KB
Content