Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 14.12
edited by Stone Wu
on 2022/07/06 15:29
Change comment: (Autosaved)
To version 14.18
edited by Stone Wu
on 2022/07/06 15:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -226,7 +226,7 @@
226 226  (% style="text-align:center" %)
227 227  [[image:image-20220706152743-1.jpeg]]
228 228  
229 -Figure 7-3 Speed loop gain
229 +Figure 7-3 Speed loop gain effect illustration
230 230  
231 231  **(2) Speed loop integral time constant**
232 232  
... ... @@ -263,6 +263,11 @@
263 263  
264 264  Table 7-6 Speed loop integral time constant parameters
265 265  
266 +(% style="text-align:center" %)
267 +[[image:image-20220706153140-2.jpeg]]
268 +
269 +Figure 7-4 Speed loop integral time constant effect illustration
270 +
266 266  **(3) Position loop gain**
267 267  
268 268  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
... ... @@ -286,6 +286,11 @@
286 286  
287 287  Table 7-7 Position loop gain parameters
288 288  
294 +(% style="text-align:center" %)
295 +[[image:image-20220706153656-3.jpeg]]
296 +
297 +Figure 7-5 Position loop gain effect illustration
298 +
289 289  **(4) Torque instruction filter time**
290 290  
291 291  Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
... ... @@ -323,6 +323,10 @@
323 323  
324 324  Table 7-9 Speed feedforward parameters
325 325  
336 +[[image:image-20220706155307-4.jpeg]]
337 +
338 +Figure 7-6 Speed feedforward parameters effect illustration
339 +
326 326  (% class="table-bordered" %)
327 327  |(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
328 328  |(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
image-20220706153140-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +28.6 KB
Content
image-20220706153656-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +30.1 KB
Content
image-20220706155307-4.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Stone
Size
... ... @@ -1,0 +1,1 @@
1 +56.6 KB
Content