Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Content
-
... ... @@ -137,14 +137,20 @@ 137 137 138 138 When debugging with the host computer debugging software, automatic rigidity level measurement can be carried out, which is used to select a set of appropriate rigidity grades as operating parameters. The operation steps are as follows: 139 139 140 -* Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected; 141 -* Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on"; 142 -* Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation; 143 -* Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured. 144 -* Step5 After the inertia recognition test is completed, click "Save Inertia Value"; 145 -* Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement. 146 -* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 140 +Step1 Confirm that the servo is in the ready state, the panel displays “rdy”, and the communication line is connected; 147 147 142 +Step2 Open the host computer debugging software, enter the trial run interface, set the corresponding parameters, and click "Servo on"; 143 + 144 +Step3 Click the "forward rotation" or "reverse rotation" button to confirm the travel range of the servo operation; 145 + 146 +Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured. 147 + 148 +Step5 After the inertia recognition test is completed, click "Save Inertia Value"; 149 + 150 +Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement. 151 + 152 +Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 153 + 148 148 (% class="table-bordered" %) 149 149 |(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 150 150 |((( ... ... @@ -223,11 +223,6 @@ 223 223 224 224 Table 7-5 Speed loop gain parameters 225 225 226 -(% style="text-align:center" %) 227 -[[image:image-20220706152743-1.jpeg]] 228 - 229 -Figure 7-3 Speed loop gain effect illustration 230 - 231 231 **(2) Speed loop integral time constant** 232 232 233 233 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below. ... ... @@ -263,11 +263,6 @@ 263 263 264 264 Table 7-6 Speed loop integral time constant parameters 265 265 266 -(% style="text-align:center" %) 267 -[[image:image-20220706153140-2.jpeg]] 268 - 269 -Figure 7-4 Speed loop integral time constant effect illustration 270 - 271 271 **(3) Position loop gain** 272 272 273 273 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. ... ... @@ -291,10 +291,6 @@ 291 291 292 292 Table 7-7 Position loop gain parameters 293 293 294 -(% style="text-align:center" %) 295 -[[image:image-20220706153656-3.jpeg]] 296 - 297 - 298 298 **(4) Torque instruction filter time** 299 299 300 300 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
- image-20220706152743-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.4 KB - Content
- image-20220706153140-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -28.6 KB - Content
- image-20220706153656-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Stone - Size
-
... ... @@ -1,1 +1,0 @@ 1 -30.1 KB - Content