Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- 20230515-10.png
- 20230515-7.png
- 20230515-8.png
- 20230515-9.png
- image-20230515140641-1.png
- image-20230515140641-2.png
- image-20230515140641-3.png
- image-20230515140641-4.png
- image-20230515140641-5.png
- image-20230515140641-6.png
- image-20230515140641-7.png
- image-20230515140641-8.png
- image-20230515140953-10.png
- image-20230515140953-11.png
- image-20230515140953-12.png
- image-20230515140953-9.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.Karen - Content
-
... ... @@ -3,21 +3,25 @@ 3 3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1. 4 4 5 5 (% style="text-align:center" %) 6 -[[image:image-20220608174118-1.png]] 6 +((( 7 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 8 +[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 +))) 7 7 8 -Figure 7-1 Gain adjustment process 9 - 10 10 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered. 11 11 13 +(% class="box infomessage" %) 14 +((( 12 12 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below. 16 +))) 13 13 14 -(% class="table-bordered" %) 15 -|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter** 16 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__17 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__18 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__19 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__20 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>> https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__18 +(% class="table-bordered" style="margin-right:auto" %) 19 +|=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ 22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__ 23 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__ 24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 21 21 22 22 Table 7-1 Description of gain adjustment process 23 23 ... ... @@ -26,11 +26,11 @@ 26 26 Load inertia ratio P03-01 refers to: 27 27 28 28 (% style="text-align:center" %) 29 -[[image:image-20220611152902-1.png]] 33 +[[image:image-20220611152902-1.png||class="img-thumbnail"]] 30 30 31 31 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software. 32 32 33 -|((( 37 +(% class="warning" %)|((( 34 34 (% style="text-align:center" %) 35 35 [[image:image-20220611152918-2.png]] 36 36 ))) ... ... @@ -37,65 +37,58 @@ 37 37 |((( 38 38 **Before performing online load inertia recognition, the following conditions should be met:** 39 39 40 -The maximum speed of the motor should be greater than 300rpm; 44 +* The maximum speed of the motor should be greater than 300rpm; 45 +* The actual load inertia ratio is between 0.00 and 100.00; 46 +* The load torque is relatively stable, and the load cannot change drastically during the measurement process; 47 +* The backlash of the load transmission mechanism is within a certain range; 41 41 42 -The actual load inertia ratio is between 0.00 and 100.00; 43 - 44 -The load torque is relatively stable, and the load cannot change drastically during the measurement process; 45 - 46 -The backlash of the load transmission mechanism is within a certain range; 47 - 48 48 **The motor's runable stroke should meet two requirements:** 49 49 50 -There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 51 - 52 -Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 53 - 54 -Meet the requirement of inertia recognition turns P03-05. 55 - 56 -Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 57 - 58 -During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately. 51 +* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 52 +* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 53 +* Meet the requirement of inertia recognition turns P03-05. 54 +* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 55 +* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately. 59 59 ))) 60 60 61 61 The related function codes are shown in the table below. 62 62 63 63 (% class="table-bordered" %) 64 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 61 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)((( 65 65 **Setting method** 66 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((63 +)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)((( 67 67 **Effective time** 68 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**69 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 65 +)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 66 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 70 70 Operation setting 71 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((68 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 72 72 Effective immediately 73 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.0174 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 70 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01 71 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 75 75 Inertia recognition turns 76 76 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 77 77 Shutdown setting 78 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((75 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 79 79 Effective immediately 80 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle81 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 77 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle 78 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 82 82 Inertia recognition maximum speed 83 83 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 84 84 Shutdown setting 85 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((82 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 86 86 Effective immediately 87 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((84 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)((( 88 88 Set the allowable maximum motor speed instruction in offline inertia recognition mode. 89 89 90 90 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value. 91 91 )))|(% style="text-align:center; vertical-align:middle" %)rpm 92 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 89 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 93 93 Parameter recognition rotation direction 94 94 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 95 95 Shutdown setting 96 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((93 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 97 97 Effective immediately 98 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((95 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)((( 99 99 0: Forward and reverse reciprocating rotation 100 100 101 101 1: Forward one-way rotation ... ... @@ -113,23 +113,23 @@ 113 113 114 114 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first. 115 115 116 -== **Automatic gain adjustment**==113 +== Automatic gain adjustment == 117 117 118 118 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability. 119 119 120 120 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system. 121 121 122 -(% class="table-bordered" %) 123 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 124 -|(% style="text-align: center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.119 +(% class="table-bordered" style="margin-right:auto" %) 120 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 125 125 126 126 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 127 127 128 128 (% class="table-bordered" %) 129 -|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type** 130 -|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery 131 -|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts 132 -|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection 126 +|=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type** 127 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery 128 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts 129 +|=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection 133 133 134 134 Table 7-3 Experience reference of rigidity grade 135 135 ... ... @@ -146,7 +146,7 @@ 146 146 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 147 147 148 148 (% class="table-bordered" %) 149 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 146 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 150 150 |((( 151 151 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine! 152 152 ... ... @@ -154,26 +154,24 @@ 154 154 ))) 155 155 156 156 (% class="table-bordered" %) 157 -|(% style="text-align:center; vertical-align:middle; width: 121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)(((154 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)((( 158 158 **Setting method** 159 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((156 +)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)((( 160 160 **Effective time** 161 -)))|(% style="text-align:center; vertical-align:middle; width: 134px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**162 -|(% style="text-align:center; vertical-align:middle; width: 121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)(((158 +)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 159 +|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)((( 163 163 Operation setting 164 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((161 +)))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 165 165 Effective immediately 166 -)))|(% style="text-align:center; vertical-align:middle; width:134px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)((( 167 -0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 168 - 169 -1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 170 - 171 -2: Online automatic parameter self-adjusting mode (Not implemented yet) 163 +)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 164 +* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 +* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 +* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 172 172 )))|(% style="text-align:center; vertical-align:middle" %)- 173 173 174 174 Table 7-4 Details of self-adjusting mode selection parameters 175 175 176 -== **Manual gain adjustment**==171 +== Manual gain adjustment == 177 177 178 178 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results. 179 179 ... ... @@ -180,137 +180,137 @@ 180 180 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below. 181 181 182 182 (% style="text-align:center" %) 183 -[[image:image-20220608174209-2.png]] 178 +((( 179 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 180 +[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]] 181 +))) 184 184 185 -Figure 7-2 Basic block diagram of servo loop gain 186 - 187 187 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability! 188 188 189 189 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted. 190 190 191 -This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are arebelow.187 +This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below. 192 192 193 193 (% class="table-bordered" %) 194 -|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name** 195 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain 196 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain 197 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant 198 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain 199 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain 200 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant 201 -|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant 190 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name** 191 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain 192 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain 193 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant 194 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain 195 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain 196 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant 197 +|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant 202 202 203 -** (1)Speed loop gain**199 +**Speed loop gain** 204 204 205 205 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below. 206 206 207 207 (% class="table-bordered" %) 208 -|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:1 51px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)(((204 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 209 209 **Setting method** 210 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((206 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 211 211 **Effective time** 212 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**213 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:1 51px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((208 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 209 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 214 214 Operation setting 215 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((211 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 216 216 Effective immediately 217 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz218 -|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:1 51px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((213 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 214 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 219 219 Operation setting 220 -)))|(% style="text-align:center; vertical-align:middle; width:1 74px" %)(((216 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 221 221 Effective immediately 222 -)))|(% style="text-align:center; vertical-align:middle; width:1 12px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz218 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 223 223 224 224 Table 7-5 Speed loop gain parameters 225 225 226 226 (% style="text-align:center" %) 227 -[[image:image-20220706152743-1.jpeg]] 223 +((( 224 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 225 +[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]] 226 +))) 228 228 229 - Figure 7-3Speed loopgaineffectillustration228 +**Speed loop integral time constant** 230 230 231 -**(2) Speed loop integral time constant** 232 - 233 233 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below. 234 234 235 235 (% class="table-bordered" %) 236 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((233 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 237 237 **Setting method** 238 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((235 +)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)((( 239 239 **Effective time** 240 -)))|(% style="text-align:center; vertical-align:middle; width:1 14px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**241 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)(((237 +)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit** 238 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 242 242 1st speed loop integral time constant 243 -)))|(% style="text-align:center; vertical-align:middle; width:1 32px" %)(((240 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 244 244 Operation setting 245 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((242 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 246 246 Effective immediately 247 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 248 -0.1 249 - 250 -ms 244 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 245 +0.1ms 251 251 ))) 252 -|(% style="text-align:center; vertical-align:middle; width: 126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)(((247 +|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 253 253 2nd speed loop integral time constant 254 -)))|(% style="text-align:center; vertical-align:middle; width:1 32px" %)(((249 +)))|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 255 255 Operation setting 256 -)))|(% style="text-align:center; vertical-align:middle; width:1 61px" %)(((251 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 257 257 Effective immediately 258 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 259 -0.1 260 - 261 -ms 253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 254 +0.1ms 262 262 ))) 263 263 264 264 Table 7-6 Speed loop integral time constant parameters 265 265 266 266 (% style="text-align:center" %) 267 -[[image:image-20220706153140-2.jpeg]] 260 +((( 261 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 262 +[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]] 263 +))) 268 268 269 - Figure7-4 Speedloopintegral time constant effect illustration265 +**Position loop gain** 270 270 271 -**(3) Position loop gain** 272 - 273 273 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. 274 274 275 275 (% class="table-bordered" %) 276 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 277 277 **Setting method** 278 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((272 +)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)((( 279 279 **Effective time** 280 -)))|(% style="text-align:center; vertical-align:middle; width: 120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**281 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((274 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 282 282 Operation setting 283 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((277 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 284 284 Effective immediately 285 -)))|(% style="text-align:center; vertical-align:middle; width: 120px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz286 -|(% style="text-align:center; vertical-align:middle; width: 113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 287 287 Operation setting 288 -)))|(% style="text-align:center; vertical-align:middle; width:1 67px" %)(((282 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 289 289 Effective immediately 290 -)))|(% style="text-align:center; vertical-align:middle; width: 120px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz284 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 291 291 292 292 Table 7-7 Position loop gain parameters 293 293 294 294 (% style="text-align:center" %) 295 -[[image:image-20220706153656-3.jpeg]] 289 +((( 290 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 291 +[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]] 292 +))) 296 296 297 - Figure7-5 Positionloop gain effectillustration294 +**Torque instruction filter time** 298 298 299 -**(4) Torque instruction filter time** 300 - 301 301 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below. 302 302 303 303 (% class="table-bordered" %) 304 -|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:1 41px" %)(((299 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 305 305 **Setting method** 306 -)))|(% style="text-align:center; vertical-align:middle; width:1 80px" %)(((301 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 307 307 **Effective time** 308 -)))|(% style="text-align:center; vertical-align:middle; width: 139px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**309 -|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:1 41px" %)(((303 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 304 +|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 310 310 Operation setting 311 -)))|(% style="text-align:center; vertical-align:middle; width:1 80px" %)(((306 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 312 312 Effective immediately 313 -)))|(% style="text-align:center; vertical-align:middle; width: 139px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms308 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 314 314 315 315 Table 7-8 Details of torque filter time constant parameters 316 316 ... ... @@ -318,137 +318,109 @@ 318 318 319 319 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed. 320 320 321 -Speed feedforward parameters are shown in __ [[Table 7-9>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__.316 +Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__. 322 322 323 323 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration. 324 324 325 325 (% class="table-bordered" %) 326 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description** 327 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)((( 321 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description** 322 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)((( 328 328 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below. 329 329 330 330 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100 331 331 ))) 332 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant 327 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant 333 333 334 334 Table 7-9 Speed feedforward parameters 335 335 336 -[[image:image-20220706155307-4.jpeg]] 331 +(% style="text-align:center" %) 332 +((( 333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]] 335 +))) 337 337 338 -Figure 7-6 Speed feedforward parameters effect illustration 339 339 340 340 (% class="table-bordered" %) 341 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**342 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width: 330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.343 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width: 330px" %)Torque feedforward filtering time constant339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description** 340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point. 341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant 344 344 345 345 Table 7-10 Torque feedforward parameters 346 346 347 -= **Me chanical resonancesuppression** =345 +== **Model Tracking Control Function** == 348 348 349 - == **Mechanical resonance suppression methods**==347 +Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows: 350 350 351 -When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance. 352 - 353 -**(1) Torque instruction filter** 354 - 355 -By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula: 356 - 357 357 (% style="text-align:center" %) 358 -[[image:image-20220706155820-5.jpeg]] 350 +((( 351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 352 +[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]] 353 +))) 359 359 360 - **(2)Notchfilter**355 +The usage method and conditions of model tracking control: 361 361 362 - Thenotch filtercan achievetheexpectationof suppressing mechanicalresonance by reducingthe gainat a specificfrequency. Whensetting thenotchfiltercorrectly, thevibrationcan beeffectively suppressed.You can trytoincreasethe servogain. The principleofthenotch filteris shown in __[[Figure7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.357 +~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20. 363 363 364 - ==**Notchfilter**==359 +2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load). 365 365 366 - TheVD2series servodrives have2 setsofotch filters,eachofwhich has 3 parameters, namelynotch frequency, widthgradeand depth grade.361 +3. Set P2-20=1 to enable the function of model tracking control. 367 367 368 - **(1)Width grade of notch filter**363 +4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter. 369 369 370 - Thenotchwidthgradeisusedtoexpressthe ratio of theotchwidthto thecenterfrequency ofthenotch:365 +5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2. 371 371 372 -(% style="text-align:center" %) 373 -[[image:image-20220706155836-6.png]] 367 +(% class="box infomessage" %) 368 +((( 369 +**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes. 370 +))) 374 374 375 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 376 - 377 -**(2) Depth grade of notch filter** 378 - 379 -The depth grade of notch filter represents the ratio relationship between input and output at center frequency. 380 - 381 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__. 382 - 383 -(% style="text-align:center" %) 384 -[[image:image-20220608174259-3.png]] 385 - 386 -Figure 7-7 Notch characteristics, notch width, and notch depth 387 - 388 -(% style="text-align:center" %) 389 -[[image:image-20220706160046-9.png]] 390 - 391 -Figure 7-8 Frequency characteristics of notch filter 392 - 393 393 (% class="table-bordered" %) 394 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((373 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 395 395 **Setting method** 396 -)))|(% style="text-align:center; vertical-align:middle; width:1 64px" %)(((375 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 397 397 **Effective time** 398 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle;width:248px" %)**Unit**399 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((400 - Operation401 -)))|(% style="text-align:center; vertical-align:middle; width:1 64px" %)(((377 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 379 +Shutdown setting 380 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 402 402 Effective immediately 403 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to5000|(% style="width:391px" %)Setthecenterfrequency ofthe1stnotchfilter. When theset valueis 5000,the function ofnotch filteris invalid.|(%style="text-align:center; vertical-align:middle;width:248px" %)Hz404 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filterdepth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((405 - Operation406 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((382 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.| 383 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 384 +Shutdown setting 385 +)))|((( 407 407 Effective immediately 408 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 409 -0: all truncated 387 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" %)(% style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s 410 410 411 -100: all passed 412 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 413 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 414 -Operation setting 415 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 389 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|Shutdown setting|((( 416 416 Effective immediately 417 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 418 -0: 0.5 times the bandwidth 391 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10% 419 419 420 - 4:1 timesheandwidth421 - 422 - 8: 2timesthe bandwidth423 - 424 - 12: 4timesthe bandwidth425 -)))|(% style="text-align:center; vertical-align:middle; width:2 48px" %)-426 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2ndnotch filter frequency|(% style="text-align:center;vertical-align:middle;width:143px" %)(((393 +(% class="table-bordered" %) 394 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 395 +**Setting method** 396 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 397 +**Effective time** 398 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 399 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|((( 427 427 Operation setting 428 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((401 +)))|((( 429 429 Effective immediately 430 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)2505000|(% style="width:391px" %)Set the centerfrequencyofthe2ndnotchfilter.When the setalueis5000,thefunctionof thenotch filtersinvalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz431 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filterdepth|(%style="text-align:center;vertical-align:middle;width:143px" %)(((403 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 404 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|((( 432 432 Operation setting 433 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((406 +)))|((( 434 434 Effective immediately 435 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 436 -0: all truncated 437 - 438 -100: all passed 439 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 440 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 441 -Operation setting 442 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 408 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|0.10% 409 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|((( 443 443 Effective immediately 444 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 445 -0: 0.5 times the bandwidth 411 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 446 446 447 - 4:1timesthebandwidth413 +Please refer to the following for an example of the procedure of adjusting servo gain. 448 448 449 -8: 2 times the bandwidth 450 - 451 -12: 4 times the bandwidth 452 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 453 - 454 -Table 7-11 Notch filter function code parameters 415 +|**Step**|** Content** 416 +|1|Please try to set the correct load inertia ratio parameter P3-1. 417 +|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot. 418 +|3|Turn on the model tracking function, set P2-20 to 1. 419 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring. 420 +|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2. 421 +|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
- 20230515-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.3 KB - Content
- 20230515-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +9.9 KB - Content
- 20230515-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.5 KB - Content
- 20230515-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.7 KB - Content
- image-20230515140641-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.1 KB - Content
- image-20230515140641-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.9 KB - Content
- image-20230515140641-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.8 KB - Content
- image-20230515140641-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.0 KB - Content
- image-20230515140641-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +20.5 KB - Content
- image-20230515140641-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.1 KB - Content
- image-20230515140641-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.4 KB - Content
- image-20230515140641-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.4 KB - Content
- image-20230515140953-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.7 KB - Content
- image-20230515140953-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.1 KB - Content
- image-20230515140953-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +14.5 KB - Content
- image-20230515140953-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.4 KB - Content