Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -3,25 +3,21 @@ 3 3 The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1. 4 4 5 5 (% style="text-align:center" %) 6 -((( 7 -(% class="wikigeneratedid" style="display:inline-block" %) 8 -[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 -))) 6 +[[image:image-20220608174118-1.png]] 10 10 8 +Figure 7-1 Gain adjustment process 9 + 11 11 The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered. 12 12 13 -(% class="box infomessage" %) 14 -((( 15 15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below. 16 -))) 17 17 18 18 (% class="table-bordered" %) 19 -| =(% colspan="3" style="text-align:;" %)**Gain adjustment process**|=(% style="text-align:;" %)**Function**|=(% style="text-align:;" %)**Detailed chapter**20 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>> ||anchor="HInertiarecognition"]]__21 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>> ||anchor="HAutomaticgainadjustment"]]__22 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>> ||anchor="HManualgainadjustment"]]__23 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>> ||anchor="HFeedforwardgain"]]__24 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>> ||anchor="HMechanicalresonancesuppressionmethods"]]__15 +|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter** 16 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__ 17 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__ 18 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__ 19 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__ 20 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__ 25 25 26 26 Table 7-1 Description of gain adjustment process 27 27 ... ... @@ -41,34 +41,41 @@ 41 41 |((( 42 42 **Before performing online load inertia recognition, the following conditions should be met:** 43 43 44 -* The maximum speed of the motor should be greater than 300rpm; 45 -* The actual load inertia ratio is between 0.00 and 100.00; 46 -* The load torque is relatively stable, and the load cannot change drastically during the measurement process; 47 -* The backlash of the load transmission mechanism is within a certain range; 40 +The maximum speed of the motor should be greater than 300rpm; 48 48 42 +The actual load inertia ratio is between 0.00 and 100.00; 43 + 44 +The load torque is relatively stable, and the load cannot change drastically during the measurement process; 45 + 46 +The backlash of the load transmission mechanism is within a certain range; 47 + 49 49 **The motor's runable stroke should meet two requirements:** 50 50 51 -* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 52 -* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 53 -* Meet the requirement of inertia recognition turns P03-05. 54 -* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 55 -* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately. 50 +There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches. 51 + 52 +Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents. 53 + 54 +Meet the requirement of inertia recognition turns P03-05. 55 + 56 +Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced. 57 + 58 +During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately. 56 56 ))) 57 57 58 58 The related function codes are shown in the table below. 59 59 60 60 (% class="table-bordered" %) 61 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Name**|=(% style="text-align:;" %)(((64 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 62 62 **Setting method** 63 -)))| =(% style="text-align:;" %)(((66 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 64 64 **Effective time** 65 -)))| =(% style="text-align:;" %)**Default value**|=(% style="text-align:;" %)**Range**|=(% style="text-align:;" %)**Definition**|=(% style="text-align:;" %)**Unit**66 -| =(% style="text-align:;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((68 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 69 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 67 67 Operation setting 68 68 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 69 69 Effective immediately 70 70 )))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01 71 -| =(% style="text-align:;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((74 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 72 72 Inertia recognition turns 73 73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 74 74 Shutdown setting ... ... @@ -75,7 +75,7 @@ 75 75 )))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 76 76 Effective immediately 77 77 )))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle 78 -| =(% style="text-align:;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((81 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 79 79 Inertia recognition maximum speed 80 80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 81 81 Shutdown setting ... ... @@ -86,7 +86,7 @@ 86 86 87 87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value. 88 88 )))|(% style="text-align:center; vertical-align:middle" %)rpm 89 -| =(% style="text-align:;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((92 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 90 90 Parameter recognition rotation direction 91 91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 92 92 Shutdown setting ... ... @@ -110,7 +110,7 @@ 110 110 111 111 The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first. 112 112 113 -== Automatic gain adjustment == 116 +== **Automatic gain adjustment** == 114 114 115 115 Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability. 116 116 ... ... @@ -123,10 +123,10 @@ 123 123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 124 124 125 125 (% class="table-bordered" %) 126 -| =(% scope="row" style="text-align:;" %)**Rigidity grade**|=(% style="text-align:;" %)**Load mechanism type**127 -| =(% style="text-align:;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery128 -| =(% style="text-align:;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts129 -| =(% style="text-align:;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection129 +|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type** 130 +|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery 131 +|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts 132 +|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection 130 130 131 131 Table 7-3 Experience reference of rigidity grade 132 132 ... ... @@ -151,24 +151,26 @@ 151 151 ))) 152 152 153 153 (% class="table-bordered" %) 154 -|(% style="text-align:center; vertical-align:middle; width: 84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)(((157 +|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 155 155 **Setting method** 156 -)))|(% style="text-align:center; vertical-align:middle; width:1 29px" %)(((159 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 157 157 **Effective time** 158 -)))|(% style="text-align:center; vertical-align:middle; width: 95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**159 -|(% style="text-align:center; vertical-align:middle; width: 84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)(((161 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 162 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 160 160 Operation setting 161 -)))|(% style="text-align:center; vertical-align:middle; width:1 29px" %)(((164 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 162 162 Effective immediately 163 -)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)((( 164 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 166 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)((( 167 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 168 + 169 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 170 + 171 +2: Online automatic parameter self-adjusting mode (Not implemented yet) 167 167 )))|(% style="text-align:center; vertical-align:middle" %)- 168 168 169 169 Table 7-4 Details of self-adjusting mode selection parameters 170 170 171 -== Manual gain adjustment == 176 +== **Manual gain adjustment** == 172 172 173 173 When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results. 174 174 ... ... @@ -175,11 +175,10 @@ 175 175 The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below. 176 176 177 177 (% style="text-align:center" %) 178 -((( 179 -(% class="wikigeneratedid" style="display:inline-block" %) 180 -[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]] 181 -))) 183 +[[image:image-20220608174209-2.png]] 182 182 185 +Figure 7-2 Basic block diagram of servo loop gain 186 + 183 183 The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability! 184 184 185 185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted. ... ... @@ -187,125 +187,126 @@ 187 187 This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below. 188 188 189 189 (% class="table-bordered" %) 190 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Name**191 -| =(% style="text-align:;" %)P02-01|(% style="width:751px" %)The 1st position loop gain192 -| =(% style="text-align:;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain193 -| =(% style="text-align:;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant194 -| =(% style="text-align:;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain195 -| =(% style="text-align:;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain196 -| =(% style="text-align:;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant197 -| =(% style="text-align:;" %)P04-04|(% style="width:751px" %)Torque filter time constant194 +|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name** 195 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain 196 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain 197 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant 198 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain 199 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain 200 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant 201 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant 198 198 199 -**Speed loop gain** 203 +**(1) Speed loop gain** 200 200 201 201 In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below. 202 202 203 203 (% class="table-bordered" %) 204 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:63px;" %)**Name**|=(% style="text-align:22px;" %)(((208 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:151px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)((( 205 205 **Setting method** 206 -)))| =(% style="text-align:28px;" %)(((210 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 207 207 **Effective time** 208 -)))| =(% style="text-align:03px;" %)**Default value**|=(% style="text-align:107px;" %)**Range**|=(% style="text-align:;" %)**Definition**|=(% style="text-align:;" %)**Unit**209 -| =(% style="text-align:;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((212 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 213 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:151px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)((( 210 210 Operation setting 211 -)))|(% style="text-align:center; vertical-align:middle; width:1 28px" %)(((215 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 212 212 Effective immediately 213 -)))|(% style="text-align:center; vertical-align:middle; width:1 03px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz214 -| =(% style="text-align:;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((217 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 218 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:151px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)((( 215 215 Operation setting 216 -)))|(% style="text-align:center; vertical-align:middle; width:1 28px" %)(((220 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)((( 217 217 Effective immediately 218 -)))|(% style="text-align:center; vertical-align:middle; width:1 03px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz222 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 219 219 220 220 Table 7-5 Speed loop gain parameters 221 221 222 222 (% style="text-align:center" %) 223 -((( 224 -(% class="wikigeneratedid" style="display:inline-block" %) 225 -[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]] 226 -))) 227 +[[image:image-20220706152743-1.jpeg]] 227 227 228 - **Speed loopintegral timeonstant**229 +Figure 7-3 Speed loop gain effect illustration 229 229 231 +**(2) Speed loop integral time constant** 232 + 230 230 The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below. 231 231 232 232 (% class="table-bordered" %) 233 -| =(% scope="row" style="text-align:98px;" %)**Function code**|=(% style="text-align:73px;" %)**Name**|=(% style="text-align:2px;" %)(((236 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 234 234 **Setting method** 235 -)))| =(% style="text-align:2px;" %)(((238 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 236 236 **Effective time** 237 -)))| =(% style="text-align:09px;" %)**Default value**|=(% style="text-align:14px;" %)**Range**|=(% style="text-align:278px;" %)**Definition**|=(% style="text-align:; width: 78px;" %)**Unit**238 -| =(% style="text-align:98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((240 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 241 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)((( 239 239 1st speed loop integral time constant 240 -)))|(% style="text-align:center; vertical-align:middle; width:12 2px" %)(((243 +)))|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 241 241 Operation setting 242 -)))|(% style="text-align:center; vertical-align:middle; width:11 2px" %)(((245 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 243 243 Effective immediately 244 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 245 -0.1ms 247 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 248 +0.1 249 + 250 +ms 246 246 ))) 247 -| =(% style="text-align:98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((252 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)((( 248 248 2nd speed loop integral time constant 249 -)))|(% style="text-align:center; vertical-align:middle; width:12 2px" %)(((254 +)))|(% style="text-align:center; vertical-align:middle; width:132px" %)((( 250 250 Operation setting 251 -)))|(% style="text-align:center; vertical-align:middle; width:11 2px" %)(((256 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)((( 252 252 Effective immediately 253 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 254 -0.1ms 258 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)((( 259 +0.1 260 + 261 +ms 255 255 ))) 256 256 257 257 Table 7-6 Speed loop integral time constant parameters 258 258 259 259 (% style="text-align:center" %) 260 -((( 261 -(% class="wikigeneratedid" style="display:inline-block" %) 262 -[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]] 263 -))) 267 +[[image:image-20220706153140-2.jpeg]] 264 264 265 - **Positionloop gain**269 +Figure 7-4 Speed loop integral time constant effect illustration 266 266 271 +**(3) Position loop gain** 272 + 267 267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. 268 268 269 269 (% class="table-bordered" %) 270 -| =(% scope="row" style="text-align:95px;" %)**Function code**|=(% style="text-align:59px;" %)**Name**|=(% style="text-align:14px;" %)(((276 +|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 271 271 **Setting method** 272 -)))| =(% style="text-align:08px;" %)(((278 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 273 273 **Effective time** 274 -)))| =(% style="text-align:8px;" %)**Default value**|=(% style="text-align:114px;" %)**Range**|=(% style="text-align:;" %)**Definition**|=(% style="text-align:;" %)**Unit**275 -| =(% style="text-align:95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((280 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 281 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 276 276 Operation setting 277 -)))|(% style="text-align:center; vertical-align:middle; width:1 08px" %)(((283 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 278 278 Effective immediately 279 -)))|(% style="text-align:center; vertical-align:middle; width:10 8px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz280 -| =(% style="text-align:95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((285 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 286 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)((( 281 281 Operation setting 282 -)))|(% style="text-align:center; vertical-align:middle; width:1 08px" %)(((288 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)((( 283 283 Effective immediately 284 -)))|(% style="text-align:center; vertical-align:middle; width:10 8px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz290 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 285 285 286 286 Table 7-7 Position loop gain parameters 287 287 288 288 (% style="text-align:center" %) 289 -((( 290 -(% class="wikigeneratedid" style="display:inline-block" %) 291 -[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]] 292 -))) 295 +[[image:image-20220706153656-3.jpeg]] 293 293 294 - **Torqueinstruction filterme**297 +Figure 7-5 Position loop gain effect illustration 295 295 299 +**(4) Torque instruction filter time** 300 + 296 296 Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below. 297 297 298 298 (% class="table-bordered" %) 299 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Name**|=(% style="text-align:20px;" %)(((304 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 300 300 **Setting method** 301 -)))| =(% style="text-align:33px;" %)(((306 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 302 302 **Effective time** 303 -)))| =(% style="text-align:42px;" %)**Default value**|=(% style="text-align:28px;" %)**Definition**|=(% style="text-align:;" %)**Unit**304 -| =(% style="text-align:;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((308 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 309 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:141px" %)((( 305 305 Operation setting 306 -)))|(% style="text-align:center; vertical-align:middle; width:1 33px" %)(((311 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)((( 307 307 Effective immediately 308 -)))|(% style="text-align:center; vertical-align:middle; width:1 42px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms313 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 309 309 310 310 Table 7-8 Details of torque filter time constant parameters 311 311 ... ... @@ -313,18 +313,18 @@ 313 313 314 314 Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed. 315 315 316 -Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__. 321 +Speed feedforward parameters are shown in __[[Table 7-9>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. 317 317 318 318 Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration. 319 319 320 320 (% class="table-bordered" %) 321 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Name**|=(% style="text-align:;" %)**Adjustment description**322 -| =(% style="text-align:;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((326 +|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description** 327 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)((( 323 323 When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below. 324 324 325 325 Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100 326 326 ))) 327 -| =(% style="text-align:;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant332 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant 328 328 329 329 Table 7-9 Speed feedforward parameters 330 330 ... ... @@ -367,7 +367,7 @@ 367 367 (% style="text-align:center" %) 368 368 [[image:image-20220706155836-6.png]] 369 369 370 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 375 +In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 371 371 372 372 **(2) Depth grade of notch filter** 373 373