Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 16.5
edited by Stone Wu
on 2022/08/30 11:22
Change comment: There is no comment for this version
To version 17.1
edited by Stone Wu
on 2022/08/30 11:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -328,24 +328,27 @@
328 328  
329 329  Table 7-9 Speed feedforward parameters
330 330  
331 -[[image:image-20220706155307-4.jpeg]]
331 +(% style="text-align:center" %)
332 +(((
333 +(% class="wikigeneratedid" style="display:inline-block" %)
334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||id="Iimage-20220706155307-4.jpeg"]]
335 +)))
332 332  
333 -Figure 7-6 Speed feedforward parameters effect illustration
334 334  
335 335  (% class="table-bordered" %)
336 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
337 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
338 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
339 339  
340 340  Table 7-10 Torque feedforward parameters
341 341  
342 342  = **Mechanical resonance suppression** =
343 343  
344 -== **Mechanical resonance suppression methods** ==
347 +== Mechanical resonance suppression methods ==
345 345  
346 346  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
347 347  
348 -**(1) Torque instruction filter**
351 +**Torque instruction filter**
349 349  
350 350  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
351 351  
... ... @@ -352,15 +352,15 @@
352 352  (% style="text-align:center" %)
353 353  [[image:image-20220706155820-5.jpeg]]
354 354  
355 -**(2) Notch filter**
358 +**Notch filter**
356 356  
357 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.
360 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
358 358  
359 -== **Notch filter** ==
362 +== Notch filter ==
360 360  
361 361  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
362 362  
363 -**(1) Width grade of notch filter**
366 +**Width grade of notch filter**
364 364  
365 365  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
366 366  
... ... @@ -369,11 +369,11 @@
369 369  
370 370  In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
371 371  
372 -**(2) Depth grade of notch filter**
375 +**Depth grade of notch filter**
373 373  
374 374  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
375 375  
376 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__.
379 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
377 377  
378 378  (% style="text-align:center" %)
379 379  [[image:image-20220608174259-3.png]]
... ... @@ -386,64 +386,56 @@
386 386  Figure 7-8 Frequency characteristics of notch filter
387 387  
388 388  (% class="table-bordered" %)
389 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
392 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
390 390  **Setting method**
391 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
394 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
392 392  **Effective time**
393 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit**
394 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
396 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
397 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
395 395  Operation setting
396 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
399 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
397 397  Effective immediately
398 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
399 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
401 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
402 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
400 400  Operation setting
401 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
404 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
402 402  Effective immediately
403 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
404 -0: all truncated
405 -
406 -100: all passed
407 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
408 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
406 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
407 +1. 0: all truncated
408 +1. 100: all passed
409 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
410 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
409 409  Operation setting
410 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
412 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
411 411  Effective immediately
412 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
413 -0: 0.5 times the bandwidth
414 -
415 -4: 1 times the bandwidth
416 -
417 -8: 2 times the bandwidth
418 -
419 -12: 4 times the bandwidth
420 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
421 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
414 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
415 +1. 0: 0.5 times the bandwidth
416 +1. 4: 1 times the bandwidth
417 +1. 8: 2 times the bandwidth
418 +1. 12: 4 times the bandwidth
419 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
420 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
422 422  Operation setting
423 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
422 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
424 424  Effective immediately
425 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
426 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
424 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
425 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
427 427  Operation setting
428 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
427 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
429 429  Effective immediately
430 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
431 -0: all truncated
432 -
433 -100: all passed
434 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
435 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
430 +1. 0: all truncated
431 +1. 100: all passed
432 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
433 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
436 436  Operation setting
437 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
435 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
438 438  Effective immediately
439 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
440 -0: 0.5 times the bandwidth
437 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
438 +1. 0: 0.5 times the bandwidth
439 +1. 4: 1 times the bandwidth
440 +1. 8: 2 times the bandwidth
441 +1. 12: 4 times the bandwidth
442 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
441 441  
442 -4: 1 times the bandwidth
443 -
444 -8: 2 times the bandwidth
445 -
446 -12: 4 times the bandwidth
447 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
448 -
449 449  Table 7-11 Notch filter function code parameters