Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 16.5
edited by Stone Wu
on 2022/08/30 11:22
Change comment: There is no comment for this version
To version 18.1
edited by Stone Wu
on 2022/09/23 14:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  (% style="text-align:center" %)
6 6  (((
7 -(% class="wikigeneratedid" style="display:inline-block" %)
7 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
8 8  [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 9  )))
10 10  
... ... @@ -15,7 +15,7 @@
15 15  ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 16  )))
17 17  
18 -(% class="table-bordered" %)
18 +(% class="table-bordered" style="margin-right:auto" %)
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
... ... @@ -30,11 +30,11 @@
30 30  Load inertia ratio P03-01 refers to:
31 31  
32 32  (% style="text-align:center" %)
33 -[[image:image-20220611152902-1.png]]
33 +[[image:image-20220611152902-1.png||class="img-thumbnail"]]
34 34  
35 35  The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36 36  
37 -|(((
37 +(% class="warning" %)|(((
38 38  (% style="text-align:center" %)
39 39  [[image:image-20220611152918-2.png]]
40 40  )))
... ... @@ -60,28 +60,28 @@
60 60  (% class="table-bordered" %)
61 61  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
62 62  **Setting method**
63 -)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)(((
63 +)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
64 64  **Effective time**
65 -)))|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
65 +)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 66  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
67 67  Operation setting
68 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
68 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
69 69  Effective immediately
70 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
70 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 71  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
72 72  Inertia recognition turns
73 73  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 74  Shutdown setting
75 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
75 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
76 76  Effective immediately
77 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
77 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 78  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
79 79  Inertia recognition maximum speed
80 80  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 81  Shutdown setting
82 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
82 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
83 83  Effective immediately
84 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
84 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
85 85  Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86 86  
87 87  The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
... ... @@ -90,9 +90,9 @@
90 90  Parameter recognition rotation direction
91 91  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 92  Shutdown setting
93 -)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
93 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
94 94  Effective immediately
95 -)))|(% style="text-align:center; vertical-align:middle; width:117px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
95 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
96 96  0: Forward and reverse reciprocating rotation
97 97  
98 98  1: Forward one-way rotation
... ... @@ -116,9 +116,9 @@
116 116  
117 117  The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118 118  
119 -(% class="table-bordered" %)
120 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 -|(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
119 +(% class="table-bordered" style="margin-right:auto" %)
120 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122 122  
123 123  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124 124  
... ... @@ -143,7 +143,7 @@
143 143  * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
144 144  
145 145  (% class="table-bordered" %)
146 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
146 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
147 147  |(((
148 148  ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149 149  
... ... @@ -151,16 +151,16 @@
151 151  )))
152 152  
153 153  (% class="table-bordered" %)
154 -|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
154 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
155 155  **Setting method**
156 -)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
156 +)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
157 157  **Effective time**
158 -)))|(% style="text-align:center; vertical-align:middle; width:95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
159 -|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
158 +)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 +|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
160 160  Operation setting
161 -)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
161 +)))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
162 162  Effective immediately
163 -)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((
163 +)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 164  * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 165  * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 166  * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
... ... @@ -176,7 +176,7 @@
176 176  
177 177  (% style="text-align:center" %)
178 178  (((
179 -(% class="wikigeneratedid" style="display:inline-block" %)
179 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
180 180  [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 181  )))
182 182  
... ... @@ -221,7 +221,7 @@
221 221  
222 222  (% style="text-align:center" %)
223 223  (((
224 -(% class="wikigeneratedid" style="display:inline-block" %)
224 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
225 225  [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 226  )))
227 227  
... ... @@ -258,7 +258,7 @@
258 258  
259 259  (% style="text-align:center" %)
260 260  (((
261 -(% class="wikigeneratedid" style="display:inline-block" %)
261 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
262 262  [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 263  )))
264 264  
... ... @@ -267,27 +267,27 @@
267 267  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268 268  
269 269  (% class="table-bordered" %)
270 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 159px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
271 271  **Setting method**
272 -)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
272 +)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
273 273  **Effective time**
274 -)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
274 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
276 276  Operation setting
277 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
277 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
278 278  Effective immediately
279 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
281 281  Operation setting
282 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
283 283  Effective immediately
284 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
284 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
285 285  
286 286  Table 7-7 Position loop gain parameters
287 287  
288 288  (% style="text-align:center" %)
289 289  (((
290 -(% class="wikigeneratedid" style="display:inline-block" %)
290 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
291 291  [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 292  )))
293 293  
... ... @@ -298,14 +298,14 @@
298 298  (% class="table-bordered" %)
299 299  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
300 300  **Setting method**
301 -)))|=(% style="text-align: center; vertical-align: middle; width: 133px;" %)(((
301 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
302 302  **Effective time**
303 -)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
303 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 304  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
305 305  Operation setting
306 -)))|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
306 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
307 307  Effective immediately
308 -)))|(% style="text-align:center; vertical-align:middle; width:142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
308 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309 309  
310 310  Table 7-8 Details of torque filter time constant parameters
311 311  
... ... @@ -328,122 +328,121 @@
328 328  
329 329  Table 7-9 Speed feedforward parameters
330 330  
331 -[[image:image-20220706155307-4.jpeg]]
331 +(% style="text-align:center" %)
332 +(((
333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
335 +)))
332 332  
333 -Figure 7-6 Speed feedforward parameters effect illustration
334 334  
335 335  (% class="table-bordered" %)
336 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
337 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
338 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
339 339  
340 340  Table 7-10 Torque feedforward parameters
341 341  
342 342  = **Mechanical resonance suppression** =
343 343  
344 -== **Mechanical resonance suppression methods** ==
347 +== Mechanical resonance suppression methods ==
345 345  
346 346  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
347 347  
348 -**(1) Torque instruction filter**
351 +**Torque instruction filter**
349 349  
350 350  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
351 351  
352 352  (% style="text-align:center" %)
353 -[[image:image-20220706155820-5.jpeg]]
356 +[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
354 354  
355 -**(2) Notch filter**
358 +**Notch filter**
356 356  
357 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.
360 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
358 358  
359 -== **Notch filter** ==
362 +== Notch filter ==
360 360  
361 361  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
362 362  
363 -**(1) Width grade of notch filter**
366 +**Width grade of notch filter**
364 364  
365 365  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
366 366  
367 367  (% style="text-align:center" %)
368 -[[image:image-20220706155836-6.png]]
371 +[[image:image-20220706155836-6.png||class="img-thumbnail"]]
369 369  
370 370  In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
371 371  
372 -**(2) Depth grade of notch filter**
375 +**Depth grade of notch filter**
373 373  
374 374  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
375 375  
376 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__.
379 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
377 377  
378 378  (% style="text-align:center" %)
379 -[[image:image-20220608174259-3.png]]
382 +(((
383 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
384 +[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
385 +)))
380 380  
381 -Figure 7-7 Notch characteristics, notch width, and notch depth
382 382  
383 383  (% style="text-align:center" %)
384 -[[image:image-20220706160046-9.png]]
389 +(((
390 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
391 +[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
392 +)))
385 385  
386 -Figure 7-8 Frequency characteristics of notch filter
387 387  
388 388  (% class="table-bordered" %)
389 -|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
396 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
390 390  **Setting method**
391 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
398 +)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
392 392  **Effective time**
393 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit**
394 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
400 +)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
401 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
395 395  Operation setting
396 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
403 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
397 397  Effective immediately
398 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
399 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
405 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
406 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
400 400  Operation setting
401 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
408 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
402 402  Effective immediately
403 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
404 -0: all truncated
405 -
406 -100: all passed
407 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
408 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
410 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
411 +1. 0: all truncated
412 +1. 100: all passed
413 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
414 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
409 409  Operation setting
410 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
416 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
411 411  Effective immediately
412 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
413 -0: 0.5 times the bandwidth
414 -
415 -4: 1 times the bandwidth
416 -
417 -8: 2 times the bandwidth
418 -
419 -12: 4 times the bandwidth
420 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
421 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
418 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
419 +1. 0: 0.5 times the bandwidth
420 +1. 4: 1 times the bandwidth
421 +1. 8: 2 times the bandwidth
422 +1. 12: 4 times the bandwidth
423 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
424 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
422 422  Operation setting
423 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
426 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
424 424  Effective immediately
425 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
426 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
428 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
429 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
427 427  Operation setting
428 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
431 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
429 429  Effective immediately
430 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
431 -0: all truncated
432 -
433 -100: all passed
434 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
435 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
433 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
434 +1. 0: all truncated
435 +1. 100: all passed
436 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
437 +|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
436 436  Operation setting
437 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
439 +)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
438 438  Effective immediately
439 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
440 -0: 0.5 times the bandwidth
441 +)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
442 +1. 0: 0.5 times the bandwidth
443 +1. 4: 1 times the bandwidth
444 +1. 8: 2 times the bandwidth
445 +1. 12: 4 times the bandwidth
446 +)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
441 441  
442 -4: 1 times the bandwidth
443 -
444 -8: 2 times the bandwidth
445 -
446 -12: 4 times the bandwidth
447 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
448 -
449 449  Table 7-11 Notch filter function code parameters