Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- 20230515-10.png
- 20230515-7.png
- 20230515-8.png
- 20230515-9.png
- image-20230515140641-1.png
- image-20230515140641-2.png
- image-20230515140641-3.png
- image-20230515140641-4.png
- image-20230515140641-5.png
- image-20230515140641-6.png
- image-20230515140641-7.png
- image-20230515140641-8.png
- image-20230515140953-10.png
- image-20230515140953-11.png
- image-20230515140953-12.png
- image-20230515140953-9.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Stone1 +XWiki.Karen - Content
-
... ... @@ -4,7 +4,7 @@ 4 4 5 5 (% style="text-align:center" %) 6 6 ((( 7 -(% class="wikigeneratedid" style="display:inline-block" %) 7 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 8 8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 9 ))) 10 10 ... ... @@ -15,7 +15,7 @@ 15 15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below. 16 16 ))) 17 17 18 -(% class="table-bordered" %) 18 +(% class="table-bordered" style="margin-right:auto" %) 19 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ ... ... @@ -30,11 +30,11 @@ 30 30 Load inertia ratio P03-01 refers to: 31 31 32 32 (% style="text-align:center" %) 33 -[[image:image-20220611152902-1.png]] 33 +[[image:image-20220611152902-1.png||class="img-thumbnail"]] 34 34 35 35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software. 36 36 37 -|((( 37 +(% class="warning" %)|((( 38 38 (% style="text-align:center" %) 39 39 [[image:image-20220611152918-2.png]] 40 40 ))) ... ... @@ -60,28 +60,28 @@ 60 60 (% class="table-bordered" %) 61 61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)((( 62 62 **Setting method** 63 -)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)(((63 +)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)((( 64 64 **Effective time** 65 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 17px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**65 +)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 66 66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 67 67 Operation setting 68 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((68 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 69 69 Effective immediately 70 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.0170 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01 71 71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 72 72 Inertia recognition turns 73 73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 74 74 Shutdown setting 75 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((75 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 76 76 Effective immediately 77 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle77 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle 78 78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 79 79 Inertia recognition maximum speed 80 80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 81 81 Shutdown setting 82 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((82 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 83 83 Effective immediately 84 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((84 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)((( 85 85 Set the allowable maximum motor speed instruction in offline inertia recognition mode. 86 86 87 87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value. ... ... @@ -90,9 +90,9 @@ 90 90 Parameter recognition rotation direction 91 91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 92 92 Shutdown setting 93 -)))|(% style="text-align:center; vertical-align:middle; width: 213px" %)(((93 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)((( 94 94 Effective immediately 95 -)))|(% style="text-align:center; vertical-align:middle; width:1 17px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((95 +)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)((( 96 96 0: Forward and reverse reciprocating rotation 97 97 98 98 1: Forward one-way rotation ... ... @@ -116,9 +116,9 @@ 116 116 117 117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system. 118 118 119 -(% class="table-bordered" %) 120 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 121 -|(% style="text-align: center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.119 +(% class="table-bordered" style="margin-right:auto" %) 120 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 122 122 123 123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 124 124 ... ... @@ -143,7 +143,7 @@ 143 143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 144 144 145 145 (% class="table-bordered" %) 146 -|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 146 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 147 147 |((( 148 148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine! 149 149 ... ... @@ -151,16 +151,16 @@ 151 151 ))) 152 152 153 153 (% class="table-bordered" %) 154 -|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:1 22px" %)(((154 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)((( 155 155 **Setting method** 156 -)))|(% style="text-align:center; vertical-align:middle; width:1 29px" %)(((156 +)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)((( 157 157 **Effective time** 158 -)))|(% style="text-align:center; vertical-align:middle; width: 95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**159 -|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:1 22px" %)(((158 +)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 159 +|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)((( 160 160 Operation setting 161 -)))|(% style="text-align:center; vertical-align:middle; width:1 29px" %)(((161 +)))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 162 162 Effective immediately 163 -)))|(% style="text-align:center; vertical-align:middle; width: 95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((163 +)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 164 164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet) ... ... @@ -176,7 +176,7 @@ 176 176 177 177 (% style="text-align:center" %) 178 178 ((( 179 -(% class="wikigeneratedid" style="display:inline-block" %) 179 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 180 180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]] 181 181 ))) 182 182 ... ... @@ -184,7 +184,7 @@ 184 184 185 185 The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted. 186 186 187 -This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are arebelow.187 +This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below. 188 188 189 189 (% class="table-bordered" %) 190 190 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name** ... ... @@ -221,7 +221,7 @@ 221 221 222 222 (% style="text-align:center" %) 223 223 ((( 224 -(% class="wikigeneratedid" style="display:inline-block" %) 224 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 225 225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]] 226 226 ))) 227 227 ... ... @@ -258,7 +258,7 @@ 258 258 259 259 (% style="text-align:center" %) 260 260 ((( 261 -(% class="wikigeneratedid" style="display:inline-block" %) 261 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 262 262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]] 263 263 ))) 264 264 ... ... @@ -267,27 +267,27 @@ 267 267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. 268 268 269 269 (% class="table-bordered" %) 270 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 1 59px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 271 271 **Setting method** 272 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 08px;" %)(((272 +)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)((( 273 273 **Effective time** 274 -)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**275 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:1 59px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((274 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 276 276 Operation setting 277 -)))|(% style="text-align:center; vertical-align:middle; width:1 08px" %)(((277 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 278 278 Effective immediately 279 -)))|(% style="text-align:center; vertical-align:middle; width: 108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz280 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:1 59px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 281 281 Operation setting 282 -)))|(% style="text-align:center; vertical-align:middle; width:1 08px" %)(((282 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 283 283 Effective immediately 284 -)))|(% style="text-align:center; vertical-align:middle; width: 108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz284 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 285 285 286 286 Table 7-7 Position loop gain parameters 287 287 288 288 (% style="text-align:center" %) 289 289 ((( 290 -(% class="wikigeneratedid" style="display:inline-block" %) 290 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 291 291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]] 292 292 ))) 293 293 ... ... @@ -298,14 +298,14 @@ 298 298 (% class="table-bordered" %) 299 299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 300 300 **Setting method** 301 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 33px;" %)(((301 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 302 302 **Effective time** 303 -)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**303 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 304 304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 305 305 Operation setting 306 -)))|(% style="text-align:center; vertical-align:middle; width:1 33px" %)(((306 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 307 307 Effective immediately 308 -)))|(% style="text-align:center; vertical-align:middle; width: 142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms308 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 309 309 310 310 Table 7-8 Details of torque filter time constant parameters 311 311 ... ... @@ -328,122 +328,94 @@ 328 328 329 329 Table 7-9 Speed feedforward parameters 330 330 331 -[[image:image-20220706155307-4.jpeg]] 331 +(% style="text-align:center" %) 332 +((( 333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]] 335 +))) 332 332 333 -Figure 7-6 Speed feedforward parameters effect illustration 334 334 335 335 (% class="table-bordered" %) 336 -|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width: 330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**337 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width: 330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.338 -|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width: 330px" %)Torque feedforward filtering time constant339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description** 340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point. 341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant 339 339 340 340 Table 7-10 Torque feedforward parameters 341 341 342 -= **Me chanical resonancesuppression** =345 +== **Model Tracking Control Function** == 343 343 344 - == **Mechanical resonance suppression methods**==347 +Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows: 345 345 346 -When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance. 347 - 348 -**(1) Torque instruction filter** 349 - 350 -By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula: 351 - 352 352 (% style="text-align:center" %) 353 -[[image:image-20220706155820-5.jpeg]] 350 +((( 351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 352 +[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]] 353 +))) 354 354 355 - **(2)Notchfilter**355 +The usage method and conditions of model tracking control: 356 356 357 - Thenotch filtercan achievetheexpectationof suppressing mechanicalresonance by reducingthe gainat a specificfrequency. Whensetting thenotchfiltercorrectly, thevibrationcan beeffectively suppressed.You can trytoincreasethe servogain. The principleofthenotch filteris shown in __[[Figure7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.357 +~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20. 358 358 359 - ==**Notchfilter**==359 +2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load). 360 360 361 - TheVD2series servodrives have2 setsofotch filters,eachofwhich has 3 parameters, namelynotch frequency, widthgradeand depth grade.361 +3. Set P2-20=1 to enable the function of model tracking control. 362 362 363 - **(1)Width grade of notch filter**363 +4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter. 364 364 365 - Thenotchwidthgradeisusedtoexpressthe ratio of theotchwidthto thecenterfrequency ofthenotch:365 +5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2. 366 366 367 -(% style="text-align:center" %) 368 -[[image:image-20220706155836-6.png]] 367 +(% class="box infomessage" %) 368 +((( 369 +**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes. 370 +))) 369 369 370 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 371 - 372 -**(2) Depth grade of notch filter** 373 - 374 -The depth grade of notch filter represents the ratio relationship between input and output at center frequency. 375 - 376 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__. 377 - 378 -(% style="text-align:center" %) 379 -[[image:image-20220608174259-3.png]] 380 - 381 -Figure 7-7 Notch characteristics, notch width, and notch depth 382 - 383 -(% style="text-align:center" %) 384 -[[image:image-20220706160046-9.png]] 385 - 386 -Figure 7-8 Frequency characteristics of notch filter 387 - 388 388 (% class="table-bordered" %) 389 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((373 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 390 390 **Setting method** 391 -)))|(% style="text-align:center; vertical-align:middle; width:1 64px" %)(((375 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 392 392 **Effective time** 393 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle;width:248px" %)**Unit**394 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((395 - Operation396 -)))|(% style="text-align:center; vertical-align:middle; width:1 64px" %)(((377 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 379 +Shutdown setting 380 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 397 397 Effective immediately 398 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to5000|(% style="width:391px" %)Setthecenterfrequency ofthe1stnotchfilter. When theset valueis 5000,the function ofnotch filteris invalid.|(%style="text-align:center; vertical-align:middle;width:248px" %)Hz399 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filterdepth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((400 - Operation401 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((382 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.| 383 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 384 +Shutdown setting 385 +)))|((( 402 402 Effective immediately 403 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 404 -0: all truncated 387 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" %)(% style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s 405 405 406 -100: all passed 407 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 408 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 409 -Operation setting 410 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 389 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|Shutdown setting|((( 411 411 Effective immediately 412 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 413 -0: 0.5 times the bandwidth 391 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10% 414 414 415 - 4:1 timesheandwidth416 - 417 - 8: 2timesthe bandwidth418 - 419 - 12: 4timesthe bandwidth420 -)))|(% style="text-align:center; vertical-align:middle; width:2 48px" %)-421 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2ndnotch filter frequency|(% style="text-align:center;vertical-align:middle;width:143px" %)(((393 +(% class="table-bordered" %) 394 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( 395 +**Setting method** 396 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 397 +**Effective time** 398 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 399 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|((( 422 422 Operation setting 423 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((401 +)))|((( 424 424 Effective immediately 425 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)2505000|(% style="width:391px" %)Set the centerfrequencyofthe2ndnotchfilter.When the setalueis5000,thefunctionof thenotch filtersinvalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz426 -|(% style="text-align:center; vertical-align:middle; width:1 13px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filterdepth|(%style="text-align:center;vertical-align:middle;width:143px" %)(((403 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 404 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|((( 427 427 Operation setting 428 -)))|( % style="text-align:center; vertical-align:middle; width:164px" %)(((406 +)))|((( 429 429 Effective immediately 430 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)((( 431 -0: all truncated 432 - 433 -100: all passed 434 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 435 -|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)((( 436 -Operation setting 437 -)))|(% style="text-align:center; vertical-align:middle; width:164px" %)((( 408 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|0.10% 409 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|((( 438 438 Effective immediately 439 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)((( 440 -0: 0.5 times the bandwidth 411 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 441 441 442 - 4:1timesthebandwidth413 +Please refer to the following for an example of the procedure of adjusting servo gain. 443 443 444 -8: 2 times the bandwidth 445 - 446 -12: 4 times the bandwidth 447 -)))|(% style="text-align:center; vertical-align:middle; width:248px" %)- 448 - 449 -Table 7-11 Notch filter function code parameters 415 +|**Step**|** Content** 416 +|1|Please try to set the correct load inertia ratio parameter P3-1. 417 +|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot. 418 +|3|Turn on the model tracking function, set P2-20 to 1. 419 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring. 420 +|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2. 421 +|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
- 20230515-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.3 KB - Content
- 20230515-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +9.9 KB - Content
- 20230515-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.5 KB - Content
- 20230515-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.7 KB - Content
- image-20230515140641-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.1 KB - Content
- image-20230515140641-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.9 KB - Content
- image-20230515140641-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.8 KB - Content
- image-20230515140641-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.0 KB - Content
- image-20230515140641-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +20.5 KB - Content
- image-20230515140641-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.1 KB - Content
- image-20230515140641-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +10.4 KB - Content
- image-20230515140641-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.4 KB - Content
- image-20230515140953-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.7 KB - Content
- image-20230515140953-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +23.1 KB - Content
- image-20230515140953-12.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +14.5 KB - Content
- image-20230515140953-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Karen - Size
-
... ... @@ -1,0 +1,1 @@ 1 +24.4 KB - Content