Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 17.1
edited by Stone Wu
on 2022/08/30 11:24
Change comment: There is no comment for this version
To version 16.5
edited by Stone Wu
on 2022/08/30 11:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -328,27 +328,24 @@
328 328  
329 329  Table 7-9 Speed feedforward parameters
330 330  
331 -(% style="text-align:center" %)
332 -(((
333 -(% class="wikigeneratedid" style="display:inline-block" %)
334 -[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||id="Iimage-20220706155307-4.jpeg"]]
335 -)))
331 +[[image:image-20220706155307-4.jpeg]]
336 336  
333 +Figure 7-6 Speed feedforward parameters effect illustration
337 337  
338 338  (% class="table-bordered" %)
339 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
340 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
336 +|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
337 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
338 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
342 342  
343 343  Table 7-10 Torque feedforward parameters
344 344  
345 345  = **Mechanical resonance suppression** =
346 346  
347 -== Mechanical resonance suppression methods ==
344 +== **Mechanical resonance suppression methods** ==
348 348  
349 349  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
350 350  
351 -**Torque instruction filter**
348 +**(1) Torque instruction filter**
352 352  
353 353  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
354 354  
... ... @@ -355,15 +355,15 @@
355 355  (% style="text-align:center" %)
356 356  [[image:image-20220706155820-5.jpeg]]
357 357  
358 -**Notch filter**
355 +**(2) Notch filter**
359 359  
360 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
357 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.
361 361  
362 -== Notch filter ==
359 +== **Notch filter** ==
363 363  
364 364  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
365 365  
366 -**Width grade of notch filter**
363 +**(1) Width grade of notch filter**
367 367  
368 368  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
369 369  
... ... @@ -372,11 +372,11 @@
372 372  
373 373  In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
374 374  
375 -**Depth grade of notch filter**
372 +**(2) Depth grade of notch filter**
376 376  
377 377  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
378 378  
379 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
376 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__.
380 380  
381 381  (% style="text-align:center" %)
382 382  [[image:image-20220608174259-3.png]]
... ... @@ -389,56 +389,64 @@
389 389  Figure 7-8 Frequency characteristics of notch filter
390 390  
391 391  (% class="table-bordered" %)
392 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
389 +|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
393 393  **Setting method**
394 -)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
391 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
395 395  **Effective time**
396 -)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
397 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
393 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit**
394 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
398 398  Operation setting
399 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
396 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
400 400  Effective immediately
401 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
402 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
398 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
399 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
403 403  Operation setting
404 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
401 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
405 405  Effective immediately
406 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
407 -1. 0: all truncated
408 -1. 100: all passed
409 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
410 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
403 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
404 +0: all truncated
405 +
406 +100: all passed
407 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
408 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
411 411  Operation setting
412 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
410 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
413 413  Effective immediately
414 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
415 -1. 0: 0.5 times the bandwidth
416 -1. 4: 1 times the bandwidth
417 -1. 8: 2 times the bandwidth
418 -1. 12: 4 times the bandwidth
419 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
420 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
412 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
413 +0: 0.5 times the bandwidth
414 +
415 +4: 1 times the bandwidth
416 +
417 +8: 2 times the bandwidth
418 +
419 +12: 4 times the bandwidth
420 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
421 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
421 421  Operation setting
422 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
423 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
423 423  Effective immediately
424 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
425 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
425 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
426 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
426 426  Operation setting
427 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
428 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
428 428  Effective immediately
429 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
430 -1. 0: all truncated
431 -1. 100: all passed
432 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
433 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
430 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
431 +0: all truncated
432 +
433 +100: all passed
434 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
435 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
434 434  Operation setting
435 -)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
437 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
436 436  Effective immediately
437 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
438 -1. 0: 0.5 times the bandwidth
439 -1. 4: 1 times the bandwidth
440 -1. 8: 2 times the bandwidth
441 -1. 12: 4 times the bandwidth
442 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
439 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
440 +0: 0.5 times the bandwidth
443 443  
442 +4: 1 times the bandwidth
443 +
444 +8: 2 times the bandwidth
445 +
446 +12: 4 times the bandwidth
447 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
448 +
444 444  Table 7-11 Notch filter function code parameters