Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 18.1
edited by Stone Wu
on 2022/09/23 14:44
Change comment: There is no comment for this version
To version 16.4
edited by Stone Wu
on 2022/07/29 10:04
Change comment: Update document after refactoring.

Summary

Details

Page properties
Content
... ... @@ -3,25 +3,21 @@
3 3  The servo drive needs to make the motor faithfully operate in accordance with the instructions issued by the upper controller without delay as much as possible. In order to make the motor action closer to the instruction and maximize the mechanical performance, gain adjustment is required. The process of gain adjustment is shown in Figure 7-1.
4 4  
5 5  (% style="text-align:center" %)
6 -(((
7 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
8 -[[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 -)))
6 +[[image:image-20220608174118-1.png]]
10 10  
8 +Figure 7-1 Gain adjustment process
9 +
11 11  The servo gain is composed of multiple sets of parameters such as position loop, speed loop, filter, load inertia ratio, etc., and they affect each other. In the process of setting the servo gain, the balance between the setting values of each parameter must be considered.
12 12  
13 -(% class="box infomessage" %)
14 -(((
15 15  ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 -)))
17 17  
18 -(% class="table-bordered" style="margin-right:auto" %)
19 -|=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 -|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 -|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 -|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
14 +(% class="table-bordered" %)
15 +|(% colspan="3" style="text-align:center; vertical-align:middle" %)**Gain adjustment process**|(% style="text-align:center; vertical-align:middle" %)**Function**|(% style="text-align:center; vertical-align:middle" %)**Detailed chapter**
16 +|(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HInertiarecognition]]__
17 +|(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HAutomaticgainadjustment]]__
18 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HManualgainadjustment]]__
19 +|(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__
20 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HMechanicalresonancesuppressionmethods]]__
25 25  
26 26  Table 7-1 Description of gain adjustment process
27 27  
... ... @@ -30,11 +30,11 @@
30 30  Load inertia ratio P03-01 refers to:
31 31  
32 32  (% style="text-align:center" %)
33 -[[image:image-20220611152902-1.png||class="img-thumbnail"]]
29 +[[image:image-20220611152902-1.png]]
34 34  
35 35  The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36 36  
37 -(% class="warning" %)|(((
33 +|(((
38 38  (% style="text-align:center" %)
39 39  [[image:image-20220611152918-2.png]]
40 40  )))
... ... @@ -41,58 +41,65 @@
41 41  |(((
42 42  **Before performing online load inertia recognition, the following conditions should be met:**
43 43  
44 -* The maximum speed of the motor should be greater than 300rpm;
45 -* The actual load inertia ratio is between 0.00 and 100.00;
46 -* The load torque is relatively stable, and the load cannot change drastically during the measurement process;
47 -* The backlash of the load transmission mechanism is within a certain range;
40 +The maximum speed of the motor should be greater than 300rpm;
48 48  
42 +The actual load inertia ratio is between 0.00 and 100.00;
43 +
44 +The load torque is relatively stable, and the load cannot change drastically during the measurement process;
45 +
46 +The backlash of the load transmission mechanism is within a certain range;
47 +
49 49  **The motor's runable stroke should meet two requirements:**
50 50  
51 -* There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
52 -* Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 -* Meet the requirement of inertia recognition turns P03-05.
54 -* Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
55 -* During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
50 +There is a movable stroke of more than 1 turn in both forward and reverse directions between the mechanical limit switches.
51 +
52 +Before performing online inertia recognition, please make sure that the limit switch has been installed on the machine, and that the motor has a movable stroke of more than 1 turn each in the forward and reverse directions to prevent overtravel during the inertia recognition process and cause accidents.
53 +
54 +Meet the requirement of inertia recognition turns P03-05.
55 +
56 +Make sure that the motor's runable stroke at the stop position is greater than the set value of the number of inertia recognition circles P03-05, otherwise the maximum speed of inertia recognition P03-06 should be appropriately reduced.
57 +
58 +During the automatic load inertia recognition process, if vibration occurs, the load inertia recognition should be stopped immediately.
56 56  )))
57 57  
58 58  The related function codes are shown in the table below.
59 59  
60 60  (% class="table-bordered" %)
61 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
64 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:136px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
62 62  **Setting method**
63 -)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
66 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
64 64  **Effective time**
65 -)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 -|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
68 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:118px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:276px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
69 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
67 67  Operation setting
68 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
71 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
69 69  Effective immediately
70 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 -|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
73 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
74 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
72 72  Inertia recognition turns
73 73  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 74  Shutdown setting
75 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
78 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
76 76  Effective immediately
77 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 -|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
80 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
81 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
79 79  Inertia recognition maximum speed
80 80  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 81  Shutdown setting
82 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
85 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
83 83  Effective immediately
84 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
87 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
85 85  Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86 86  
87 87  The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
88 88  )))|(% style="text-align:center; vertical-align:middle" %)rpm
89 -|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
92 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P03-07|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
90 90  Parameter recognition rotation direction
91 91  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 92  Shutdown setting
93 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
96 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
94 94  Effective immediately
95 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
98 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
96 96  0: Forward and reverse reciprocating rotation
97 97  
98 98  1: Forward one-way rotation
... ... @@ -110,23 +110,23 @@
110 110  
111 111  The servo supports automatic gain adjustment and manual gain adjustment. It is recommended to use automatic gain adjustment first.
112 112  
113 -== Automatic gain adjustment ==
116 +== **Automatic gain adjustment** ==
114 114  
115 115  Automatic gain adjustment means that through the rigidity level selection function P03-02, the servo drive will automatically generate a set of matching gain parameters to meet the requirements of rapidity and stability.
116 116  
117 117  The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118 118  
119 -(% class="table-bordered" style="margin-right:auto" %)
120 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 -|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122 +(% class="table-bordered" %)
123 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
124 +|(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122 122  
123 123  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124 124  
125 125  (% class="table-bordered" %)
126 -|=(% scope="row" style="text-align: center; vertical-align: middle;" %)**Rigidity grade**|=(% style="text-align: center; vertical-align: middle;" %)**Load mechanism type**
127 -|=(% style="text-align: center; vertical-align: middle;" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
128 -|=(% style="text-align: center; vertical-align: middle;" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
129 -|=(% style="text-align: center; vertical-align: middle;" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
129 +|(% style="text-align:center; vertical-align:middle" %)**Rigidity grade**|(% style="text-align:center; vertical-align:middle" %)**Load mechanism type**
130 +|(% style="text-align:center; vertical-align:middle" %)Grade 4 to 8|(% style="text-align:center; vertical-align:middle" %)Some large machinery
131 +|(% style="text-align:center; vertical-align:middle" %)Grade 8 to 15|(% style="text-align:center; vertical-align:middle" %)Low rigidity applications such as belts
132 +|(% style="text-align:center; vertical-align:middle" %)Grade 15 to 20|(% style="text-align:center; vertical-align:middle" %)High rigidity applications such as ball screw and direct connection
130 130  
131 131  Table 7-3 Experience reference of rigidity grade
132 132  
... ... @@ -143,7 +143,7 @@
143 143  * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
144 144  
145 145  (% class="table-bordered" %)
146 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
149 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
147 147  |(((
148 148  ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149 149  
... ... @@ -151,24 +151,26 @@
151 151  )))
152 152  
153 153  (% class="table-bordered" %)
154 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
157 +|(% style="text-align:center; vertical-align:middle; width:121px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:73px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
155 155  **Setting method**
156 -)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
159 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
157 157  **Effective time**
158 -)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 -|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
161 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
162 +|(% style="text-align:center; vertical-align:middle; width:121px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:73px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
160 160  Operation setting
161 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
164 +)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
162 162  Effective immediately
163 -)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
166 +)))|(% style="text-align:center; vertical-align:middle; width:134px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((
167 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
168 +
169 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
170 +
171 +2: Online automatic parameter self-adjusting mode (Not implemented yet)
167 167  )))|(% style="text-align:center; vertical-align:middle" %)-
168 168  
169 169  Table 7-4 Details of self-adjusting mode selection parameters
170 170  
171 -== Manual gain adjustment ==
176 +== **Manual gain adjustment** ==
172 172  
173 173  When the servo automatic gain adjustment fails to achieve the desired result, you can manually fine-tune the gain to achieve better results.
174 174  
... ... @@ -175,11 +175,10 @@
175 175  The servo system consists of three control loops, from the outside to the inside are the position loop, the speed loop and the current loop. The basic control block diagram is shown as below.
176 176  
177 177  (% style="text-align:center" %)
178 -(((
179 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
180 -[[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 -)))
183 +[[image:image-20220608174209-2.png]]
182 182  
185 +Figure 7-2 Basic block diagram of servo loop gain
186 +
183 183  The more the inner loop is, the higher the responsiveness is required. Failure to comply with this principle may lead to system instability!
184 184  
185 185  The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
... ... @@ -187,125 +187,126 @@
187 187  This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
188 188  
189 189  (% class="table-bordered" %)
190 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
191 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-01|(% style="width:751px" %)The 1st position loop gain
192 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
193 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
194 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
195 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
196 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
197 -|=(% style="text-align: center; vertical-align: middle; width: 450px;" %)P04-04|(% style="width:751px" %)Torque filter time constant
194 +|(% style="text-align:center; vertical-align:middle; width:450px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:751px" %)**Name**
195 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-01|(% style="width:751px" %)The 1st position loop gain
196 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-02|(% style="width:751px" %)The 1st speed loop gain
197 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-03|(% style="width:751px" %)The 1st speed loop integral time constant
198 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-04|(% style="width:751px" %)The 2nd position loop gain
199 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-05|(% style="width:751px" %)The 2nd speed loop gain
200 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P02-06|(% style="width:751px" %)The 2nd speed loop integral time constant
201 +|(% style="text-align:center; vertical-align:middle; width:450px" %)P04-04|(% style="width:751px" %)Torque filter time constant
198 198  
199 -**Speed loop gain**
203 +**(1) Speed loop gain**
200 200  
201 201  In the case of no vibration or noise in the mechanical system, the larger the speed loop gain setting value, the better the response of servo system and the better the speed followability. When noise occurs in the system, reduce the speed loop gain. The related function codes are shown as below.
202 202  
203 203  (% class="table-bordered" %)
204 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
208 +|(% style="text-align:center; vertical-align:middle; width:120px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:151px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
205 205  **Setting method**
206 -)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
210 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
207 207  **Effective time**
208 -)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
209 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-02|(% style="text-align:center; vertical-align:middle; width:163px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
212 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:99px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:321px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
213 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-02|(% style="text-align:center; vertical-align:middle; width:151px" %)1st speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
210 210  Operation setting
211 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
215 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
212 212  Effective immediately
213 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
217 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
218 +|(% style="text-align:center; vertical-align:middle; width:120px" %)P02-05|(% style="text-align:center; vertical-align:middle; width:151px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:170px" %)(((
215 215  Operation setting
216 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
220 +)))|(% style="text-align:center; vertical-align:middle; width:174px" %)(((
217 217  Effective immediately
218 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
222 +)))|(% style="text-align:center; vertical-align:middle; width:112px" %)65|(% style="text-align:center; vertical-align:middle; width:99px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
219 219  
220 220  Table 7-5 Speed loop gain parameters
221 221  
222 222  (% style="text-align:center" %)
223 -(((
224 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
225 -[[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 -)))
227 +[[image:image-20220706152743-1.jpeg]]
227 227  
228 -**Speed loop integral time constant**
229 +Figure 7-3 Speed loop gaieffect illustration
229 229  
231 +**(2) Speed loop integral time constant**
232 +
230 230  The speed loop integral time constant is used to eliminate the speed loop deviation. Decreasing the integral time constant of the speed loop can increase the speed of the speed following. If the set value is too small, is will easily cause speed overshoot or vibration. When the time constant is set too large, the integral action will be weakened, resulting in a deviation of the speed loop. Related function codes are shown as below.
231 231  
232 232  (% class="table-bordered" %)
233 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 98px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
236 +|(% style="text-align:center; vertical-align:middle; width:126px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:185px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
234 234  **Setting method**
235 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
238 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
236 236  **Effective time**
237 -)))|=(% style="text-align: center; vertical-align: middle; width: 109px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 278px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 78px;" %)**Unit**
238 -|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-03|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
240 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:335px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
241 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-03|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
239 239  1st speed loop integral time constant
240 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
243 +)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
241 241  Operation setting
242 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
245 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
243 243  Effective immediately
244 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 -0.1ms
247 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)100 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
248 +0.1
249 +
250 +ms
246 246  )))
247 -|=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
252 +|(% style="text-align:center; vertical-align:middle; width:126px" %)P02-06|(% style="text-align:center; vertical-align:middle; width:185px" %)(((
248 248  2nd speed loop integral time constant
249 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
254 +)))|(% style="text-align:center; vertical-align:middle; width:132px" %)(((
250 250  Operation setting
251 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
256 +)))|(% style="text-align:center; vertical-align:middle; width:161px" %)(((
252 252  Effective immediately
253 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
254 -0.1ms
258 +)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 65535|(% style="width:335px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle" %)(((
259 +0.1
260 +
261 +ms
255 255  )))
256 256  
257 257  Table 7-6 Speed loop integral time constant parameters
258 258  
259 259  (% style="text-align:center" %)
260 -(((
261 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
262 -[[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 -)))
267 +[[image:image-20220706153140-2.jpeg]]
264 264  
265 -**Position loop gain**
269 +Figure 7-4 Speed loop integral time constant effect illustration
266 266  
271 +**(3) Position loop gain**
272 +
267 267  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268 268  
269 269  (% class="table-bordered" %)
270 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
276 +|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:164px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
271 271  **Setting method**
272 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
278 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
273 273  **Effective time**
274 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
280 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:94px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:355px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
281 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-01|(% style="text-align:center; vertical-align:middle; width:164px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
276 276  Operation setting
277 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
283 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
278 278  Effective immediately
279 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
285 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)400|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
286 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P02-04|(% style="text-align:center; vertical-align:middle; width:164px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:134px" %)(((
281 281  Operation setting
282 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
288 +)))|(% style="text-align:center; vertical-align:middle; width:167px" %)(((
283 283  Effective immediately
284 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
290 +)))|(% style="text-align:center; vertical-align:middle; width:120px" %)35|(% style="text-align:center; vertical-align:middle; width:94px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
285 285  
286 286  Table 7-7 Position loop gain parameters
287 287  
288 288  (% style="text-align:center" %)
289 -(((
290 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
291 -[[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 -)))
295 +[[image:image-20220706153656-3.jpeg]]
293 293  
294 -**Torque instruction filter time**
297 +Figure 7-5 Position loop gain effect illustration
295 295  
299 +**(4) Torque instruction filter time**
300 +
296 296  Selecting an appropriate torque filter time constant could suppress mechanical resonance. The larger the value of this parameter, the stronger the suppression ability. If the setting value is too large, it will decrease the current loop response frequency and cause needle movement. The related function codes are shown as below.
297 297  
298 298  (% class="table-bordered" %)
299 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
304 +|(% style="text-align:center; vertical-align:middle; width:117px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:200px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
300 300  **Setting method**
301 -)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
306 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
302 302  **Effective time**
303 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 -|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
308 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:359px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
309 +|(% style="text-align:center; vertical-align:middle; width:117px" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:141px" %)(((
305 305  Operation setting
306 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
311 +)))|(% style="text-align:center; vertical-align:middle; width:180px" %)(((
307 307  Effective immediately
308 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
313 +)))|(% style="text-align:center; vertical-align:middle; width:139px" %)50|(% style="width:359px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309 309  
310 310  Table 7-8 Details of torque filter time constant parameters
311 311  
... ... @@ -313,136 +313,137 @@
313 313  
314 314  Speed feedforward could be used in position control mode and full closed-loop function. It could improve the response to the speed instruction and reduce the position deviation with fixed speed.
315 315  
316 -Speed feedforward parameters are shown in __Table 7-9__. Torque feedforward parameters are shown in __Table 7-10__.
321 +Speed feedforward parameters are shown in __[[Table 7-9>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__. Torque feedforward parameters are shown in __[[Table 7-10>>https://docs.we-con.com.cn/bin/view/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/#HFeedforwardgain]]__.
317 317  
318 318  Torque feedforward could improve the response to the torque instruction and reduce the position deviation with fixed acceleration and deceleration.
319 319  
320 320  (% class="table-bordered" %)
321 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
322 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
326 +|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
327 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-09|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward gain|(% rowspan="2" style="width:746px" %)(((
323 323  When the speed feedforward filter is set to 50 (0.5 ms), gradually increase the speed feedforward gain, and the speed feedforward will take effect. The position deviation during operation at a certain speed will be reduced according to the value of speed feedforward gain as the formula below.
324 324  
325 325  Position deviation (instruction unit) = instruction speed[instruction unit/s]÷position loop gain [1/s]×(100-speed feedforward gain [%])÷100
326 326  )))
327 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
332 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-10|(% style="text-align:center; vertical-align:middle; width:330px" %)Speed feedforward filtering time constant
328 328  
329 329  Table 7-9 Speed feedforward parameters
330 330  
331 -(% style="text-align:center" %)
332 -(((
333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 -[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
335 -)))
336 +[[image:image-20220706155307-4.jpeg]]
336 336  
338 +Figure 7-6 Speed feedforward parameters effect illustration
337 337  
338 338  (% class="table-bordered" %)
339 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
341 +|(% style="text-align:center; vertical-align:middle; width:125px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:330px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:746px" %)**Adjustment description**
342 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
343 +|(% style="text-align:center; vertical-align:middle; width:125px" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
342 342  
343 343  Table 7-10 Torque feedforward parameters
344 344  
345 345  = **Mechanical resonance suppression** =
346 346  
347 -== Mechanical resonance suppression methods ==
349 +== **Mechanical resonance suppression methods** ==
348 348  
349 349  When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
350 350  
351 -**Torque instruction filter**
353 +**(1) Torque instruction filter**
352 352  
353 353  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
354 354  
355 355  (% style="text-align:center" %)
356 -[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
358 +[[image:image-20220706155820-5.jpeg]]
357 357  
358 -**Notch filter**
360 +**(2) Notch filter**
359 359  
360 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
362 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __[[Figure 7-3>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/image-20220608174259-3.png?rev=1.1]]__.
361 361  
362 -== Notch filter ==
364 +== **Notch filter** ==
363 363  
364 364  The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
365 365  
366 -**Width grade of notch filter**
368 +**(1) Width grade of notch filter**
367 367  
368 368  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
369 369  
370 370  (% style="text-align:center" %)
371 -[[image:image-20220706155836-6.png||class="img-thumbnail"]]
373 +[[image:image-20220706155836-6.png]]
372 372  
373 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
375 +In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; ​​​​​​​[[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
374 374  
375 -**Depth grade of notch filter**
377 +**(2) Depth grade of notch filter**
376 376  
377 377  The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
378 378  
379 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
381 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __[[Figure 7-4>>https://docs.we-con.com.cn/bin/download/Servo/2.%20User%20Manual/06%20VD2%20SA%20Series%20Servo%20Drives%20Manual%20%28Full%20V1.1%29/07%20Adjustments/WebHome/44.png?rev=1.1]]__.
380 380  
381 381  (% style="text-align:center" %)
382 -(((
383 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
384 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
385 -)))
384 +[[image:image-20220608174259-3.png]]
386 386  
386 +Figure 7-7 Notch characteristics, notch width, and notch depth
387 387  
388 388  (% style="text-align:center" %)
389 -(((
390 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
391 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
392 -)))
389 +[[image:image-20220706160046-9.png]]
393 393  
391 +Figure 7-8 Frequency characteristics of notch filter
394 394  
395 395  (% class="table-bordered" %)
396 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
394 +|(% style="text-align:center; vertical-align:middle; width:113px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:197px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
397 397  **Setting method**
398 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
396 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
399 399  **Effective time**
400 -)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
401 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
398 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:102px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:391px" %)**Definition**|(% style="text-align:center; vertical-align:middle; width:248px" %)**Unit**
399 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-05|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
402 402  Operation setting
403 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
401 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
404 404  Effective immediately
405 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
406 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
403 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
404 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-06|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
407 407  Operation setting
408 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
406 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
409 409  Effective immediately
410 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
411 -1. 0: all truncated
412 -1. 100: all passed
413 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
414 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
408 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
409 +0: all truncated
410 +
411 +100: all passed
412 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
413 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-07|(% style="text-align:center; vertical-align:middle; width:197px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
415 415  Operation setting
416 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
415 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
417 417  Effective immediately
418 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
419 -1. 0: 0.5 times the bandwidth
420 -1. 4: 1 times the bandwidth
421 -1. 8: 2 times the bandwidth
422 -1. 12: 4 times the bandwidth
423 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
424 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
417 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
418 +0: 0.5 times the bandwidth
419 +
420 +4: 1 times the bandwidth
421 +
422 +8: 2 times the bandwidth
423 +
424 +12: 4 times the bandwidth
425 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
426 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-08|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
425 425  Operation setting
426 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
428 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
427 427  Effective immediately
428 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
429 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
430 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:391px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:248px" %)Hz
431 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-09|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
430 430  Operation setting
431 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
433 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
432 432  Effective immediately
433 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
434 -1. 0: all truncated
435 -1. 100: all passed
436 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
437 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
435 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:391px" %)(((
436 +0: all truncated
437 +
438 +100: all passed
439 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
440 +|(% style="text-align:center; vertical-align:middle; width:113px" %)P04-10|(% style="text-align:center; vertical-align:middle; width:197px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:143px" %)(((
438 438  Operation setting
439 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
442 +)))|(% style="text-align:center; vertical-align:middle; width:164px" %)(((
440 440  Effective immediately
441 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
442 -1. 0: 0.5 times the bandwidth
443 -1. 4: 1 times the bandwidth
444 -1. 8: 2 times the bandwidth
445 -1. 12: 4 times the bandwidth
446 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
444 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:391px" %)(((
445 +0: 0.5 times the bandwidth
447 447  
447 +4: 1 times the bandwidth
448 +
449 +8: 2 times the bandwidth
450 +
451 +12: 4 times the bandwidth
452 +)))|(% style="text-align:center; vertical-align:middle; width:248px" %)-
453 +
448 448  Table 7-11 Notch filter function code parameters