Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -4,7 +4,7 @@ 4 4 5 5 (% style="text-align:center" %) 6 6 ((( 7 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)7 +(% class="wikigeneratedid" style="display:inline-block" %) 8 8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 9 ))) 10 10 ... ... @@ -15,7 +15,7 @@ 15 15 ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below. 16 16 ))) 17 17 18 -(% class="table-bordered" style="margin-right:auto"%)18 +(% class="table-bordered" %) 19 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ ... ... @@ -30,11 +30,11 @@ 30 30 Load inertia ratio P03-01 refers to: 31 31 32 32 (% style="text-align:center" %) 33 -[[image:image-20220611152902-1.png ||class="img-thumbnail"]]33 +[[image:image-20220611152902-1.png]] 34 34 35 35 The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software. 36 36 37 - (% class="warning" %)|(((37 +|((( 38 38 (% style="text-align:center" %) 39 39 [[image:image-20220611152918-2.png]] 40 40 ))) ... ... @@ -60,28 +60,28 @@ 60 60 (% class="table-bordered" %) 61 61 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)((( 62 62 **Setting method** 63 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 68px;" %)(((63 +)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)((( 64 64 **Effective time** 65 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 25px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**65 +)))|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 66 66 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 67 67 Operation setting 68 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((68 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 69 69 Effective immediately 70 -)))|(% style="text-align:center; vertical-align:middle; width:1 25px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.0170 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01 71 71 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 72 72 Inertia recognition turns 73 73 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 74 74 Shutdown setting 75 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((75 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 76 76 Effective immediately 77 -)))|(% style="text-align:center; vertical-align:middle; width:1 25px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle77 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle 78 78 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)((( 79 79 Inertia recognition maximum speed 80 80 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 81 81 Shutdown setting 82 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((82 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 83 83 Effective immediately 84 -)))|(% style="text-align:center; vertical-align:middle; width:1 25px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((84 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)((( 85 85 Set the allowable maximum motor speed instruction in offline inertia recognition mode. 86 86 87 87 The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value. ... ... @@ -90,9 +90,9 @@ 90 90 Parameter recognition rotation direction 91 91 )))|(% style="text-align:center; vertical-align:middle; width:173px" %)((( 92 92 Shutdown setting 93 -)))|(% style="text-align:center; vertical-align:middle; width:1 68px" %)(((93 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)((( 94 94 Effective immediately 95 -)))|(% style="text-align:center; vertical-align:middle; width:1 25px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((95 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)((( 96 96 0: Forward and reverse reciprocating rotation 97 97 98 98 1: Forward one-way rotation ... ... @@ -116,9 +116,9 @@ 116 116 117 117 The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system. 118 118 119 -(% class="table-bordered" style="margin-right:auto"%)120 - (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]121 -|(% style="text-align: left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.119 +(% class="table-bordered" %) 120 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 121 +|(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 122 122 123 123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 124 124 ... ... @@ -143,7 +143,7 @@ 143 143 * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 144 144 145 145 (% class="table-bordered" %) 146 - (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]146 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] 147 147 |((( 148 148 ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine! 149 149 ... ... @@ -151,16 +151,16 @@ 151 151 ))) 152 152 153 153 (% class="table-bordered" %) 154 -| =(% scope="row" style="text-align:;" %)**Function code**|=(% style="text-align:;" %)**Name**|=(% style="text-align:03px;" %)(((154 +|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 155 155 **Setting method** 156 -)))| =(% style="text-align:05px;" %)(((156 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)((( 157 157 **Effective time** 158 -)))| =(% style="text-align:87px;" %)**Default value**|=(% style="text-align:3px;" %)**Range**|=(% style="text-align:1px;" %)**Definition**|=(% style="text-align:;" %)**Unit**159 -| =(% style="text-align:;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((158 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit** 159 +|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 160 160 Operation setting 161 -)))|(% style="text-align:center; vertical-align:middle; width:1 05px" %)(((161 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)((( 162 162 Effective immediately 163 -)))|(% style="text-align:center; vertical-align:middle; width: 87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((163 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)((( 164 164 * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 165 * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 166 * 2: Online automatic parameter self-adjusting mode (Not implemented yet) ... ... @@ -176,7 +176,7 @@ 176 176 177 177 (% style="text-align:center" %) 178 178 ((( 179 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)179 +(% class="wikigeneratedid" style="display:inline-block" %) 180 180 [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]] 181 181 ))) 182 182 ... ... @@ -221,7 +221,7 @@ 221 221 222 222 (% style="text-align:center" %) 223 223 ((( 224 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)224 +(% class="wikigeneratedid" style="display:inline-block" %) 225 225 [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]] 226 226 ))) 227 227 ... ... @@ -258,7 +258,7 @@ 258 258 259 259 (% style="text-align:center" %) 260 260 ((( 261 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)261 +(% class="wikigeneratedid" style="display:inline-block" %) 262 262 [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]] 263 263 ))) 264 264 ... ... @@ -267,27 +267,27 @@ 267 267 Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below. 268 268 269 269 (% class="table-bordered" %) 270 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 1 74px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 159px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)((( 271 271 **Setting method** 272 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 14px;" %)(((272 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)((( 273 273 **Effective time** 274 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width:91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**275 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:1 74px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((274 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 276 276 Operation setting 277 -)))|(% style="text-align:center; vertical-align:middle; width:1 14px" %)(((277 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 278 278 Effective immediately 279 -)))|(% style="text-align:center; vertical-align:middle; width: 79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz280 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:1 74px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((279 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 281 281 Operation setting 282 -)))|(% style="text-align:center; vertical-align:middle; width:1 14px" %)(((282 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 283 283 Effective immediately 284 -)))|(% style="text-align:center; vertical-align:middle; width: 79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz284 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 285 285 286 286 Table 7-7 Position loop gain parameters 287 287 288 288 (% style="text-align:center" %) 289 289 ((( 290 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)290 +(% class="wikigeneratedid" style="display:inline-block" %) 291 291 [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]] 292 292 ))) 293 293 ... ... @@ -298,14 +298,14 @@ 298 298 (% class="table-bordered" %) 299 299 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)((( 300 300 **Setting method** 301 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 27px;" %)(((301 +)))|=(% style="text-align: center; vertical-align: middle; width: 133px;" %)((( 302 302 **Effective time** 303 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**303 +)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 304 304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 305 305 Operation setting 306 -)))|(% style="text-align:center; vertical-align:middle; width:1 27px" %)(((306 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)((( 307 307 Effective immediately 308 -)))|(% style="text-align:center; vertical-align:middle; width: 79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms308 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 309 309 310 310 Table 7-8 Details of torque filter time constant parameters 311 311 ... ... @@ -330,15 +330,15 @@ 330 330 331 331 (% style="text-align:center" %) 332 332 ((( 333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)334 -[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg|| height="119" id="Iimage-20220706155307-4.jpeg"width="835"]]333 +(% class="wikigeneratedid" style="display:inline-block" %) 334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||id="Iimage-20220706155307-4.jpeg"]] 335 335 ))) 336 336 337 337 338 338 (% class="table-bordered" %) 339 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**340 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width: 259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.341 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width: 259px" %)Torque feedforward filtering time constant339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description** 340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point. 341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant 342 342 343 343 Table 7-10 Torque feedforward parameters 344 344 ... ... @@ -353,7 +353,7 @@ 353 353 By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula: 354 354 355 355 (% style="text-align:center" %) 356 -[[image:image-20220706155820-5.jpeg ||class="img-thumbnail"]]356 +[[image:image-20220706155820-5.jpeg]] 357 357 358 358 **Notch filter** 359 359 ... ... @@ -368,7 +368,7 @@ 368 368 The notch width grade is used to express the ratio of the notch width to the center frequency of the notch: 369 369 370 370 (% style="text-align:center" %) 371 -[[image:image-20220706155836-6.png ||class="img-thumbnail"]]371 +[[image:image-20220706155836-6.png]] 372 372 373 373 In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 374 374 ... ... @@ -379,43 +379,39 @@ 379 379 When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__. 380 380 381 381 (% style="text-align:center" %) 382 -((( 383 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 384 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]] 385 -))) 382 +[[image:image-20220608174259-3.png]] 386 386 384 +Figure 7-7 Notch characteristics, notch width, and notch depth 387 387 388 388 (% style="text-align:center" %) 389 -((( 390 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 391 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]] 392 -))) 387 +[[image:image-20220706160046-9.png]] 393 393 389 +Figure 7-8 Frequency characteristics of notch filter 394 394 395 395 (% class="table-bordered" %) 396 396 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)((( 397 397 **Setting method** 398 -)))|=(% style="text-align: center; vertical-align: middle; width: 1 21px;" %)(((394 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)((( 399 399 **Effective time** 400 -)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**396 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit** 401 401 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 402 402 Operation setting 403 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((399 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 404 404 Effective immediately 405 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz401 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz 406 406 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 407 407 Operation setting 408 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((404 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 409 409 Effective immediately 410 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((406 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 411 411 1. 0: all truncated 412 412 1. 100: all passed 413 413 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 414 414 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 415 415 Operation setting 416 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((412 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 417 417 Effective immediately 418 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((414 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 419 419 1. 0: 0.5 times the bandwidth 420 420 1. 4: 1 times the bandwidth 421 421 1. 8: 2 times the bandwidth ... ... @@ -423,22 +423,22 @@ 423 423 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 424 424 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 425 425 Operation setting 426 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((422 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 427 427 Effective immediately 428 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz424 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz 429 429 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 430 430 Operation setting 431 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((427 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 432 432 Effective immediately 433 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((429 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 434 434 1. 0: all truncated 435 435 1. 100: all passed 436 436 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 437 437 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 438 438 Operation setting 439 -)))|(% style="text-align:center; vertical-align:middle; width:1 21px" %)(((435 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)((( 440 440 Effective immediately 441 -)))|(% style="text-align:center; vertical-align:middle; width: 99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((437 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 442 442 1. 0: 0.5 times the bandwidth 443 443 1. 4: 1 times the bandwidth 444 444 1. 8: 2 times the bandwidth