Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 18.2
edited by Karen
on 2023/05/15 14:10
Change comment: There is no comment for this version
To version 22.1
edited by Karen
on 2023/05/15 14:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -184,7 +184,7 @@
184 184  
185 185  The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186 186  
187 -This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
187 +This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.
188 188  
189 189  (% class="table-bordered" %)
190 190  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
... ... @@ -344,16 +344,19 @@
344 344  
345 345  == **Model Tracking Control Function** ==
346 346  
347 -Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
347 +Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
348 348  
349 349  (% style="text-align:center" %)
350 -[[image:20230515-7.png]]
350 +(((
351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
352 +[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]]
353 +)))
351 351  
352 352  The usage method and conditions of model tracking control:
353 353  
354 354  ~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
355 355  
356 -2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
359 +2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load).
357 357  
358 358  3. Set P2-20=1 to enable the function of model tracking control.
359 359  
... ... @@ -361,539 +361,58 @@
361 361  
362 362  5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
363 363  
367 +(% class="box infomessage" %)
368 +(((
364 364  **✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
365 -
366 -|**Function code**|**Name**|(((
367 -**Setting**
368 -
369 -**method**
370 -)))|(((
371 -**Effective**
372 -
373 -**time**
374 -)))|**Default**|**Range**|**Definition**|**Unit**
375 -|P2-20|Model tracking control function|Shutdown setting|(((
376 -Effective
377 -
378 -immediately
379 -)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
380 -|P2-21|Model tracking control gain|Shutdown setting|(((
381 -Effective
382 -
383 -immediately
384 -)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
385 -|P2-22|Model tracking control gain compensation|Shutdown setting|(((
386 -Effective
387 -
388 -immediately
389 -)))|1000|500 to 2000|0.10%
390 -
391 -|**Function code**|**Name**|(((
392 -**Setting**
393 -
394 -**method**
395 -)))|(((
396 -**Effective**
397 -
398 -**time**
399 -)))|**Default**|**Range**|**Definition**|**Unit**
400 -|P2-23|Model tracking control forward rotation bias|(((
401 -Operation
402 -
403 -setting
404 -)))|(((
405 -Effective
406 -
407 -immediately
408 -)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
409 -|P2-24|Model tracking control reverses rotation bias|(((
410 -Operation
411 -
412 -setting
413 -)))|(((
414 -Effective
415 -
416 -immediately
417 -)))|1000|0 to 10000|0.10%
418 -|P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
419 -Effective
420 -
421 -immediately
422 -)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
423 -
424 -Please refer to the following for an example of the procedure of adjusting servo gain.
425 -
426 -|**Step**|**Content**
427 -|1|Please try to set the correct load inertia ratio parameter P3-1.
428 -|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
429 -|3|Turn on the model tracking function, set P2-20 to 1.
430 -|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
431 -|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
432 -|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
433 -
434 -== **Gain switching** ==
435 -
436 -Gain switching function:
437 -
438 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
439 -
440 -●Switch to a higher gain in the motor stationary state to shorten the positioning time;
441 -
442 -●Switch to a higher gain in the motor running state to get better command tracking performance;
443 -
444 -●Switch different gain settings by external signals depending on the load connected.
445 -
446 -(1) Gain switching parameter setting
447 -
448 -①When P02-07=0
449 -
450 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
451 -
452 -(% style="text-align:center" %)
453 -[[image:20230515-8.png]]
454 -
455 -② When P02-07=1
456 -
457 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
458 -
459 -(% style="text-align:center" %)
460 -[[image:20230515-9.png]]
461 -
462 -Figure 7-9 Flow chart of gain switching when P02-07=1
463 -
464 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
465 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
466 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
467 -|(% style="width:72px" %)(((
468 -
469 -
470 -
471 -
472 -
473 -
474 -2
475 -)))|(% style="width:146px" %)(((
476 -
477 -
478 -
479 -
480 -
481 -
482 -Large torque command
483 -)))|[[image:image-20230515140641-1.png]]
484 -|(% style="width:72px" %)(((
485 -
486 -
487 -
488 -
489 -
490 -
491 -
492 -3
493 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
494 -|(% style="width:72px" %)(((
495 -
496 -
497 -
498 -
499 -
500 -
501 -4
502 -)))|(% style="width:146px" %)(((
503 -
504 -
505 -
506 -
507 -
508 -
509 -Large speed command
510 -)))|[[image:image-20230515140641-3.png]]
511 -
512 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
513 -|(% style="width:74px" %)(((
514 -
515 -
516 -
517 -
518 -
519 -5
520 -)))|(% style="width:176px" %)(((
521 -
522 -
523 -
524 -
525 -
526 -Fast actual speed
527 -)))|(((
528 -
529 -
530 -[[image:image-20230515140641-4.png]]
531 531  )))
532 -|(% style="width:74px" %)(((
533 -
534 534  
535 -
536 -
537 -
538 -
539 -
540 -6
541 -)))|(% style="width:176px" %)(((
542 -
543 -
544 -
545 -
546 -
547 -
548 -
549 -Speed command change rate is large
550 -)))|[[image:image-20230515140641-5.png]]
551 -|(% style="width:74px" %)(((
552 -
553 -
554 -
555 -
556 -
557 -
558 -7
559 -
560 -
561 -)))|(% style="width:176px" %)(((
562 -
563 -
564 -
565 -
566 -
567 -
568 -Large position deviation
569 -)))|[[image:image-20230515140641-6.png]]
570 -|(% style="width:74px" %)(((
571 -
572 -
573 -
574 -
575 -
576 -8
577 -)))|(% style="width:176px" %)(((
578 -
579 -
580 -
581 -
582 -
583 -Position command
584 -)))|[[image:image-20230515140641-7.png]]
585 -
586 -|(% style="width:73px" %)(((
587 -
588 -
589 -
590 -
591 -
592 -
593 -9
594 -)))|(% style="width:154px" %)(((
595 -
596 -
597 -
598 -
599 -
600 -
601 -Positioning completed
602 -)))|[[image:image-20230515140641-8.png]]
603 -|(% style="width:73px" %)(((
604 -
605 -
606 -10
607 -
608 -
609 -)))|(% style="width:154px" %)(((
610 -
611 -
612 -Position command + actual speed
372 +(% class="table-bordered" %)
373 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
374 +**Setting method**
375 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
376 +**Effective time**
377 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
379 +Shutdown setting
380 +)))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
381 +Effective immediately
382 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.|
383 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking  control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
384 +Shutdown setting
613 613  )))|(((
614 -
386 +Effective immediately
387 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" %)(% style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s
615 615  
616 -Refer to the chart below
617 -)))
389 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|Shutdown setting|(((
390 +Effective immediately
391 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10%
618 618  
619 -(% style="text-align:center" %)
620 -[[image:20230515-10.png]]
621 -
622 -Figure 7-10 P02-08=10 Position command + actual speed gain description
623 -
624 -(2) Description of related parameters
625 -
626 -|(% rowspan="2" style="width:68px" %)
627 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
628 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
629 -|(% colspan="8" %)(((
630 -Set the switching mode of the second gain.
631 -
632 -|**Setting value**|**Function**
633 -|0|(((
634 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
635 -
636 -DI logic invalid: PI control;
637 -
638 -DI logic valid: PI control.
639 -)))
640 -|1|The first gain and the second gain are switched by the setting value of P02-08.
641 -)))
642 -
643 -|(% rowspan="2" %)
644 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
645 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
646 -|(% colspan="8" %)(((
647 -Set the conditions for gain switching.
648 -
649 -|Setting value|Gain switching conditions|Details
650 -|0|The default is the first gain|Fixed use of the first gain
651 -|1|Switch by DI port|(((
652 -Use DI function 10 (GAIN-SEL, gain switching);
653 -
654 -DI logic is invalid: the first gain (P02-01~~P02-03);
655 -
656 -DI logic is valid: the second gain (P02-04~~P02-06).
657 -)))
658 -|2|Large torque command|(((
659 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
660 -
661 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
662 -
663 -
664 -)))
665 -|3|Large actual torque|(((
666 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
667 -
668 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
669 -
670 -
671 -)))
672 -|4|Large speed command|(((
673 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
674 -
675 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
676 -
677 -
678 -)))
679 -|5|Large actual speed|(((
680 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
681 -
682 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
683 -
684 -
685 -)))
686 -|(((
687 -
688 -
689 -6
690 -)))|(((
691 -
692 -
693 -Large rate of change in speed command
694 -)))|(((
695 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
696 -
697 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
698 -
699 -
700 -)))
701 -|(((
702 -
703 -
704 -7
705 -)))|(((
706 -
707 -
708 -Large position deviation
709 -)))|(((
710 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
711 -
712 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
713 -)))
714 -|8|Position command|(((
715 -In the previous first gain, if the position command is not 0, switch to the second gain;
716 -
717 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
718 -)))
719 -|(((
720 -
721 -
722 -9
723 -)))|(((
724 -
725 -
726 -Positioning complete
727 -)))|(((
728 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
729 -
730 -
731 -)))
732 -|(((
733 -
734 -
735 -10
736 -)))|(((
737 -
738 -
739 -Position command + actual speed
740 -)))|(((
741 -In the previous first gain, if the position command is not 0, the second gain is switched;
742 -
743 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
744 -
745 -
746 -)))
747 -
748 -
749 -)))
750 -
751 -|(% rowspan="2" %)
752 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
753 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
754 -|(% colspan="8" %)(((
755 -The duration of the switching condition required for the second gain to switch back to the first gain.
756 -
757 -[[image:image-20230515140953-9.png]]
758 -
759 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
760 -)))
761 -
762 -|(% rowspan="2" %)
763 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
764 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
765 -|(% colspan="8" %)(((
766 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
767 -
768 -[[image:image-20230515140953-10.png]]
769 -)))
770 -
771 -|(% rowspan="2" %)
772 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
773 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
774 -|(% colspan="8" %)(((
775 -Set the hysteresis to meet the gain switching condition.
776 -
777 -[[image:image-20230515140953-11.png]]
778 -)))
779 -
780 -|(% rowspan="2" %)
781 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
782 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
783 -|(% colspan="8" %)(((
784 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
785 -
786 -[[image:image-20230515140953-12.png]]
787 -
788 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
789 -)))
790 -
791 -
792 -
793 -
794 -
795 -
796 -= **Mechanical resonance suppression** =
797 -
798 -== Mechanical resonance suppression methods ==
799 -
800 -When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance.
801 -
802 -**Torque instruction filter**
803 -
804 -By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
805 -
806 -(% style="text-align:center" %)
807 -[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
808 -
809 -**Notch filter**
810 -
811 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__.
812 -
813 -== Notch filter ==
814 -
815 -The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade.
816 -
817 -**Width grade of notch filter**
818 -
819 -The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
820 -
821 -(% style="text-align:center" %)
822 -[[image:image-20220706155836-6.png||class="img-thumbnail"]]
823 -
824 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
825 -
826 -**Depth grade of notch filter**
827 -
828 -The depth grade of notch filter represents the ratio relationship between input and output at center frequency.
829 -
830 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
831 -
832 -(% style="text-align:center" %)
833 -(((
834 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
835 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
836 -)))
837 -
838 -
839 -(% style="text-align:center" %)
840 -(((
841 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
842 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
843 -)))
844 -
845 -
846 846  (% class="table-bordered" %)
847 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
394 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
848 848  **Setting method**
849 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
396 +)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
850 850  **Effective time**
851 -)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
852 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
398 +)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
399 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|(((
853 853  Operation setting
854 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
401 +)))|(((
855 855  Effective immediately
856 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
857 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
403 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
404 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|(((
858 858  Operation setting
859 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
406 +)))|(((
860 860  Effective immediately
861 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
862 -1. 0: all truncated
863 -1. 100: all passed
864 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
865 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
866 -Operation setting
867 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
408 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|0.10%
409 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|(((
868 868  Effective immediately
869 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
870 -1. 0: 0.5 times the bandwidth
871 -1. 4: 1 times the bandwidth
872 -1. 8: 2 times the bandwidth
873 -1. 12: 4 times the bandwidth
874 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
875 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
876 -Operation setting
877 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
878 -Effective immediately
879 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
880 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
881 -Operation setting
882 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
883 -Effective immediately
884 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
885 -1. 0: all truncated
886 -1. 100: all passed
887 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
888 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
889 -Operation setting
890 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
891 -Effective immediately
892 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
893 -1. 0: 0.5 times the bandwidth
894 -1. 4: 1 times the bandwidth
895 -1. 8: 2 times the bandwidth
896 -1. 12: 4 times the bandwidth
897 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
411 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10%
898 898  
899 -Table 7-11 Notch filter function code parameters
413 +Please refer to the following for an example of the procedure of adjusting servo gain.
414 +
415 +|**Step**|** Content**
416 +|1|Please try to set the correct load inertia ratio parameter P3-1.
417 +|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
418 +|3|Turn on the model tracking function, set P2-20 to 1.
419 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring.
420 +|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
421 +|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.