Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 20.1
edited by Karen
on 2023/05/15 14:34
Change comment: There is no comment for this version
To version 17.1
edited by Stone Wu
on 2022/08/30 11:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Karen
1 +XWiki.Stone
Content
... ... @@ -4,7 +4,7 @@
4 4  
5 5  (% style="text-align:center" %)
6 6  (((
7 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
7 +(% class="wikigeneratedid" style="display:inline-block" %)
8 8  [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]]
9 9  )))
10 10  
... ... @@ -15,7 +15,7 @@
15 15  ✎**Note: **Before adjusting the gain, it is recommended to perform a jog trial run first to ensure that the servo motor can operate normally! The gain adjustment process description is shown in the table below.
16 16  )))
17 17  
18 -(% class="table-bordered" style="margin-right:auto" %)
18 +(% class="table-bordered" %)
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
... ... @@ -30,11 +30,11 @@
30 30  Load inertia ratio P03-01 refers to:
31 31  
32 32  (% style="text-align:center" %)
33 -[[image:image-20220611152902-1.png||class="img-thumbnail"]]
33 +[[image:image-20220611152902-1.png]]
34 34  
35 35  The load inertia ratio is an important parameter of the servo system, and setting of the load inertia ratio correctly helps to quickly complete the debugging. The load inertia ratio could be set manually, and online load inertia recognition could be performed through the host computer debugging software.
36 36  
37 -(% class="warning" %)|(((
37 +|(((
38 38  (% style="text-align:center" %)
39 39  [[image:image-20220611152918-2.png]]
40 40  )))
... ... @@ -60,28 +60,28 @@
60 60  (% class="table-bordered" %)
61 61  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 173px;" %)(((
62 62  **Setting method**
63 -)))|=(% style="text-align: center; vertical-align: middle; width: 168px;" %)(((
63 +)))|=(% style="text-align: center; vertical-align: middle; width: 213px;" %)(((
64 64  **Effective time**
65 -)))|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
65 +)))|=(% style="text-align: center; vertical-align: middle; width: 117px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 118px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 276px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
66 66  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-01|(% style="text-align:center; vertical-align:middle; width:136px" %)Load inertia ratio|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
67 67  Operation setting
68 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
68 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
69 69  Effective immediately
70 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
70 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)300|(% style="text-align:center; vertical-align:middle; width:118px" %)100 to 10000|(% style="width:276px" %)Set load inertia ratio, 0.00 to 100.00 times|(% style="text-align:center; vertical-align:middle" %)0.01
71 71  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-05|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
72 72  Inertia recognition turns
73 73  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
74 74  Shutdown setting
75 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
75 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
76 76  Effective immediately
77 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
77 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)2|(% style="text-align:center; vertical-align:middle; width:118px" %)1 to 20|(% style="width:276px" %)Offline load inertia recognition process, motor rotation number setting|(% style="text-align:center; vertical-align:middle" %)circle
78 78  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P03-06|(% style="text-align:center; vertical-align:middle; width:136px" %)(((
79 79  Inertia recognition maximum speed
80 80  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
81 81  Shutdown setting
82 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
82 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
83 83  Effective immediately
84 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
84 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)1000|(% style="text-align:center; vertical-align:middle; width:118px" %)300 to 2000|(% style="width:276px" %)(((
85 85  Set the allowable maximum motor speed instruction in offline inertia recognition mode.
86 86  
87 87  The faster the speed during inertia recognition, the more accurate the recognition result will be. Usually, you can keep the default value.
... ... @@ -90,9 +90,9 @@
90 90  Parameter recognition rotation direction
91 91  )))|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
92 92  Shutdown setting
93 -)))|(% style="text-align:center; vertical-align:middle; width:168px" %)(((
93 +)))|(% style="text-align:center; vertical-align:middle; width:213px" %)(((
94 94  Effective immediately
95 -)))|(% style="text-align:center; vertical-align:middle; width:125px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
95 +)))|(% style="text-align:center; vertical-align:middle; width:117px" %)0|(% style="text-align:center; vertical-align:middle; width:118px" %)0 to 2|(% style="width:276px" %)(((
96 96  0: Forward and reverse reciprocating rotation
97 97  
98 98  1: Forward one-way rotation
... ... @@ -116,9 +116,9 @@
116 116  
117 117  The rigidity of the servo refers to the ability of the motor rotor to resist load inertia, that is, the self-locking ability of the motor rotor. The stronger the servo rigidity, the larger the corresponding position loop gain and speed loop gain, and the faster the response speed of the system.
118 118  
119 -(% class="table-bordered" style="margin-right:auto" %)
120 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 -|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
119 +(% class="table-bordered" %)
120 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 +|(% style="text-align:center; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122 122  
123 123  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124 124  
... ... @@ -143,7 +143,7 @@
143 143  * Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
144 144  
145 145  (% class="table-bordered" %)
146 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
146 +|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
147 147  |(((
148 148  ✎There may be a short mechanical whistling sound during the test. Generally, the servo will automatically stop the test. If it does not stop automatically or in other abnormal situations, you can click the "Servo Off" button on the interface to turn off the servo, or power off the machine!
149 149  
... ... @@ -151,16 +151,16 @@
151 151  )))
152 152  
153 153  (% class="table-bordered" %)
154 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 84px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 138px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)(((
154 +|(% style="text-align:center; vertical-align:middle; width:84px" %)**Function code**|(% style="text-align:center; vertical-align:middle; width:138px" %)**Name**|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
155 155  **Setting method**
156 -)))|=(% style="text-align: center; vertical-align: middle; width: 105px;" %)(((
156 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
157 157  **Effective time**
158 -)))|=(% style="text-align: center; vertical-align: middle; width: 87px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 83px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 431px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
159 -|=(% style="text-align: center; vertical-align: middle; width: 84px;" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:103px" %)(((
158 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)**Default value**|(% style="text-align:center; vertical-align:middle; width:85px" %)**Range**|(% style="text-align:center; vertical-align:middle; width:430px" %)**Definition**|(% style="text-align:center; vertical-align:middle" %)**Unit**
159 +|(% style="text-align:center; vertical-align:middle; width:84px" %)P03-03|(% style="text-align:center; vertical-align:middle; width:138px" %)Self-adjusting mode selection|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
160 160  Operation setting
161 -)))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
161 +)))|(% style="text-align:center; vertical-align:middle; width:129px" %)(((
162 162  Effective immediately
163 -)))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
163 +)))|(% style="text-align:center; vertical-align:middle; width:95px" %)0|(% style="text-align:center; vertical-align:middle; width:85px" %)0 to 2|(% style="width:430px" %)(((
164 164  * 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 165  * 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 166  * 2: Online automatic parameter self-adjusting mode (Not implemented yet)
... ... @@ -176,7 +176,7 @@
176 176  
177 177  (% style="text-align:center" %)
178 178  (((
179 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
179 +(% class="wikigeneratedid" style="display:inline-block" %)
180 180  [[**Figure 7-2 Basic block diagram of servo loop gain**>>image:image-20220608174209-2.png||id="Iimage-20220608174209-2.png"]]
181 181  )))
182 182  
... ... @@ -184,7 +184,7 @@
184 184  
185 185  The default current loop gain of the servo drive has ensured sufficient responsiveness. Generally, no adjustment is required. Only the position loop gain, speed loop gain and other auxiliary gains need to be adjusted.
186 186  
187 -This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are below.
187 +This servo drive has two sets of gain parameters for position loop and speed loop. The user can switch the two sets of gain parameters according to the setting value of P02-07 the 2nd gain switching mode. The parameters are are below.
188 188  
189 189  (% class="table-bordered" %)
190 190  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 450px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 751px;" %)**Name**
... ... @@ -221,7 +221,7 @@
221 221  
222 222  (% style="text-align:center" %)
223 223  (((
224 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
224 +(% class="wikigeneratedid" style="display:inline-block" %)
225 225  [[**Figure 7-3 Speed loop gain effect illustration**>>image:image-20220706152743-1.jpeg||id="Iimage-20220706152743-1.jpeg"]]
226 226  )))
227 227  
... ... @@ -258,7 +258,7 @@
258 258  
259 259  (% style="text-align:center" %)
260 260  (((
261 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
261 +(% class="wikigeneratedid" style="display:inline-block" %)
262 262  [[**Figure 7-4 Speed loop integral time constant effect illustration**>>image:image-20220706153140-2.jpeg||id="Iimage-20220706153140-2.jpeg"]]
263 263  )))
264 264  
... ... @@ -267,27 +267,27 @@
267 267  Determine the highest frequency of the position instruction that the position loop can follow the change. Increasing this parameter can speed up the positioning time and improve the ability of the motor to resist external disturbances when the motor is stationary. However, if the setting value is too large, the system may be unstable and oscillate. The related function codes are shown as below.
268 268  
269 269  (% class="table-bordered" %)
270 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 174px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
270 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 95px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 159px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
271 271  **Setting method**
272 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)(((
272 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
273 273  **Effective time**
274 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 91px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:174px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
274 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 355px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
275 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-01|(% style="text-align:center; vertical-align:middle; width:159px" %)1st position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
276 276  Operation setting
277 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
277 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
278 278  Effective immediately
279 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 -|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
279 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)400|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 +|=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:159px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
281 281  Operation setting
282 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
282 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
283 283  Effective immediately
284 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)35|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
284 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)35|(% style="text-align:center; vertical-align:middle; width:114px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
285 285  
286 286  Table 7-7 Position loop gain parameters
287 287  
288 288  (% style="text-align:center" %)
289 289  (((
290 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
290 +(% class="wikigeneratedid" style="display:inline-block" %)
291 291  [[**Figure 7-5 Position loop gain effect illustration**>>image:image-20220706153656-3.jpeg||id="Iimage-20220706153656-3.jpeg"]]
292 292  )))
293 293  
... ... @@ -298,14 +298,14 @@
298 298  (% class="table-bordered" %)
299 299  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 117px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 200px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)(((
300 300  **Setting method**
301 -)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
301 +)))|=(% style="text-align: center; vertical-align: middle; width: 133px;" %)(((
302 302  **Effective time**
303 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
303 +)))|=(% style="text-align: center; vertical-align: middle; width: 142px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 328px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 304  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
305 305  Operation setting
306 -)))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
306 +)))|(% style="text-align:center; vertical-align:middle; width:133px" %)(((
307 307  Effective immediately
308 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
308 +)))|(% style="text-align:center; vertical-align:middle; width:142px" %)50|(% style="width:328px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309 309  
310 310  Table 7-8 Details of torque filter time constant parameters
311 311  
... ... @@ -330,895 +330,18 @@
330 330  
331 331  (% style="text-align:center" %)
332 332  (((
333 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
334 -[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
333 +(% class="wikigeneratedid" style="display:inline-block" %)
334 +[[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||id="Iimage-20220706155307-4.jpeg"]]
335 335  )))
336 336  
337 337  
338 338  (% class="table-bordered" %)
339 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 259px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 690px;" %)**Adjustment description**
340 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward gain|(% rowspan="2" style="width:690px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 -|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:259px" %)Torque feedforward filtering time constant
339 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 125px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 330px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 746px;" %)**Adjustment description**
340 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-11|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward gain|(% rowspan="2" style="width:746px" %)Increase the torque feedforward gain because the position deviation can be close to 0 during certain acceleration and deceleration. Under the ideal condition of external disturbance torque not operating, when driving in the trapezoidal speed model, the position deviation can be close to 0 in the entire action interval. In fact, there must be external disturbance torque, so the position deviation cannot be zero. In addition, like the speed feedforward, although the larger the constant of the torque feedforward filter, the smaller the action sound, but the greater the position deviation of the acceleration change point.
341 +|=(% style="text-align: center; vertical-align: middle; width: 125px;" %)P02-12|(% style="text-align:center; vertical-align:middle; width:330px" %)Torque feedforward filtering time constant
342 342  
343 343  Table 7-10 Torque feedforward parameters
344 344  
345 -== **Model Tracking Control Function** ==
346 -
347 -Model tracking control is suitable for position control mode, which adds a model loop outside the three loops. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
348 -
349 -(% style="text-align:center" %)
350 -(((
351 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
352 -[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]]
353 -)))
354 -
355 -The usage method and conditions of model tracking control:
356 -
357 -~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
358 -
359 -2. Set the load rigidity level P3-2, set an appropriate value, it does not need to set a high rigidity level (recommended value 17~~21 under rigid load).
360 -
361 -3. Set P2-20=1 to enable the function of model tracking control.
362 -
363 -4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
364 -
365 -5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
366 -
367 -**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
368 -
369 -(% class="table-bordered" %)
370 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
371 -**Setting method**
372 -)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
373 -**Effective time**
374 -)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
375 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)Shutdown setting|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
376 -Effective immediately
377 -)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
378 -|P2-21|Model tracking control gain|Shutdown setting|(((
379 -Effective immediately
380 -)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
381 -|P2-22|Model tracking control gain compensation|Shutdown setting|(((
382 -Effective immediately
383 -)))|1000|500 to 2000|0.10%
384 -
385 -(% class="table-bordered" %)
386 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)(((
387 -**Setting method**
388 -)))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
389 -**Effective time**
390 -)))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
391 -|P2-23|Model tracking control forward rotation bias|(((
392 -Operation setting
393 -)))|(((
394 -Effective immediately
395 -)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
396 -|P2-24|Model tracking control reverses rotation bias|(((
397 -Operation setting
398 -)))|(((
399 -Effective immediately
400 -)))|1000|0 to 10000|0.10%
401 -|P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
402 -Effective immediately
403 -)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
404 -
405 -Please refer to the following for an example of the procedure of adjusting servo gain.
406 -
407 -|**Step**|**Content**
408 -|1|Please try to set the correct load inertia ratio parameter P3-1.
409 -|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
410 -|3|Turn on the model tracking function, set P2-20 to 1.
411 -|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
412 -|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
413 -|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
414 -
415 -== **Gain switching** ==
416 -
417 -Gain switching function:
418 -
419 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
420 -
421 -●Switch to a higher gain in the motor stationary state to shorten the positioning time;
422 -
423 -●Switch to a higher gain in the motor running state to get better command tracking performance;
424 -
425 -●Switch different gain settings by external signals depending on the load connected.
426 -
427 -(1) Gain switching parameter setting
428 -
429 -①When P02-07=0
430 -
431 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
432 -
433 -(% style="text-align:center" %)
434 -[[image:20230515-8.png]]
435 -
436 -② When P02-07=1
437 -
438 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
439 -
440 -(% style="text-align:center" %)
441 -[[image:20230515-9.png]]
442 -
443 -Figure 7-9 Flow chart of gain switching when P02-07=1
444 -
445 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
446 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
447 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
448 -|(% style="width:72px" %)(((
449 -
450 -
451 -
452 -
453 -
454 -
455 -2
456 -)))|(% style="width:146px" %)(((
457 -
458 -
459 -
460 -
461 -
462 -
463 -Large torque command
464 -)))|[[image:image-20230515140641-1.png]]
465 -|(% style="width:72px" %)(((
466 -
467 -
468 -
469 -
470 -
471 -
472 -
473 -3
474 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
475 -|(% style="width:72px" %)(((
476 -
477 -
478 -
479 -
480 -
481 -
482 -4
483 -)))|(% style="width:146px" %)(((
484 -
485 -
486 -
487 -
488 -
489 -
490 -Large speed command
491 -)))|[[image:image-20230515140641-3.png]]
492 -
493 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
494 -|(% style="width:74px" %)(((
495 -
496 -
497 -
498 -
499 -
500 -5
501 -)))|(% style="width:176px" %)(((
502 -
503 -
504 -
505 -
506 -
507 -Fast actual speed
508 -)))|(((
509 -
510 -
511 -[[image:image-20230515140641-4.png]]
512 -)))
513 -|(% style="width:74px" %)(((
514 -
515 -
516 -
517 -
518 -
519 -
520 -
521 -6
522 -)))|(% style="width:176px" %)(((
523 -
524 -
525 -
526 -
527 -
528 -
529 -
530 -Speed command change rate is large
531 -)))|[[image:image-20230515140641-5.png]]
532 -|(% style="width:74px" %)(((
533 -
534 -
535 -
536 -
537 -
538 -
539 -7
540 -
541 -
542 -)))|(% style="width:176px" %)(((
543 -
544 -
545 -
546 -
547 -
548 -
549 -Large position deviation
550 -)))|[[image:image-20230515140641-6.png]]
551 -|(% style="width:74px" %)(((
552 -
553 -
554 -
555 -
556 -
557 -8
558 -)))|(% style="width:176px" %)(((
559 -
560 -
561 -
562 -
563 -
564 -Position command
565 -)))|[[image:image-20230515140641-7.png]]
566 -
567 -|(% style="width:73px" %)(((
568 -
569 -
570 -
571 -
572 -
573 -
574 -9
575 -)))|(% style="width:154px" %)(((
576 -
577 -
578 -
579 -
580 -
581 -
582 -Positioning completed
583 -)))|[[image:image-20230515140641-8.png]]
584 -|(% style="width:73px" %)(((
585 -
586 -
587 -10
588 -
589 -
590 -)))|(% style="width:154px" %)(((
591 -
592 -
593 -Position command + actual speed
594 -)))|(((
595 -
596 -
597 -Refer to the chart below
598 -)))
599 -
600 -(% style="text-align:center" %)
601 -[[image:20230515-10.png]]
602 -
603 -Figure 7-10 P02-08=10 Position command + actual speed gain description
604 -
605 -(2) Description of related parameters
606 -
607 -|(% rowspan="2" style="width:68px" %)
608 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
609 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
610 -|(% colspan="8" %)(((
611 -Set the switching mode of the second gain.
612 -
613 -|**Setting value**|**Function**
614 -|0|(((
615 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
616 -
617 -DI logic invalid: PI control;
618 -
619 -DI logic valid: PI control.
620 -)))
621 -|1|The first gain and the second gain are switched by the setting value of P02-08.
622 -)))
623 -
624 -|(% rowspan="2" %)
625 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
626 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
627 -|(% colspan="8" %)(((
628 -Set the conditions for gain switching.
629 -
630 -|Setting value|Gain switching conditions|Details
631 -|0|The default is the first gain|Fixed use of the first gain
632 -|1|Switch by DI port|(((
633 -Use DI function 10 (GAIN-SEL, gain switching);
634 -
635 -DI logic is invalid: the first gain (P02-01~~P02-03);
636 -
637 -DI logic is valid: the second gain (P02-04~~P02-06).
638 -)))
639 -|2|Large torque command|(((
640 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
641 -
642 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
643 -
644 -
645 -)))
646 -|3|Large actual torque|(((
647 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
648 -
649 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
650 -
651 -
652 -)))
653 -|4|Large speed command|(((
654 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
655 -
656 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
657 -
658 -
659 -)))
660 -|5|Large actual speed|(((
661 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
662 -
663 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
664 -
665 -
666 -)))
667 -|(((
668 -
669 -
670 -6
671 -)))|(((
672 -
673 -
674 -Large rate of change in speed command
675 -)))|(((
676 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
677 -
678 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
679 -
680 -
681 -)))
682 -|(((
683 -
684 -
685 -7
686 -)))|(((
687 -
688 -
689 -Large position deviation
690 -)))|(((
691 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
692 -
693 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
694 -)))
695 -|8|Position command|(((
696 -In the previous first gain, if the position command is not 0, switch to the second gain;
697 -
698 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
699 -)))
700 -|(((
701 -
702 -
703 -9
704 -)))|(((
705 -
706 -
707 -Positioning complete
708 -)))|(((
709 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
710 -
711 -
712 -)))
713 -|(((
714 -
715 -
716 -10
717 -)))|(((
718 -
719 -
720 -Position command + actual speed
721 -)))|(((
722 -In the previous first gain, if the position command is not 0, the second gain is switched;
723 -
724 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
725 -
726 -
727 -)))
728 -
729 -
730 -)))
731 -
732 -|(% rowspan="2" %)
733 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
734 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
735 -|(% colspan="8" %)(((
736 -The duration of the switching condition required for the second gain to switch back to the first gain.
737 -
738 -[[image:image-20230515140953-9.png]]
739 -
740 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
741 -)))
742 -
743 -|(% rowspan="2" %)
744 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
745 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
746 -|(% colspan="8" %)(((
747 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
748 -
749 -[[image:image-20230515140953-10.png]]
750 -)))
751 -
752 -|(% rowspan="2" %)
753 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
754 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
755 -|(% colspan="8" %)(((
756 -Set the hysteresis to meet the gain switching condition.
757 -
758 -[[image:image-20230515140953-11.png]]
759 -)))
760 -
761 -|(% rowspan="2" %)
762 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
763 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
764 -|(% colspan="8" %)(((
765 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
766 -
767 -[[image:image-20230515140953-12.png]]
768 -
769 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
770 -)))
771 -
772 -
773 -
774 -== **Model Tracking Control Function** ==
775 -
776 -Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows:
777 -
778 -(% style="text-align:center" %)
779 -[[image:20230515-7.png]]
780 -
781 -The usage method and conditions of model tracking control:
782 -
783 -~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20.
784 -
785 -2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load).
786 -
787 -3. Set P2-20=1 to enable the function of model tracking control.
788 -
789 -4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter.
790 -
791 -5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2.
792 -
793 -**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes.
794 -
795 -|**Function code**|**Name**|(((
796 -**Setting**
797 -
798 -**method**
799 -)))|(((
800 -**Effective**
801 -
802 -**time**
803 -)))|**Default**|**Range**|**Definition**|**Unit**
804 -|P2-20|Model tracking control function|Shutdown setting|(((
805 -Effective
806 -
807 -immediately
808 -)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.|
809 -|P2-21|Model tracking control gain|Shutdown setting|(((
810 -Effective
811 -
812 -immediately
813 -)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s
814 -|P2-22|Model tracking control gain compensation|Shutdown setting|(((
815 -Effective
816 -
817 -immediately
818 -)))|1000|500 to 2000|0.10%
819 -
820 -|**Function code**|**Name**|(((
821 -**Setting**
822 -
823 -**method**
824 -)))|(((
825 -**Effective**
826 -
827 -**time**
828 -)))|**Default**|**Range**|**Definition**|**Unit**
829 -|P2-23|Model tracking control forward rotation bias|(((
830 -Operation
831 -
832 -setting
833 -)))|(((
834 -Effective
835 -
836 -immediately
837 -)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10%
838 -|P2-24|Model tracking control reverses rotation bias|(((
839 -Operation
840 -
841 -setting
842 -)))|(((
843 -Effective
844 -
845 -immediately
846 -)))|1000|0 to 10000|0.10%
847 -|P2-25|Model tracking control speed feedforward compensation|Operation setting|(((
848 -Effective
849 -
850 -immediately
851 -)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10%
852 -
853 -Please refer to the following for an example of the procedure of adjusting servo gain.
854 -
855 -|**Step**|**Content**
856 -|1|Please try to set the correct load inertia ratio parameter P3-1.
857 -|2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot.
858 -|3|Turn on the model tracking function, set P2-20 to 1.
859 -|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur.
860 -|5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2.
861 -|6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25.
862 -
863 -== **Gain switching** ==
864 -
865 -Gain switching function:
866 -
867 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
868 -
869 -●Switch to a higher gain in the motor stationary state to shorten the positioning time;
870 -
871 -●Switch to a higher gain in the motor running state to get better command tracking performance;
872 -
873 -●Switch different gain settings by external signals depending on the load connected.
874 -
875 -(1) Gain switching parameter setting
876 -
877 -①When P02-07=0
878 -
879 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
880 -
881 -(% style="text-align:center" %)
882 -[[image:20230515-8.png]]
883 -
884 -② When P02-07=1
885 -
886 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
887 -
888 -(% style="text-align:center" %)
889 -[[image:20230515-9.png]]
890 -
891 -Figure 7-9 Flow chart of gain switching when P02-07=1
892 -
893 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
894 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
895 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
896 -|(% style="width:72px" %)(((
897 -
898 -
899 -
900 -
901 -
902 -
903 -2
904 -)))|(% style="width:146px" %)(((
905 -
906 -
907 -
908 -
909 -
910 -
911 -Large torque command
912 -)))|[[image:image-20230515140641-1.png]]
913 -|(% style="width:72px" %)(((
914 -
915 -
916 -
917 -
918 -
919 -
920 -
921 -3
922 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
923 -|(% style="width:72px" %)(((
924 -
925 -
926 -
927 -
928 -
929 -
930 -4
931 -)))|(% style="width:146px" %)(((
932 -
933 -
934 -
935 -
936 -
937 -
938 -Large speed command
939 -)))|[[image:image-20230515140641-3.png]]
940 -
941 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
942 -|(% style="width:74px" %)(((
943 -
944 -
945 -
946 -
947 -
948 -5
949 -)))|(% style="width:176px" %)(((
950 -
951 -
952 -
953 -
954 -
955 -Fast actual speed
956 -)))|(((
957 -
958 -
959 -[[image:image-20230515140641-4.png]]
960 -)))
961 -|(% style="width:74px" %)(((
962 -
963 -
964 -
965 -
966 -
967 -
968 -
969 -6
970 -)))|(% style="width:176px" %)(((
971 -
972 -
973 -
974 -
975 -
976 -
977 -
978 -Speed command change rate is large
979 -)))|[[image:image-20230515140641-5.png]]
980 -|(% style="width:74px" %)(((
981 -
982 -
983 -
984 -
985 -
986 -
987 -7
988 -
989 -
990 -)))|(% style="width:176px" %)(((
991 -
992 -
993 -
994 -
995 -
996 -
997 -Large position deviation
998 -)))|[[image:image-20230515140641-6.png]]
999 -|(% style="width:74px" %)(((
1000 -
1001 -
1002 -
1003 -
1004 -
1005 -8
1006 -)))|(% style="width:176px" %)(((
1007 -
1008 -
1009 -
1010 -
1011 -
1012 -Position command
1013 -)))|[[image:image-20230515140641-7.png]]
1014 -
1015 -|(% style="width:73px" %)(((
1016 -
1017 -
1018 -
1019 -
1020 -
1021 -
1022 -9
1023 -)))|(% style="width:154px" %)(((
1024 -
1025 -
1026 -
1027 -
1028 -
1029 -
1030 -Positioning completed
1031 -)))|[[image:image-20230515140641-8.png]]
1032 -|(% style="width:73px" %)(((
1033 -
1034 -
1035 -10
1036 -
1037 -
1038 -)))|(% style="width:154px" %)(((
1039 -
1040 -
1041 -Position command + actual speed
1042 -)))|(((
1043 -
1044 -
1045 -Refer to the chart below
1046 -)))
1047 -
1048 -(% style="text-align:center" %)
1049 -[[image:20230515-10.png]]
1050 -
1051 -Figure 7-10 P02-08=10 Position command + actual speed gain description
1052 -
1053 -(2) Description of related parameters
1054 -
1055 -|(% rowspan="2" style="width:68px" %)
1056 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1057 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
1058 -|(% colspan="8" %)(((
1059 -Set the switching mode of the second gain.
1060 -
1061 -|**Setting value**|**Function**
1062 -|0|(((
1063 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
1064 -
1065 -DI logic invalid: PI control;
1066 -
1067 -DI logic valid: PI control.
1068 -)))
1069 -|1|The first gain and the second gain are switched by the setting value of P02-08.
1070 -)))
1071 -
1072 -|(% rowspan="2" %)
1073 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1074 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
1075 -|(% colspan="8" %)(((
1076 -Set the conditions for gain switching.
1077 -
1078 -|Setting value|Gain switching conditions|Details
1079 -|0|The default is the first gain|Fixed use of the first gain
1080 -|1|Switch by DI port|(((
1081 -Use DI function 10 (GAIN-SEL, gain switching);
1082 -
1083 -DI logic is invalid: the first gain (P02-01~~P02-03);
1084 -
1085 -DI logic is valid: the second gain (P02-04~~P02-06).
1086 -)))
1087 -|2|Large torque command|(((
1088 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
1089 -
1090 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
1091 -
1092 -
1093 -)))
1094 -|3|Large actual torque|(((
1095 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
1096 -
1097 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1098 -
1099 -
1100 -)))
1101 -|4|Large speed command|(((
1102 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
1103 -
1104 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1105 -
1106 -
1107 -)))
1108 -|5|Large actual speed|(((
1109 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
1110 -
1111 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1112 -
1113 -
1114 -)))
1115 -|(((
1116 -
1117 -
1118 -6
1119 -)))|(((
1120 -
1121 -
1122 -Large rate of change in speed command
1123 -)))|(((
1124 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
1125 -
1126 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1127 -
1128 -
1129 -)))
1130 -|(((
1131 -
1132 -
1133 -7
1134 -)))|(((
1135 -
1136 -
1137 -Large position deviation
1138 -)))|(((
1139 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
1140 -
1141 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
1142 -)))
1143 -|8|Position command|(((
1144 -In the previous first gain, if the position command is not 0, switch to the second gain;
1145 -
1146 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
1147 -)))
1148 -|(((
1149 -
1150 -
1151 -9
1152 -)))|(((
1153 -
1154 -
1155 -Positioning complete
1156 -)))|(((
1157 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
1158 -
1159 -
1160 -)))
1161 -|(((
1162 -
1163 -
1164 -10
1165 -)))|(((
1166 -
1167 -
1168 -Position command + actual speed
1169 -)))|(((
1170 -In the previous first gain, if the position command is not 0, the second gain is switched;
1171 -
1172 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
1173 -
1174 -
1175 -)))
1176 -
1177 -
1178 -)))
1179 -
1180 -|(% rowspan="2" %)
1181 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1182 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
1183 -|(% colspan="8" %)(((
1184 -The duration of the switching condition required for the second gain to switch back to the first gain.
1185 -
1186 -[[image:image-20230515140953-9.png]]
1187 -
1188 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
1189 -)))
1190 -
1191 -|(% rowspan="2" %)
1192 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1193 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
1194 -|(% colspan="8" %)(((
1195 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
1196 -
1197 -[[image:image-20230515140953-10.png]]
1198 -)))
1199 -
1200 -|(% rowspan="2" %)
1201 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1202 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
1203 -|(% colspan="8" %)(((
1204 -Set the hysteresis to meet the gain switching condition.
1205 -
1206 -[[image:image-20230515140953-11.png]]
1207 -)))
1208 -
1209 -|(% rowspan="2" %)
1210 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
1211 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
1212 -|(% colspan="8" %)(((
1213 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
1214 -
1215 -[[image:image-20230515140953-12.png]]
1216 -
1217 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
1218 -)))
1219 -
1220 -
1221 -
1222 1222  = **Mechanical resonance suppression** =
1223 1223  
1224 1224  == Mechanical resonance suppression methods ==
... ... @@ -1230,7 +1230,7 @@
1230 1230  By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula:
1231 1231  
1232 1232  (% style="text-align:center" %)
1233 -[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]]
356 +[[image:image-20220706155820-5.jpeg]]
1234 1234  
1235 1235  **Notch filter**
1236 1236  
... ... @@ -1245,7 +1245,7 @@
1245 1245  The notch width grade is used to express the ratio of the notch width to the center frequency of the notch:
1246 1246  
1247 1247  (% style="text-align:center" %)
1248 -[[image:image-20220706155836-6.png||class="img-thumbnail"]]
371 +[[image:image-20220706155836-6.png]]
1249 1249  
1250 1250  In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter.
1251 1251  
... ... @@ -1256,43 +1256,39 @@
1256 1256  When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__.
1257 1257  
1258 1258  (% style="text-align:center" %)
1259 -(((
1260 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1261 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]
1262 -)))
382 +[[image:image-20220608174259-3.png]]
1263 1263  
384 +Figure 7-7 Notch characteristics, notch width, and notch depth
1264 1264  
1265 1265  (% style="text-align:center" %)
1266 -(((
1267 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1268 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]
1269 -)))
387 +[[image:image-20220706160046-9.png]]
1270 1270  
389 +Figure 7-8 Frequency characteristics of notch filter
1271 1271  
1272 1272  (% class="table-bordered" %)
1273 1273  |=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
1274 1274  **Setting method**
1275 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
394 +)))|=(% style="text-align: center; vertical-align: middle; width: 108px;" %)(((
1276 1276  **Effective time**
1277 -)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
396 +)))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
1278 1278  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1279 1279  Operation setting
1280 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
399 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1281 1281  Effective immediately
1282 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
401 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1283 1283  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1284 1284  Operation setting
1285 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
404 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1286 1286  Effective immediately
1287 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
406 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1288 1288  1. 0: all truncated
1289 1289  1. 100: all passed
1290 1290  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1291 1291  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1292 1292  Operation setting
1293 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
412 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1294 1294  Effective immediately
1295 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
414 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1296 1296  1. 0: 0.5 times the bandwidth
1297 1297  1. 4: 1 times the bandwidth
1298 1298  1. 8: 2 times the bandwidth
... ... @@ -1300,22 +1300,22 @@
1300 1300  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1301 1301  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1302 1302  Operation setting
1303 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
422 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1304 1304  Effective immediately
1305 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
424 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz
1306 1306  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1307 1307  Operation setting
1308 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
427 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1309 1309  Effective immediately
1310 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
429 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
1311 1311  1. 0: all truncated
1312 1312  1. 100: all passed
1313 1313  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
1314 1314  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
1315 1315  Operation setting
1316 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
435 +)))|(% style="text-align:center; vertical-align:middle; width:108px" %)(((
1317 1317  Effective immediately
1318 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
437 +)))|(% style="text-align:center; vertical-align:middle; width:127px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
1319 1319  1. 0: 0.5 times the bandwidth
1320 1320  1. 4: 1 times the bandwidth
1321 1321  1. 8: 2 times the bandwidth
20230515-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -10.3 KB
Content
20230515-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -9.9 KB
Content
20230515-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -21.5 KB
Content
20230515-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -18.7 KB
Content
image-20230515140641-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -23.1 KB
Content
image-20230515140641-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -11.9 KB
Content
image-20230515140641-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -12.8 KB
Content
image-20230515140641-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -11.0 KB
Content
image-20230515140641-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -20.5 KB
Content
image-20230515140641-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -18.1 KB
Content
image-20230515140641-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -10.4 KB
Content
image-20230515140641-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -11.4 KB
Content
image-20230515140953-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -23.7 KB
Content
image-20230515140953-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -23.1 KB
Content
image-20230515140953-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -14.5 KB
Content
image-20230515140953-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -24.4 KB
Content