Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -349,7 +349,7 @@ 349 349 (% style="text-align:center" %) 350 350 ((( 351 351 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 352 -[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png|| height="394" id="20230515-7.png"width="931"]]352 +[[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||id="20230515-7.png"]] 353 353 ))) 354 354 355 355 The usage method and conditions of model tracking control: ... ... @@ -380,16 +380,15 @@ 380 380 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 381 381 Effective immediately 382 382 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)0|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 1|When the function code is set to 1, enable the model tracking control function.| 383 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 383 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-21|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 384 384 Shutdown setting 385 -)))|( % style="text-align:center; vertical-align:middle; width:128px" %)(((385 +)))|((( 386 386 Effective immediately 387 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s 388 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 389 -Shutdown setting 390 -)))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 387 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)200 to 20000|(% rowspan="2" %)(% style="width:321px" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|(% style="text-align:center; vertical-align:middle" %)0.1/s 388 + 389 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-22|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control gain compensation|Shutdown setting|((( 391 391 Effective immediately 392 -)))| (% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10%391 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)500 to 2000|(% style="text-align:center; vertical-align:middle" %)0.10% 393 393 394 394 (% class="table-bordered" %) 395 395 |=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 163px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 122px;" %)((( ... ... @@ -399,843 +399,24 @@ 399 399 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 400 400 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-23|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control forward rotation bias|((( 401 401 Operation setting 402 -)))|( % style="text-align:center; vertical-align:middle; width:128px" %)(((401 +)))|((( 403 403 Effective immediately 404 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 403 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% rowspan="2" %)(% style="width:321px" %)Torque feedforward size in the positive and reverse direction under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 405 405 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-24|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control reverses rotation bias|((( 406 406 Operation setting 407 -)))|( % style="text-align:center; vertical-align:middle; width:128px" %)(((406 +)))|((( 408 408 Effective immediately 409 -)))| (% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="text-align:center; vertical-align:middle" %)0.10%410 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|( % style="text-align:center; vertical-align:middle; width:128px" %)(((408 +)))|1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|0.10% 409 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-25|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control speed feedforward compensation|Operation setting|((( 411 411 Effective immediately 412 412 )))|(% style="text-align:center; vertical-align:middle; width:103px" %)1000|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 10000|(% style="width:321px" %)The size of the speed feedforward under model tracking control|(% style="text-align:center; vertical-align:middle" %)0.10% 413 413 414 414 Please refer to the following for an example of the procedure of adjusting servo gain. 415 415 416 -(% style="width:1508px" %) 417 -|=(% style="text-align:center; vertical-align:middle; width:80px" %)**Step**|=(% style="text-align:center; vertical-align:middle; width:1420px" %)**Content** 418 -|=(% style="text-align: center; vertical-align: middle; width: 80px;" %)1|Please try to set the correct load inertia ratio parameter P3-1. 419 -|=(% style="text-align:center; vertical-align:middle; width:80px" %)2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot. 420 -|=(% style="text-align: center; vertical-align: middle; width: 80px;" %)3|Turn on the model tracking function, set P2-20 to 1. 421 -|=(% style="text-align: center; vertical-align: middle; width: 80px;" %)4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring. 422 -|=(% style="text-align: center; vertical-align: middle; width: 80px;" %)5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2. 423 -|=(% style="text-align: center; vertical-align: middle; width: 80px;" %)6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25. 424 - 425 -== **Gain switching** == 426 - 427 -**Gain switching function:** 428 - 429 -● Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration; 430 - 431 -● Switch to a higher gain in the motor stationary state to shorten the positioning time; 432 - 433 -● Switch to a higher gain in the motor running state to get better command tracking performance; 434 - 435 -● Switch different gain settings by external signals depending on the load connected. 436 - 437 -**Gain switching parameter setting** 438 - 439 -①When P02-07=0 440 - 441 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching). 442 - 443 -(% style="text-align:center" %) 444 -((( 445 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 446 -[[image:20230515-8.png||height="378" id="20230515-8.png" width="363"]] 447 -))) 448 - 449 -② When P02-07=1 450 - 451 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06). 452 - 453 -(% style="text-align:center" %) 454 -((( 455 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 456 -[[**Figure 7-9 Flow chart of gain switching when P02-07=1**>>image:20230515-9.png||id="20230515-9.png"]] 457 -))) 458 - 459 -|=(% style="text-align:center; vertical-align:middle; width:74px" %)**P02-08**|=(% style="text-align: center; vertical-align: middle; width: 238px;" %)**Content**|=(% style="text-align: center; vertical-align: middle; width: 1108px;" %)**Diagram** 460 -|=(% style="text-align:center; vertical-align:middle;width:74px" %)0|(% style="text-align:center; vertical-align:middle;" %)Fixed use of the first gain|(% style="width:1108px" %)~-~- 461 -|=(% style="text-align:center; vertical-align:middle; width:74px" %)1|(% style="text-align:center; vertical-align:middle;" %)Switching with DI|(% style="width:1108px" %)~-~- 462 -|=(% style="text-align:center; vertical-align:middle; width:74px" %)((( 463 -2 464 -)))|(% style="text-align:center; vertical-align:middle;" %)((( 465 -Large torque command 466 -)))|(% style="width:1108px" %) [[image:image-20230515140641-1.png]] 467 -|=(% style="text-align:center; vertical-align:middle;width:74px" %)((( 468 -3 469 -)))|(% style="text-align:center; vertical-align:middle;" %)Large actual torque|(% style="width:1108px" %)[[image:image-20230515140641-2.png||style="text-align:center; vertical-align:middle"]] 470 -|=(% style="text-align:center; vertical-align:middle;width:74px" %)((( 471 -4 472 -)))|(% style="width:238px" %)((( 473 -Large speed command 474 -)))|(% style="width:1108px" %)[[image:image-20230515140641-3.png]] 475 - 476 -|=(% style="text-align:center; vertical-align:middle;width:74px" %)((( 477 -5 478 -)))|(% style="width:238px" %)((( 479 - 480 -Fast actual speed 481 -)))|((( 482 - 483 -[[image:image-20230515140641-4.png]] 484 -))) 485 -|=(% style="width:74px" %)((( 486 -6 487 -)))|(% style="width:176px" %)((( 488 - 489 -Speed command change rate is large 490 -)))|[[image:image-20230515140641-5.png]] 491 -|=(% style="width:74px" %)((( 492 -7 493 -)))|(% style="width:176px" %)((( 494 - 495 -Large position deviation 496 -)))|[[image:image-20230515140641-6.png]] 497 -|=(% style="width:74px" %)((( 498 -8 499 -)))|(% style="width:176px" %)((( 500 -Position command 501 -)))|[[image:image-20230515140641-7.png]] 502 - 503 -|=(% style="width:73px" %)((( 504 -9 505 -)))|(% style="width:238px" %)((( 506 - 507 -Positioning completed 508 -)))|(% style="width:1179px" %)[[image:image-20230515140641-8.png]] 509 -|=(% style="width:73px" %)((( 510 -10 511 -)))|(% style="width:238px" %)((( 512 - 513 -Position command + actual speed 514 -)))|(% style="width:1179px" %)((( 515 - 516 -Refer to the chart below 517 -))) 518 - 519 -(% style="text-align:center" %) 520 -[[image:20230515-10.png]] 521 - 522 -Figure 7-10 P02-08=10 Position command + actual speed gain description 523 - 524 -Description of related parameters 525 - 526 -|(% rowspan="2" style="width:68px" %) 527 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 528 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control| 529 -|(% colspan="8" %)((( 530 -Set the switching mode of the second gain. 531 - 532 -|**Setting value**|**Function** 533 -|0|((( 534 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching): 535 - 536 -DI logic invalid: PI control; 537 - 538 -DI logic valid: PI control. 539 -))) 540 -|1|The first gain and the second gain are switched by the setting value of P02-08. 541 -))) 542 - 543 -|(% rowspan="2" %) 544 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 545 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control| 546 -|(% colspan="8" %)((( 547 -Set the conditions for gain switching. 548 - 549 -|Setting value|Gain switching conditions|Details 550 -|0|The default is the first gain|Fixed use of the first gain 551 -|1|Switch by DI port|((( 552 -Use DI function 10 (GAIN-SEL, gain switching); 553 - 554 -DI logic is invalid: the first gain (P02-01~~P02-03); 555 - 556 -DI logic is valid: the second gain (P02-04~~P02-06). 557 -))) 558 -|2|Large torque command|((( 559 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; 560 - 561 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned. 562 - 563 - 564 -))) 565 -|3|Large actual torque|((( 566 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched; 567 - 568 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned. 569 - 570 - 571 -))) 572 -|4|Large speed command|((( 573 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched; 574 - 575 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 576 - 577 - 578 -))) 579 -|5|Large actual speed|((( 580 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched; 581 - 582 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 583 - 584 - 585 -))) 586 -|((( 587 - 588 - 589 -6 590 -)))|((( 591 - 592 - 593 -Large rate of change in speed command 594 -)))|((( 595 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; 596 - 597 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 598 - 599 - 600 -))) 601 -|((( 602 - 603 - 604 -7 605 -)))|((( 606 - 607 - 608 -Large position deviation 609 -)))|((( 610 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; 611 - 612 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 613 -))) 614 -|8|Position command|((( 615 -In the previous first gain, if the position command is not 0, switch to the second gain; 616 - 617 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned. 618 -))) 619 -|((( 620 - 621 - 622 -9 623 -)))|((( 624 - 625 - 626 -Positioning complete 627 -)))|((( 628 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned. 629 - 630 - 631 -))) 632 -|((( 633 - 634 - 635 -10 636 -)))|((( 637 - 638 - 639 -Position command + actual speed 640 -)))|((( 641 -In the previous first gain, if the position command is not 0, the second gain is switched; 642 - 643 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis). 644 - 645 - 646 -))) 647 - 648 - 649 -))) 650 - 651 -|(% rowspan="2" %) 652 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 653 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms 654 -|(% colspan="8" %)((( 655 -The duration of the switching condition required for the second gain to switch back to the first gain. 656 - 657 -[[image:image-20230515140953-9.png]] 658 - 659 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain. 660 -))) 661 - 662 -|(% rowspan="2" %) 663 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 664 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions 665 -|(% colspan="8" %)((( 666 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis. 667 - 668 -[[image:image-20230515140953-10.png]] 669 -))) 670 - 671 -|(% rowspan="2" %) 672 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 673 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions 674 -|(% colspan="8" %)((( 675 -Set the hysteresis to meet the gain switching condition. 676 - 677 -[[image:image-20230515140953-11.png]] 678 -))) 679 - 680 -|(% rowspan="2" %) 681 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 682 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms 683 -|(% colspan="8" %)((( 684 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode. 685 - 686 -[[image:image-20230515140953-12.png]] 687 - 688 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately. 689 -))) 690 - 691 -== **Model Tracking Control Function** == 692 - 693 -Model tracking control is suitable for position control mode, which adds a model loop outside the three loop. In the model loop, new position commands, speed feedforward and torque feedforward and other control quantities are generated according to the user's response requirements to the system and the ideal motor control model. Applying these control quantities to the actual control loop can significantly improve the response performance and positioning performance of the position control, the design block diagram is as follows: 694 - 695 -(% style="text-align:center" %) 696 -[[image:20230515-7.png]] 697 - 698 -The usage method and conditions of model tracking control: 699 - 700 -~1. Correctly set the inertia ratio of the system P3-1, which can be obtained by monitoring the real-time load inertia ratio of U0-20. 701 - 702 -2. Set the load rigidity level P3-2, set an appropriate value, it is not need to set a high rigidity level (recommended value 17~~21 under rigid load). 703 - 704 -3. Set P2-20=1 to enable the function of model tracking control. 705 - 706 -4. Adjust the P2-21 model tracking control gain from small to large, and gradually increase in steps of 1000 until the responsiveness of the system meets the actual demand. The responsiveness of the system is mainly determined by this parameter. 707 - 708 -5. After the responsiveness meets the requirements, user can adjust the parameters appropriately to increase the load rigidity level P3-2. 709 - 710 -**✎Note**: Model tracking control is only available in position mode, and cannot be used in other modes. 711 - 712 -|**Function code**|**Name**|((( 713 -**Setting** 714 - 715 -**method** 716 -)))|((( 717 -**Effective** 718 - 719 -**time** 720 -)))|**Default**|**Range**|**Definition**|**Unit** 721 -|P2-20|Model tracking control function|Shutdown setting|((( 722 -Effective 723 - 724 -immediately 725 -)))|0|0 to 1|When the function code is set to 1, enable the model tracking control function.| 726 -|P2-21|Model tracking control gain|Shutdown setting|((( 727 -Effective 728 - 729 -immediately 730 -)))|1000|200 to 20000|(% rowspan="2" %)Increasing the model tracking control gain can improve the position response performance of the model loop. If the gain is too high, it may cause overshoot behavior. The gain compensation affects the damping ratio of the model loop, and the damping ratio becomes larger as the gain compensation becomes larger.|0.1/s 731 -|P2-22|Model tracking control gain compensation|Shutdown setting|((( 732 -Effective 733 - 734 -immediately 735 -)))|1000|500 to 2000|0.10% 736 - 737 -|**Function code**|**Name**|((( 738 -**Setting** 739 - 740 -**method** 741 -)))|((( 742 -**Effective** 743 - 744 -**time** 745 -)))|**Default**|**Range**|**Definition**|**Unit** 746 -|P2-23|Model tracking control forward rotation bias|((( 747 -Operation 748 - 749 -setting 750 -)))|((( 751 -Effective 752 - 753 -immediately 754 -)))|1000|0 to 10000|(% rowspan="2" %)Torque feedforward size in the positive and reverse direction under model tracking control|0.10% 755 -|P2-24|Model tracking control reverses rotation bias|((( 756 -Operation 757 - 758 -setting 759 -)))|((( 760 -Effective 761 - 762 -immediately 763 -)))|1000|0 to 10000|0.10% 764 -|P2-25|Model tracking control speed feedforward compensation|Operation setting|((( 765 -Effective 766 - 767 -immediately 768 -)))|1000|0 to 10000|The size of the speed feedforward under model tracking control|0.10% 769 - 770 -Please refer to the following for an example of the procedure of adjusting servo gain. 771 - 772 -|**Step**|**Content** 415 +|**Step**|** Content** 773 773 |1|Please try to set the correct load inertia ratio parameter P3-1. 774 774 |2|If the automatic adjustment mode is used (P3-3 is set to 0), please set the basic rigidity level parameter P3-2. If in manual adjustment mode (P3-3 is set to 1), please set the gain P2-1~~P2-3 related to the position loop and speed loop and the torque filter time constant P4-4. The setting principle is mainly no vibration and overshoot. 775 775 |3|Turn on the model tracking function, set P2-20 to 1. 776 -|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occur. 419 +|4|Increase the model tracking gain P2-21 within the range of no overshoot and vibration occurring. 777 777 |5|If the rigidity level of step 2 is set relatively low, user can properly increase the rigidity level P3-2. 778 778 |6|When overshoot occurs, or the responses of forward rotation and reverse rotation are different, user can fine-tune through model tracking control forward bias P2-23, model tracking control reverse bias P2-24, model tracking control speed feedforward compensation P2 -25. 779 - 780 -== **Gain switching** == 781 - 782 -Gain switching function: 783 - 784 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration; 785 - 786 -●Switch to a higher gain in the motor stationary state to shorten the positioning time; 787 - 788 -●Switch to a higher gain in the motor running state to get better command tracking performance; 789 - 790 -●Switch different gain settings by external signals depending on the load connected. 791 - 792 -(1) Gain switching parameter setting 793 - 794 -①When P02-07=0 795 - 796 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching). 797 - 798 -(% style="text-align:center" %) 799 -[[image:20230515-8.png]] 800 - 801 -② When P02-07=1 802 - 803 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06). 804 - 805 -(% style="text-align:center" %) 806 -[[image:20230515-9.png]] 807 - 808 -Figure 7-9 Flow chart of gain switching when P02-07=1 809 - 810 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram** 811 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~- 812 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~- 813 -|(% style="width:72px" %)((( 814 - 815 - 816 - 817 - 818 - 819 - 820 -2 821 -)))|(% style="width:146px" %)((( 822 - 823 - 824 - 825 - 826 - 827 - 828 -Large torque command 829 -)))|[[image:image-20230515140641-1.png]] 830 -|(% style="width:72px" %)((( 831 - 832 - 833 - 834 - 835 - 836 - 837 - 838 -3 839 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]] 840 -|(% style="width:72px" %)((( 841 - 842 - 843 - 844 - 845 - 846 - 847 -4 848 -)))|(% style="width:146px" %)((( 849 - 850 - 851 - 852 - 853 - 854 - 855 -Large speed command 856 -)))|[[image:image-20230515140641-3.png]] 857 - 858 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram** 859 -|(% style="width:74px" %)((( 860 - 861 - 862 - 863 - 864 - 865 -5 866 -)))|(% style="width:176px" %)((( 867 - 868 - 869 - 870 - 871 - 872 -Fast actual speed 873 -)))|((( 874 - 875 - 876 -[[image:image-20230515140641-4.png]] 877 -))) 878 -|(% style="width:74px" %)((( 879 - 880 - 881 - 882 - 883 - 884 - 885 - 886 -6 887 -)))|(% style="width:176px" %)((( 888 - 889 - 890 - 891 - 892 - 893 - 894 - 895 -Speed command change rate is large 896 -)))|[[image:image-20230515140641-5.png]] 897 -|(% style="width:74px" %)((( 898 - 899 - 900 - 901 - 902 - 903 - 904 -7 905 - 906 - 907 -)))|(% style="width:176px" %)((( 908 - 909 - 910 - 911 - 912 - 913 - 914 -Large position deviation 915 -)))|[[image:image-20230515140641-6.png]] 916 -|(% style="width:74px" %)((( 917 - 918 - 919 - 920 - 921 - 922 -8 923 -)))|(% style="width:176px" %)((( 924 - 925 - 926 - 927 - 928 - 929 -Position command 930 -)))|[[image:image-20230515140641-7.png]] 931 - 932 -|(% style="width:73px" %)((( 933 - 934 - 935 - 936 - 937 - 938 - 939 -9 940 -)))|(% style="width:154px" %)((( 941 - 942 - 943 - 944 - 945 - 946 - 947 -Positioning completed 948 -)))|[[image:image-20230515140641-8.png]] 949 -|(% style="width:73px" %)((( 950 - 951 - 952 -10 953 - 954 - 955 -)))|(% style="width:154px" %)((( 956 - 957 - 958 -Position command + actual speed 959 -)))|((( 960 - 961 - 962 -Refer to the chart below 963 -))) 964 - 965 -(% style="text-align:center" %) 966 -[[image:20230515-10.png]] 967 - 968 -Figure 7-10 P02-08=10 Position command + actual speed gain description 969 - 970 -(2) Description of related parameters 971 - 972 -|(% rowspan="2" style="width:68px" %) 973 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 974 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control| 975 -|(% colspan="8" %)((( 976 -Set the switching mode of the second gain. 977 - 978 -|**Setting value**|**Function** 979 -|0|((( 980 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching): 981 - 982 -DI logic invalid: PI control; 983 - 984 -DI logic valid: PI control. 985 -))) 986 -|1|The first gain and the second gain are switched by the setting value of P02-08. 987 -))) 988 - 989 -|(% rowspan="2" %) 990 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 991 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control| 992 -|(% colspan="8" %)((( 993 -Set the conditions for gain switching. 994 - 995 -|Setting value|Gain switching conditions|Details 996 -|0|The default is the first gain|Fixed use of the first gain 997 -|1|Switch by DI port|((( 998 -Use DI function 10 (GAIN-SEL, gain switching); 999 - 1000 -DI logic is invalid: the first gain (P02-01~~P02-03); 1001 - 1002 -DI logic is valid: the second gain (P02-04~~P02-06). 1003 -))) 1004 -|2|Large torque command|((( 1005 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; 1006 - 1007 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned. 1008 - 1009 - 1010 -))) 1011 -|3|Large actual torque|((( 1012 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched; 1013 - 1014 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 1015 - 1016 - 1017 -))) 1018 -|4|Large speed command|((( 1019 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched; 1020 - 1021 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 1022 - 1023 - 1024 -))) 1025 -|5|Large actual speed|((( 1026 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched; 1027 - 1028 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 1029 - 1030 - 1031 -))) 1032 -|((( 1033 - 1034 - 1035 -6 1036 -)))|((( 1037 - 1038 - 1039 -Large rate of change in speed command 1040 -)))|((( 1041 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; 1042 - 1043 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 1044 - 1045 - 1046 -))) 1047 -|((( 1048 - 1049 - 1050 -7 1051 -)))|((( 1052 - 1053 - 1054 -Large position deviation 1055 -)))|((( 1056 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; 1057 - 1058 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 1059 -))) 1060 -|8|Position command|((( 1061 -In the previous first gain, if the position command is not 0, switch to the second gain; 1062 - 1063 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned. 1064 -))) 1065 -|((( 1066 - 1067 - 1068 -9 1069 -)))|((( 1070 - 1071 - 1072 -Positioning complete 1073 -)))|((( 1074 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned. 1075 - 1076 - 1077 -))) 1078 -|((( 1079 - 1080 - 1081 -10 1082 -)))|((( 1083 - 1084 - 1085 -Position command + actual speed 1086 -)))|((( 1087 -In the previous first gain, if the position command is not 0, the second gain is switched; 1088 - 1089 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis). 1090 - 1091 - 1092 -))) 1093 - 1094 - 1095 -))) 1096 - 1097 -|(% rowspan="2" %) 1098 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 1099 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms 1100 -|(% colspan="8" %)((( 1101 -The duration of the switching condition required for the second gain to switch back to the first gain. 1102 - 1103 -[[image:image-20230515140953-9.png]] 1104 - 1105 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain. 1106 -))) 1107 - 1108 -|(% rowspan="2" %) 1109 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 1110 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions 1111 -|(% colspan="8" %)((( 1112 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis. 1113 - 1114 -[[image:image-20230515140953-10.png]] 1115 -))) 1116 - 1117 -|(% rowspan="2" %) 1118 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 1119 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions 1120 -|(% colspan="8" %)((( 1121 -Set the hysteresis to meet the gain switching condition. 1122 - 1123 -[[image:image-20230515140953-11.png]] 1124 -))) 1125 - 1126 -|(% rowspan="2" %) 1127 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 1128 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms 1129 -|(% colspan="8" %)((( 1130 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode. 1131 - 1132 -[[image:image-20230515140953-12.png]] 1133 - 1134 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately. 1135 -))) 1136 - 1137 -= **Mechanical resonance suppression** = 1138 - 1139 -== Mechanical resonance suppression methods == 1140 - 1141 -When the mechanical rigidity is low, vibration and noise may occur due to resonance caused by shaft twisting, and it may not be possible to increase the gain setting. In this case, by using a notch filter to reduce the gain at a specific frequency, after resonance is effectively suppressed, you can continue to increase the servo gain. There are 2 methods to suppress mechanical resonance. 1142 - 1143 -**Torque instruction filter** 1144 - 1145 -By setting the filter time constant, the torque instruction is attenuated in the high frequency range above the cutoff frequency, so as to achieve the expectation of suppressing mechanical resonance. The cut-off frequency of the torque instruction filter could be calculated by the following formula: 1146 - 1147 -(% style="text-align:center" %) 1148 -[[image:image-20220706155820-5.jpeg||class="img-thumbnail"]] 1149 - 1150 -**Notch filter** 1151 - 1152 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-3__. 1153 - 1154 -== Notch filter == 1155 - 1156 -The VD2 series servo drives have 2 sets of notch filters, each of which has 3 parameters, namely notch frequency, width grade and depth grade. 1157 - 1158 -**Width grade of notch filter** 1159 - 1160 -The notch width grade is used to express the ratio of the notch width to the center frequency of the notch: 1161 - 1162 -(% style="text-align:center" %) 1163 -[[image:image-20220706155836-6.png||class="img-thumbnail"]] 1164 - 1165 -In formula (7-1), [[image:image-20220706155946-7.png]] is the center frequency of notch filter, that is, the mechanical resonance frequency; [[image:image-20220706155952-8.png]] is the width of notch filter, which represents the frequency bandwidth with an amplitude attenuation rate of **-3dB** relative to the center frequency of notch filter. 1166 - 1167 -**Depth grade of notch filter** 1168 - 1169 -The depth grade of notch filter represents the ratio relationship between input and output at center frequency. 1170 - 1171 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-4__. 1172 - 1173 -(% style="text-align:center" %) 1174 -((( 1175 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1176 -[[Figure 7-7 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]] 1177 -))) 1178 - 1179 - 1180 -(% style="text-align:center" %) 1181 -((( 1182 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 1183 -[[Figure 7-8 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]] 1184 -))) 1185 - 1186 - 1187 -(% class="table-bordered" %) 1188 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 113px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)((( 1189 -**Setting method** 1190 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)((( 1191 -**Effective time** 1192 -)))|=(% style="text-align: center; vertical-align: middle; width: 99px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 102px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 362px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit** 1193 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-05|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1194 -Operation setting 1195 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1196 -Effective immediately 1197 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)300|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 1st notch filter. When the set value is 5000, the function of notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz 1198 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-06|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1199 -Operation setting 1200 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1201 -Effective immediately 1202 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 1203 -1. 0: all truncated 1204 -1. 100: all passed 1205 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 1206 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1207 -Operation setting 1208 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1209 -Effective immediately 1210 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 1211 -1. 0: 0.5 times the bandwidth 1212 -1. 4: 1 times the bandwidth 1213 -1. 8: 2 times the bandwidth 1214 -1. 12: 4 times the bandwidth 1215 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 1216 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1217 -Operation setting 1218 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1219 -Effective immediately 1220 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)500|(% style="text-align:center; vertical-align:middle; width:102px" %)250 to 5000|(% style="width:362px" %)Set the center frequency of the 2nd notch filter. When the set value is 5000, the function of the notch filter is invalid.|(% style="text-align:center; vertical-align:middle; width:96px" %)Hz 1221 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-09|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter depth|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1222 -Operation setting 1223 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1224 -Effective immediately 1225 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 1226 -1. 0: all truncated 1227 -1. 100: all passed 1228 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 1229 -|=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 1230 -Operation setting 1231 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 1232 -Effective immediately 1233 -)))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 1234 -1. 0: 0.5 times the bandwidth 1235 -1. 4: 1 times the bandwidth 1236 -1. 8: 2 times the bandwidth 1237 -1. 12: 4 times the bandwidth 1238 -)))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 1239 - 1240 -Table 7-11 Notch filter function code parameters 1241 -~)~)~)