Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 52.2
edited by Karen
on 2023/05/16 11:22
Change comment: There is no comment for this version
To version 58.2
edited by Karen
on 2023/05/16 13:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -627,368 +627,6 @@
627 627  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
628 628  )))
629 629  
630 -== ==
631 -
632 -==
633 - ==
634 -
635 -== **Gain switching** ==
636 -
637 -Gain switching function:
638 -
639 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
640 -
641 -●Switch to a higher gain in the motor stationary state to shorten the positioning time;
642 -
643 -●Switch to a higher gain in the motor running state to get better command tracking performance;
644 -
645 -●Switch different gain settings by external signals depending on the load connected.
646 -
647 -(1) Gain switching parameter setting
648 -
649 -①When P02-07=0
650 -
651 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
652 -
653 -(% style="text-align:center" %)
654 -[[image:20230515-8.png]]
655 -
656 -② When P02-07=1
657 -
658 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
659 -
660 -(% style="text-align:center" %)
661 -[[image:20230515-9.png]]
662 -
663 -Figure 7-9 Flow chart of gain switching when P02-07=1
664 -
665 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
666 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
667 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
668 -|(% style="width:72px" %)(((
669 -
670 -
671 -
672 -
673 -
674 -
675 -2
676 -)))|(% style="width:146px" %)(((
677 -
678 -
679 -
680 -
681 -
682 -
683 -Large torque command
684 -)))|[[image:image-20230515140641-1.png]]
685 -|(% style="width:72px" %)(((
686 -
687 -
688 -
689 -
690 -
691 -
692 -
693 -3
694 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
695 -|(% style="width:72px" %)(((
696 -
697 -
698 -
699 -
700 -
701 -
702 -4
703 -)))|(% style="width:146px" %)(((
704 -
705 -
706 -
707 -
708 -
709 -
710 -Large speed command
711 -)))|[[image:image-20230515140641-3.png]]
712 -
713 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
714 -|(% style="width:74px" %)(((
715 -
716 -
717 -
718 -
719 -
720 -5
721 -)))|(% style="width:176px" %)(((
722 -
723 -
724 -
725 -
726 -
727 -Fast actual speed
728 -)))|(((
729 -
730 -
731 -[[image:image-20230515140641-4.png]]
732 -)))
733 -|(% style="width:74px" %)(((
734 -
735 -
736 -
737 -
738 -
739 -
740 -
741 -6
742 -)))|(% style="width:176px" %)(((
743 -
744 -
745 -
746 -
747 -
748 -
749 -
750 -Speed command change rate is large
751 -)))|[[image:image-20230515140641-5.png]]
752 -|(% style="width:74px" %)(((
753 -
754 -
755 -
756 -
757 -
758 -
759 -7
760 -
761 -
762 -)))|(% style="width:176px" %)(((
763 -
764 -
765 -
766 -
767 -
768 -
769 -Large position deviation
770 -)))|[[image:image-20230515140641-6.png]]
771 -|(% style="width:74px" %)(((
772 -
773 -
774 -
775 -
776 -
777 -8
778 -)))|(% style="width:176px" %)(((
779 -
780 -
781 -
782 -
783 -
784 -Position command
785 -)))|[[image:image-20230515140641-7.png]]
786 -
787 -|(% style="width:73px" %)(((
788 -
789 -
790 -
791 -
792 -
793 -
794 -9
795 -)))|(% style="width:154px" %)(((
796 -
797 -
798 -
799 -
800 -
801 -
802 -Positioning completed
803 -)))|[[image:image-20230515140641-8.png]]
804 -|(% style="width:73px" %)(((
805 -
806 -
807 -10
808 -
809 -
810 -)))|(% style="width:154px" %)(((
811 -
812 -
813 -Position command + actual speed
814 -)))|(((
815 -
816 -
817 -Refer to the chart below
818 -)))
819 -
820 -(% style="text-align:center" %)
821 -[[image:20230515-10.png]]
822 -
823 -Figure 7-10 P02-08=10 Position command + actual speed gain description
824 -
825 -(2) Description of related parameters
826 -
827 -|(% rowspan="2" style="width:68px" %)
828 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
829 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
830 -|(% colspan="8" %)(((
831 -Set the switching mode of the second gain.
832 -
833 -|**Setting value**|**Function**
834 -|0|(((
835 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
836 -
837 -DI logic invalid: PI control;
838 -
839 -DI logic valid: PI control.
840 -)))
841 -|1|The first gain and the second gain are switched by the setting value of P02-08.
842 -)))
843 -
844 -|(% rowspan="2" %)
845 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
846 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
847 -|(% colspan="8" %)(((
848 -Set the conditions for gain switching.
849 -
850 -|Setting value|Gain switching conditions|Details
851 -|0|The default is the first gain|Fixed use of the first gain
852 -|1|Switch by DI port|(((
853 -Use DI function 10 (GAIN-SEL, gain switching);
854 -
855 -DI logic is invalid: the first gain (P02-01~~P02-03);
856 -
857 -DI logic is valid: the second gain (P02-04~~P02-06).
858 -)))
859 -|2|Large torque command|(((
860 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
861 -
862 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
863 -
864 -
865 -)))
866 -|3|Large actual torque|(((
867 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
868 -
869 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
870 -
871 -
872 -)))
873 -|4|Large speed command|(((
874 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
875 -
876 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
877 -
878 -
879 -)))
880 -|5|Large actual speed|(((
881 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
882 -
883 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
884 -
885 -
886 -)))
887 -|(((
888 -
889 -
890 -6
891 -)))|(((
892 -
893 -
894 -Large rate of change in speed command
895 -)))|(((
896 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
897 -
898 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
899 -
900 -
901 -)))
902 -|(((
903 -
904 -
905 -7
906 -)))|(((
907 -
908 -
909 -Large position deviation
910 -)))|(((
911 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
912 -
913 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
914 -)))
915 -|8|Position command|(((
916 -In the previous first gain, if the position command is not 0, switch to the second gain;
917 -
918 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
919 -)))
920 -|(((
921 -
922 -
923 -9
924 -)))|(((
925 -
926 -
927 -Positioning complete
928 -)))|(((
929 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
930 -
931 -
932 -)))
933 -|(((
934 -
935 -
936 -10
937 -)))|(((
938 -
939 -
940 -Position command + actual speed
941 -)))|(((
942 -In the previous first gain, if the position command is not 0, the second gain is switched;
943 -
944 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
945 -
946 -
947 -)))
948 -
949 -
950 -)))
951 -
952 -|(% rowspan="2" %)
953 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
954 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
955 -|(% colspan="8" %)(((
956 -The duration of the switching condition required for the second gain to switch back to the first gain.
957 -
958 -[[image:image-20230515140953-9.png]]
959 -
960 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
961 -)))
962 -
963 -|(% rowspan="2" %)
964 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
965 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
966 -|(% colspan="8" %)(((
967 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
968 -
969 -[[image:image-20230515140953-10.png]]
970 -)))
971 -
972 -|(% rowspan="2" %)
973 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
974 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
975 -|(% colspan="8" %)(((
976 -Set the hysteresis to meet the gain switching condition.
977 -
978 -[[image:image-20230515140953-11.png]]
979 -)))
980 -
981 -|(% rowspan="2" %)
982 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
983 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
984 -|(% colspan="8" %)(((
985 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
986 -
987 -[[image:image-20230515140953-12.png]]
988 -
989 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
990 -)))
991 -
992 992  = **Mechanical resonance suppression** =
993 993  
994 994  == Mechanical resonance suppression methods ==
... ... @@ -1105,12 +1105,65 @@
1105 1105  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
1106 1106  )))
1107 1107  
1108 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)(((
746 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 137px;" %)(((
1109 1109  **Setting method**
1110 -)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)(((
1111 -**Effective time**
1112 -)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
1113 -|P4-11|Enable low-frequency vibration suppression function|(((
748 +)))|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
749 +**Effective time**
750 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 100px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
751 +|=(% style="text-align:center; vertical-align:middle" %)P4-11|(% style="width:294px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
752 +Operation setting
753 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
754 +Effective immediately
755 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1|(% style="width:448px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:96px" %)
756 +|=(% style="text-align:center; vertical-align:middle" %)P4-12|(% style="width:294px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
757 +Operation setting
758 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
759 +Effective immediately
760 +)))|(% style="text-align:center; vertical-align:middle" %)800|(% style="text-align:center; vertical-align:middle; width:126px" %)10 to 2000|(% style="width:448px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.1HZ
761 +|=(% style="text-align:center; vertical-align:middle" %)P4-14|(% style="width:294px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
762 +Operation setting
763 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
764 +Effective immediately
765 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1000|(% style="width:448px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.001
766 +
767 +**Vibration frequency detection:**
768 +
769 +* Users can measure vibration by measuring equipment such as laser displacement.
770 +* If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
771 +* Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
772 +
773 +**Debugging method:**
774 +
775 +* Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
776 +* Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
777 +* Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
778 +* Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
779 +
780 +(% class="table-bordered" style="margin-right:auto" %)
781 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
782 +|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
783 +
784 +== Type A vibration suppression ==
785 +
786 +Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
787 +
788 +(% style="text-align:center" %)
789 +(((
790 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
791 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
792 +)))
793 +
794 +
795 +|**Function code**|**Name**|(((
796 +**Setting**
797 +
798 +**method**
799 +)))|(((
800 +**Effective**
801 +
802 +**time**
803 +)))|**Default**|**Range**|**Definition**|**Unit**
804 +|P4-19|Enable the type A suppression function|(((
1114 1114  Operation
1115 1115  
1116 1116  setting
... ... @@ -1118,8 +1118,8 @@
1118 1118  Effective
1119 1119  
1120 1120  immediately
1121 -)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1122 -|P4-12|Low-frequency vibration suppression frequency|(((
812 +)))|0|0 to 1|When the function code is set to 1, enable the type A suppression function.|
813 +|P4-20|Type A suppression frequency|(((
1123 1123  Operation
1124 1124  
1125 1125  setting
... ... @@ -1127,8 +1127,8 @@
1127 1127  Effective
1128 1128  
1129 1129  immediately
1130 -)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1131 -|P4-14|Shutdown vibration detection amplitude|(((
821 +)))|1000|10to 20000|Set the frequency of Type A suppression.|0.1HZ
822 +|P4-21|Type A suppression gain correction|(((
1132 1132  Operation
1133 1133  
1134 1134  setting
... ... @@ -1136,30 +1136,38 @@
1136 1136  Effective
1137 1137  
1138 1138  immediately
1139 -)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
830 +)))|100|0 to 1000|Correct the load inertia ratio size.|0.01
831 +|P4-22|Type A suppression damping gain|(((
832 +Operation
1140 1140  
1141 -**(1) Vibration frequency detection:**
834 +setting
835 +)))|(((
836 +Effective
1142 1142  
1143 -* Users can measure vibration by measuring equipment such as laser displacement.
1144 -* If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
1145 -* Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
838 +immediately
839 +)))|0|0 to 500|The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|0.01
840 +|P4-23|Type A suppression phase correction|(((
841 +Operation
1146 1146  
1147 -**(2) Debugging method:**
843 +setting
844 +)))|(((
845 +Effective
1148 1148  
1149 -* Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
1150 -* Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
1151 -* Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
1152 -* Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
847 +immediately
848 +)))|200|0 to 900|Type A suppression phase compensation.|0.1 degree
1153 1153  
1154 -|[[image:image-20230516105941-2.png]]
1155 -|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
850 +**Vibration frequency detection:**
1156 1156  
1157 -== Type A vibration suppression ==
852 +The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
1158 1158  
1159 -Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
854 +**Debugging method:**
1160 1160  
1161 -(% style="text-align:center" %)
1162 -(((
1163 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1164 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
1165 -)))
856 +* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
857 +* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
858 +* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
859 +* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
860 +* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
861 +* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
862 +
863 +|[[image:image-20230516135116-1.png]]
864 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +1.8 KB
Content