Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 52.3
edited by Karen
on 2023/05/16 11:22
Change comment: There is no comment for this version
To version 58.2
edited by Karen
on 2023/05/16 13:52
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -627,367 +627,6 @@
627 627  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
628 628  )))
629 629  
630 -== ==
631 -
632 -== ==
633 -
634 -== **Gain switching** ==
635 -
636 -Gain switching function:
637 -
638 -●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
639 -
640 -●Switch to a higher gain in the motor stationary state to shorten the positioning time;
641 -
642 -●Switch to a higher gain in the motor running state to get better command tracking performance;
643 -
644 -●Switch different gain settings by external signals depending on the load connected.
645 -
646 -(1) Gain switching parameter setting
647 -
648 -①When P02-07=0
649 -
650 -Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
651 -
652 -(% style="text-align:center" %)
653 -[[image:20230515-8.png]]
654 -
655 -② When P02-07=1
656 -
657 -The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
658 -
659 -(% style="text-align:center" %)
660 -[[image:20230515-9.png]]
661 -
662 -Figure 7-9 Flow chart of gain switching when P02-07=1
663 -
664 -|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
665 -|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
666 -|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
667 -|(% style="width:72px" %)(((
668 -
669 -
670 -
671 -
672 -
673 -
674 -2
675 -)))|(% style="width:146px" %)(((
676 -
677 -
678 -
679 -
680 -
681 -
682 -Large torque command
683 -)))|[[image:image-20230515140641-1.png]]
684 -|(% style="width:72px" %)(((
685 -
686 -
687 -
688 -
689 -
690 -
691 -
692 -3
693 -)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
694 -|(% style="width:72px" %)(((
695 -
696 -
697 -
698 -
699 -
700 -
701 -4
702 -)))|(% style="width:146px" %)(((
703 -
704 -
705 -
706 -
707 -
708 -
709 -Large speed command
710 -)))|[[image:image-20230515140641-3.png]]
711 -
712 -|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
713 -|(% style="width:74px" %)(((
714 -
715 -
716 -
717 -
718 -
719 -5
720 -)))|(% style="width:176px" %)(((
721 -
722 -
723 -
724 -
725 -
726 -Fast actual speed
727 -)))|(((
728 -
729 -
730 -[[image:image-20230515140641-4.png]]
731 -)))
732 -|(% style="width:74px" %)(((
733 -
734 -
735 -
736 -
737 -
738 -
739 -
740 -6
741 -)))|(% style="width:176px" %)(((
742 -
743 -
744 -
745 -
746 -
747 -
748 -
749 -Speed command change rate is large
750 -)))|[[image:image-20230515140641-5.png]]
751 -|(% style="width:74px" %)(((
752 -
753 -
754 -
755 -
756 -
757 -
758 -7
759 -
760 -
761 -)))|(% style="width:176px" %)(((
762 -
763 -
764 -
765 -
766 -
767 -
768 -Large position deviation
769 -)))|[[image:image-20230515140641-6.png]]
770 -|(% style="width:74px" %)(((
771 -
772 -
773 -
774 -
775 -
776 -8
777 -)))|(% style="width:176px" %)(((
778 -
779 -
780 -
781 -
782 -
783 -Position command
784 -)))|[[image:image-20230515140641-7.png]]
785 -
786 -|(% style="width:73px" %)(((
787 -
788 -
789 -
790 -
791 -
792 -
793 -9
794 -)))|(% style="width:154px" %)(((
795 -
796 -
797 -
798 -
799 -
800 -
801 -Positioning completed
802 -)))|[[image:image-20230515140641-8.png]]
803 -|(% style="width:73px" %)(((
804 -
805 -
806 -10
807 -
808 -
809 -)))|(% style="width:154px" %)(((
810 -
811 -
812 -Position command + actual speed
813 -)))|(((
814 -
815 -
816 -Refer to the chart below
817 -)))
818 -
819 -(% style="text-align:center" %)
820 -[[image:20230515-10.png]]
821 -
822 -Figure 7-10 P02-08=10 Position command + actual speed gain description
823 -
824 -(2) Description of related parameters
825 -
826 -|(% rowspan="2" style="width:68px" %)
827 -**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
828 -|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
829 -|(% colspan="8" %)(((
830 -Set the switching mode of the second gain.
831 -
832 -|**Setting value**|**Function**
833 -|0|(((
834 -The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
835 -
836 -DI logic invalid: PI control;
837 -
838 -DI logic valid: PI control.
839 -)))
840 -|1|The first gain and the second gain are switched by the setting value of P02-08.
841 -)))
842 -
843 -|(% rowspan="2" %)
844 -**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
845 -|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
846 -|(% colspan="8" %)(((
847 -Set the conditions for gain switching.
848 -
849 -|Setting value|Gain switching conditions|Details
850 -|0|The default is the first gain|Fixed use of the first gain
851 -|1|Switch by DI port|(((
852 -Use DI function 10 (GAIN-SEL, gain switching);
853 -
854 -DI logic is invalid: the first gain (P02-01~~P02-03);
855 -
856 -DI logic is valid: the second gain (P02-04~~P02-06).
857 -)))
858 -|2|Large torque command|(((
859 -In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
860 -
861 -In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
862 -
863 -
864 -)))
865 -|3|Large actual torque|(((
866 -In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
867 -
868 -In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
869 -
870 -
871 -)))
872 -|4|Large speed command|(((
873 -In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
874 -
875 -In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
876 -
877 -
878 -)))
879 -|5|Large actual speed|(((
880 -In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
881 -
882 -In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
883 -
884 -
885 -)))
886 -|(((
887 -
888 -
889 -6
890 -)))|(((
891 -
892 -
893 -Large rate of change in speed command
894 -)))|(((
895 -In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
896 -
897 -In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
898 -
899 -
900 -)))
901 -|(((
902 -
903 -
904 -7
905 -)))|(((
906 -
907 -
908 -Large position deviation
909 -)))|(((
910 -In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
911 -
912 -In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
913 -)))
914 -|8|Position command|(((
915 -In the previous first gain, if the position command is not 0, switch to the second gain;
916 -
917 -In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
918 -)))
919 -|(((
920 -
921 -
922 -9
923 -)))|(((
924 -
925 -
926 -Positioning complete
927 -)))|(((
928 -In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
929 -
930 -
931 -)))
932 -|(((
933 -
934 -
935 -10
936 -)))|(((
937 -
938 -
939 -Position command + actual speed
940 -)))|(((
941 -In the previous first gain, if the position command is not 0, the second gain is switched;
942 -
943 -In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
944 -
945 -
946 -)))
947 -
948 -
949 -)))
950 -
951 -|(% rowspan="2" %)
952 -**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
953 -|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
954 -|(% colspan="8" %)(((
955 -The duration of the switching condition required for the second gain to switch back to the first gain.
956 -
957 -[[image:image-20230515140953-9.png]]
958 -
959 -**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
960 -)))
961 -
962 -|(% rowspan="2" %)
963 -**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
964 -|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
965 -|(% colspan="8" %)(((
966 -Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
967 -
968 -[[image:image-20230515140953-10.png]]
969 -)))
970 -
971 -|(% rowspan="2" %)
972 -**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
973 -|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
974 -|(% colspan="8" %)(((
975 -Set the hysteresis to meet the gain switching condition.
976 -
977 -[[image:image-20230515140953-11.png]]
978 -)))
979 -
980 -|(% rowspan="2" %)
981 -**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
982 -|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
983 -|(% colspan="8" %)(((
984 -Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
985 -
986 -[[image:image-20230515140953-12.png]]
987 -
988 -If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
989 -)))
990 -
991 991  = **Mechanical resonance suppression** =
992 992  
993 993  == Mechanical resonance suppression methods ==
... ... @@ -1104,12 +1104,65 @@
1104 1104  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
1105 1105  )))
1106 1106  
1107 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)(((
746 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 137px;" %)(((
1108 1108  **Setting method**
1109 -)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)(((
1110 -**Effective time**
1111 -)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
1112 -|P4-11|Enable low-frequency vibration suppression function|(((
748 +)))|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
749 +**Effective time**
750 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 100px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
751 +|=(% style="text-align:center; vertical-align:middle" %)P4-11|(% style="width:294px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
752 +Operation setting
753 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
754 +Effective immediately
755 +)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1|(% style="width:448px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:96px" %)
756 +|=(% style="text-align:center; vertical-align:middle" %)P4-12|(% style="width:294px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
757 +Operation setting
758 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
759 +Effective immediately
760 +)))|(% style="text-align:center; vertical-align:middle" %)800|(% style="text-align:center; vertical-align:middle; width:126px" %)10 to 2000|(% style="width:448px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.1HZ
761 +|=(% style="text-align:center; vertical-align:middle" %)P4-14|(% style="width:294px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
762 +Operation setting
763 +)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
764 +Effective immediately
765 +)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1000|(% style="width:448px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.001
766 +
767 +**Vibration frequency detection:**
768 +
769 +* Users can measure vibration by measuring equipment such as laser displacement.
770 +* If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
771 +* Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
772 +
773 +**Debugging method:**
774 +
775 +* Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
776 +* Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
777 +* Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
778 +* Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
779 +
780 +(% class="table-bordered" style="margin-right:auto" %)
781 +(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
782 +|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
783 +
784 +== Type A vibration suppression ==
785 +
786 +Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
787 +
788 +(% style="text-align:center" %)
789 +(((
790 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
791 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
792 +)))
793 +
794 +
795 +|**Function code**|**Name**|(((
796 +**Setting**
797 +
798 +**method**
799 +)))|(((
800 +**Effective**
801 +
802 +**time**
803 +)))|**Default**|**Range**|**Definition**|**Unit**
804 +|P4-19|Enable the type A suppression function|(((
1113 1113  Operation
1114 1114  
1115 1115  setting
... ... @@ -1117,8 +1117,8 @@
1117 1117  Effective
1118 1118  
1119 1119  immediately
1120 -)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1121 -|P4-12|Low-frequency vibration suppression frequency|(((
812 +)))|0|0 to 1|When the function code is set to 1, enable the type A suppression function.|
813 +|P4-20|Type A suppression frequency|(((
1122 1122  Operation
1123 1123  
1124 1124  setting
... ... @@ -1126,8 +1126,8 @@
1126 1126  Effective
1127 1127  
1128 1128  immediately
1129 -)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1130 -|P4-14|Shutdown vibration detection amplitude|(((
821 +)))|1000|10to 20000|Set the frequency of Type A suppression.|0.1HZ
822 +|P4-21|Type A suppression gain correction|(((
1131 1131  Operation
1132 1132  
1133 1133  setting
... ... @@ -1135,30 +1135,38 @@
1135 1135  Effective
1136 1136  
1137 1137  immediately
1138 -)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
830 +)))|100|0 to 1000|Correct the load inertia ratio size.|0.01
831 +|P4-22|Type A suppression damping gain|(((
832 +Operation
1139 1139  
1140 -**(1) Vibration frequency detection:**
834 +setting
835 +)))|(((
836 +Effective
1141 1141  
1142 -* Users can measure vibration by measuring equipment such as laser displacement.
1143 -* If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
1144 -* Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
838 +immediately
839 +)))|0|0 to 500|The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|0.01
840 +|P4-23|Type A suppression phase correction|(((
841 +Operation
1145 1145  
1146 -**(2) Debugging method:**
843 +setting
844 +)))|(((
845 +Effective
1147 1147  
1148 -* Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
1149 -* Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
1150 -* Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
1151 -* Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
847 +immediately
848 +)))|200|0 to 900|Type A suppression phase compensation.|0.1 degree
1152 1152  
1153 -|[[image:image-20230516105941-2.png]]
1154 -|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
850 +**Vibration frequency detection:**
1155 1155  
1156 -== Type A vibration suppression ==
852 +The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
1157 1157  
1158 -Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
854 +**Debugging method:**
1159 1159  
1160 -(% style="text-align:center" %)
1161 -(((
1162 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
1163 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
1164 -)))
856 +* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
857 +* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
858 +* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
859 +* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
860 +* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
861 +* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
862 +
863 +|[[image:image-20230516135116-1.png]]
864 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Karen
Size
... ... @@ -1,0 +1,1 @@
1 +1.8 KB
Content