Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 64.1
edited by Karen
on 2023/05/16 14:15
Change comment: There is no comment for this version
To version 53.1
edited by Karen
on 2023/05/16 11:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -627,6 +627,365 @@
627 627  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
628 628  )))
629 629  
630 +== ==
631 +
632 +== **Gain switching** ==
633 +
634 +Gain switching function:
635 +
636 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
637 +
638 +●Switch to a higher gain in the motor stationary state to shorten the positioning time;
639 +
640 +●Switch to a higher gain in the motor running state to get better command tracking performance;
641 +
642 +●Switch different gain settings by external signals depending on the load connected.
643 +
644 +(1) Gain switching parameter setting
645 +
646 +①When P02-07=0
647 +
648 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
649 +
650 +(% style="text-align:center" %)
651 +[[image:20230515-8.png]]
652 +
653 +② When P02-07=1
654 +
655 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
656 +
657 +(% style="text-align:center" %)
658 +[[image:20230515-9.png]]
659 +
660 +Figure 7-9 Flow chart of gain switching when P02-07=1
661 +
662 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
663 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
664 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
665 +|(% style="width:72px" %)(((
666 +
667 +
668 +
669 +
670 +
671 +
672 +2
673 +)))|(% style="width:146px" %)(((
674 +
675 +
676 +
677 +
678 +
679 +
680 +Large torque command
681 +)))|[[image:image-20230515140641-1.png]]
682 +|(% style="width:72px" %)(((
683 +
684 +
685 +
686 +
687 +
688 +
689 +
690 +3
691 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
692 +|(% style="width:72px" %)(((
693 +
694 +
695 +
696 +
697 +
698 +
699 +4
700 +)))|(% style="width:146px" %)(((
701 +
702 +
703 +
704 +
705 +
706 +
707 +Large speed command
708 +)))|[[image:image-20230515140641-3.png]]
709 +
710 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
711 +|(% style="width:74px" %)(((
712 +
713 +
714 +
715 +
716 +
717 +5
718 +)))|(% style="width:176px" %)(((
719 +
720 +
721 +
722 +
723 +
724 +Fast actual speed
725 +)))|(((
726 +
727 +
728 +[[image:image-20230515140641-4.png]]
729 +)))
730 +|(% style="width:74px" %)(((
731 +
732 +
733 +
734 +
735 +
736 +
737 +
738 +6
739 +)))|(% style="width:176px" %)(((
740 +
741 +
742 +
743 +
744 +
745 +
746 +
747 +Speed command change rate is large
748 +)))|[[image:image-20230515140641-5.png]]
749 +|(% style="width:74px" %)(((
750 +
751 +
752 +
753 +
754 +
755 +
756 +7
757 +
758 +
759 +)))|(% style="width:176px" %)(((
760 +
761 +
762 +
763 +
764 +
765 +
766 +Large position deviation
767 +)))|[[image:image-20230515140641-6.png]]
768 +|(% style="width:74px" %)(((
769 +
770 +
771 +
772 +
773 +
774 +8
775 +)))|(% style="width:176px" %)(((
776 +
777 +
778 +
779 +
780 +
781 +Position command
782 +)))|[[image:image-20230515140641-7.png]]
783 +
784 +|(% style="width:73px" %)(((
785 +
786 +
787 +
788 +
789 +
790 +
791 +9
792 +)))|(% style="width:154px" %)(((
793 +
794 +
795 +
796 +
797 +
798 +
799 +Positioning completed
800 +)))|[[image:image-20230515140641-8.png]]
801 +|(% style="width:73px" %)(((
802 +
803 +
804 +10
805 +
806 +
807 +)))|(% style="width:154px" %)(((
808 +
809 +
810 +Position command + actual speed
811 +)))|(((
812 +
813 +
814 +Refer to the chart below
815 +)))
816 +
817 +(% style="text-align:center" %)
818 +[[image:20230515-10.png]]
819 +
820 +Figure 7-10 P02-08=10 Position command + actual speed gain description
821 +
822 +(2) Description of related parameters
823 +
824 +|(% rowspan="2" style="width:68px" %)
825 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
826 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
827 +|(% colspan="8" %)(((
828 +Set the switching mode of the second gain.
829 +
830 +|**Setting value**|**Function**
831 +|0|(((
832 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
833 +
834 +DI logic invalid: PI control;
835 +
836 +DI logic valid: PI control.
837 +)))
838 +|1|The first gain and the second gain are switched by the setting value of P02-08.
839 +)))
840 +
841 +|(% rowspan="2" %)
842 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
843 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
844 +|(% colspan="8" %)(((
845 +Set the conditions for gain switching.
846 +
847 +|Setting value|Gain switching conditions|Details
848 +|0|The default is the first gain|Fixed use of the first gain
849 +|1|Switch by DI port|(((
850 +Use DI function 10 (GAIN-SEL, gain switching);
851 +
852 +DI logic is invalid: the first gain (P02-01~~P02-03);
853 +
854 +DI logic is valid: the second gain (P02-04~~P02-06).
855 +)))
856 +|2|Large torque command|(((
857 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
858 +
859 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
860 +
861 +
862 +)))
863 +|3|Large actual torque|(((
864 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
865 +
866 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
867 +
868 +
869 +)))
870 +|4|Large speed command|(((
871 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
872 +
873 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
874 +
875 +
876 +)))
877 +|5|Large actual speed|(((
878 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
879 +
880 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
881 +
882 +
883 +)))
884 +|(((
885 +
886 +
887 +6
888 +)))|(((
889 +
890 +
891 +Large rate of change in speed command
892 +)))|(((
893 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
894 +
895 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
896 +
897 +
898 +)))
899 +|(((
900 +
901 +
902 +7
903 +)))|(((
904 +
905 +
906 +Large position deviation
907 +)))|(((
908 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
909 +
910 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
911 +)))
912 +|8|Position command|(((
913 +In the previous first gain, if the position command is not 0, switch to the second gain;
914 +
915 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
916 +)))
917 +|(((
918 +
919 +
920 +9
921 +)))|(((
922 +
923 +
924 +Positioning complete
925 +)))|(((
926 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
927 +
928 +
929 +)))
930 +|(((
931 +
932 +
933 +10
934 +)))|(((
935 +
936 +
937 +Position command + actual speed
938 +)))|(((
939 +In the previous first gain, if the position command is not 0, the second gain is switched;
940 +
941 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
942 +
943 +
944 +)))
945 +
946 +
947 +)))
948 +
949 +|(% rowspan="2" %)
950 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
951 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
952 +|(% colspan="8" %)(((
953 +The duration of the switching condition required for the second gain to switch back to the first gain.
954 +
955 +[[image:image-20230515140953-9.png]]
956 +
957 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
958 +)))
959 +
960 +|(% rowspan="2" %)
961 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
962 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
963 +|(% colspan="8" %)(((
964 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
965 +
966 +[[image:image-20230515140953-10.png]]
967 +)))
968 +
969 +|(% rowspan="2" %)
970 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
971 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
972 +|(% colspan="8" %)(((
973 +Set the hysteresis to meet the gain switching condition.
974 +
975 +[[image:image-20230515140953-11.png]]
976 +)))
977 +
978 +|(% rowspan="2" %)
979 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
980 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
981 +|(% colspan="8" %)(((
982 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
983 +
984 +[[image:image-20230515140953-12.png]]
985 +
986 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
987 +)))
988 +
630 630  = **Mechanical resonance suppression** =
631 631  
632 632  == Mechanical resonance suppression methods ==
... ... @@ -731,6 +731,7 @@
731 731  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
732 732  
733 733  Table 7-11 Notch filter function code parameters
1093 +~)~)~)
734 734  
735 735  == Low frequency vibration suppression ==
736 736  
... ... @@ -742,34 +742,46 @@
742 742  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
743 743  )))
744 744  
745 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 155px" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 137px;" %)(((
1105 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)(((
746 746  **Setting method**
747 -)))|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)(((
748 -**Effective time**
749 -)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 100px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px;" %)**Unit**
750 -|=(% style="text-align:center; vertical-align:middle" %)P4-11|(% style="text-align:center; vertical-align:middle; width:294px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
751 -Operation setting
752 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
753 -Effective immediately
754 -)))|(% style="text-align:center; vertical-align:middle" %)0|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1|(% style="width:448px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:96px" %)
755 -|=(% style="text-align:center; vertical-align:middle" %)P4-12|(% style="text-align:center; vertical-align:middle; width:294px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
756 -Operation setting
757 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
758 -Effective immediately
759 -)))|(% style="text-align:center; vertical-align:middle" %)800|(% style="text-align:center; vertical-align:middle; width:126px" %)10 to 2000|(% style="width:448px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.1HZ
760 -|=(% style="text-align:center; vertical-align:middle" %)P4-14|(% style="text-align:center; vertical-align:middle; width:294px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:137px" %)(((
761 -Operation setting
762 -)))|(% style="text-align:center; vertical-align:middle; width:156px" %)(((
763 -Effective immediately
764 -)))|(% style="text-align:center; vertical-align:middle" %)100|(% style="text-align:center; vertical-align:middle; width:126px" %)0 to 1000|(% style="width:448px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:96px" %)0.001
1107 +)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)(((
1108 +**Effective time**
1109 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
1110 +|P4-11|Enable low-frequency vibration suppression function|(((
1111 +Operation
765 765  
766 -**Vibration frequency detection:**
1113 +setting
1114 +)))|(((
1115 +Effective
767 767  
1117 +immediately
1118 +)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1119 +|P4-12|Low-frequency vibration suppression frequency|(((
1120 +Operation
1121 +
1122 +setting
1123 +)))|(((
1124 +Effective
1125 +
1126 +immediately
1127 +)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1128 +|P4-14|Shutdown vibration detection amplitude|(((
1129 +Operation
1130 +
1131 +setting
1132 +)))|(((
1133 +Effective
1134 +
1135 +immediately
1136 +)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
1137 +
1138 +**(1) Vibration frequency detection:**
1139 +
768 768  * Users can measure vibration by measuring equipment such as laser displacement.
769 769  * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
770 770  * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
771 771  
772 -**Debugging method:**
1144 +**(2) Debugging method:**
773 773  
774 774  * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
775 775  * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
... ... @@ -776,9 +776,8 @@
776 776  * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
777 777  * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
778 778  
779 -(% class="table-bordered" style="margin-right:auto" %)
780 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
781 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
1151 +|[[image:image-20230516105941-2.png]]
1152 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
782 782  
783 783  == Type A vibration suppression ==
784 784  
... ... @@ -787,53 +787,5 @@
787 787  (% style="text-align:center" %)
788 788  (((
789 789  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
790 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
1161 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
791 791  )))
792 -
793 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 241px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
794 -**Setting method**
795 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
796 -**Effective time**
797 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
798 -|=(% style="text-align: center; vertical-align: middle" %)P4-19|(% style="text-align:center; vertical-align:middle; width:241px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
799 -Operation setting
800 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
801 -Effective immediately
802 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
803 -|=(% style="text-align: center; vertical-align: middle" %)P4-20|(% style="text-align:center; vertical-align:middle; width:241px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
804 -Operation setting
805 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
806 -Effective immediately
807 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
808 -|=(% style="text-align: center; vertical-align: middle" %)P4-21|(% style="text-align:center; vertical-align:middle; width:241px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
809 -Operation setting
810 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
811 -Effective immediately
812 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
813 -|=(% style="text-align: center; vertical-align: middle" %)P4-22|(% style="text-align:center; vertical-align:middle; width:241px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
814 -Operation setting
815 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
816 -Effective immediately
817 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
818 -|=(% style="text-align: center; vertical-align: middle" %)P4-23|(% style="text-align:center; vertical-align:middle; width:241px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
819 -Operation setting
820 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
821 -Effective immediately
822 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
823 -
824 -**Vibration frequency detection:**
825 -
826 -The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
827 -
828 -**Debugging method:**
829 -
830 -* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
831 -* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
832 -* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
833 -* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
834 -* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
835 -* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
836 -
837 -(% class="table-bordered" style="margin-right:auto" %)
838 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]]
839 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -1.8 KB
Content