Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 68.1
edited by Mora Zhou
on 2024/07/16 10:07
Change comment: There is no comment for this version
To version 76.1
edited by Mora Zhou
on 2025/04/29 13:50
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,9 +19,12 @@
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 -|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
22 +|(% rowspan="3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 23  |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
24 +|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4
25 +|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
26 +|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3
27 +|Type A vibration suppression|Enable type A vibration suppression|7.4.4
25 25  
26 26  Table 7-1 Description of gain adjustment process
27 27  
... ... @@ -118,8 +118,12 @@
118 118  
119 119  (% class="table-bordered" style="margin-right:auto" %)
120 120  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
121 -|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
124 +|(% style="text-align:left; vertical-align:middle" %)(((
125 +Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
122 122  
127 +**VD2L drive does not support automatic gain adjustment!**
128 +)))
129 +
123 123  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
124 124  
125 125  (% class="table-bordered" %)
... ... @@ -161,9 +161,11 @@
161 161  )))|(% style="text-align:center; vertical-align:middle; width:105px" %)(((
162 162  Effective immediately
163 163  )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)(((
164 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
165 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
166 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet)
171 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting.
172 +
173 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting
174 +
175 +2: Online automatic parameter self-adjusting mode (Not implemented yet)
167 167  )))|(% style="text-align:center; vertical-align:middle" %)-
168 168  
169 169  Table 7-4 Details of self-adjusting mode selection parameters
... ... @@ -210,7 +210,7 @@
210 210  Operation setting
211 211  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
212 212  Effective immediately
213 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %)65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
222 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
214 214  |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
215 215  Operation setting
216 216  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
... ... @@ -241,7 +241,7 @@
241 241  Operation setting
242 242  )))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
243 243  Effective immediately
244 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)1000|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((
245 245  0.1ms
246 246  )))
247 247  |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)(((
... ... @@ -276,7 +276,7 @@
276 276  Operation setting
277 277  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
278 278  Effective immediately
279 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
288 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz
280 280  |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
281 281  Operation setting
282 282  )))|(% style="text-align:center; vertical-align:middle; width:114px" %)(((
... ... @@ -300,12 +300,12 @@
300 300  **Setting method**
301 301  )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
302 302  **Effective time**
303 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
312 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
304 304  |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)(((
305 305  Operation setting
306 306  )))|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
307 307  Effective immediately
308 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms
309 309  
310 310  Table 7-8 Details of torque filter time constant parameters
311 311  
... ... @@ -695,8 +695,9 @@
695 695  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
696 696  Effective immediately
697 697  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
698 -1. 0: all truncated
699 -1. 100: all passed
707 +0: all truncated
708 +
709 +100: all passed
700 700  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
701 701  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
702 702  Operation setting
... ... @@ -703,10 +703,13 @@
703 703  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
704 704  Effective immediately
705 705  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
706 -1. 0: 0.5 times the bandwidth
707 -1. 4: 1 times the bandwidth
708 -1. 8: 2 times the bandwidth
709 -1. 12: 4 times the bandwidth
716 +0: 0.5 times the bandwidth
717 +
718 +4: 1 times the bandwidth
719 +
720 +8: 2 times the bandwidth
721 +
722 +12: 4 times the bandwidth
710 710  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
711 711  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
712 712  Operation setting
... ... @@ -718,8 +718,9 @@
718 718  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
719 719  Effective immediately
720 720  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)(((
721 -1. 0: all truncated
722 -1. 100: all passed
734 +0: all truncated
735 +
736 +100: all passed
723 723  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
724 724  |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)(((
725 725  Operation setting
... ... @@ -726,10 +726,13 @@
726 726  )))|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
727 727  Effective immediately
728 728  )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)(((
729 -1. 0: 0.5 times the bandwidth
730 -1. 4: 1 times the bandwidth
731 -1. 8: 2 times the bandwidth
732 -1. 12: 4 times the bandwidth
743 +0: 0.5 times the bandwidth
744 +
745 +4: 1 times the bandwidth
746 +
747 +8: 2 times the bandwidth
748 +
749 +12: 4 times the bandwidth
733 733  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
734 734  
735 735  Table 7-11 Notch filter function code parameters
... ... @@ -738,6 +738,8 @@
738 738  
739 739  Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects.
740 740  
758 +**VD2L drive does not support low frequency vibrartion suppression.**
759 +
741 741  (% style="text-align:center" %)
742 742  (((
743 743  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
... ... @@ -786,6 +786,8 @@
786 786  
787 787  Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14.
788 788  
808 +**VD2L drive does not support type A vibration suppression.**
809 +
789 789  (% style="text-align:center" %)
790 790  (((
791 791  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)