Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Mora1 +XWiki.Iris - Content
-
... ... @@ -8,7 +8,7 @@ 8 8 [[**Figure 7-1 Gain adjustment process**>>image:image-20220608174118-1.png||id="Iimage-20220608174118-1.png"]] 9 9 ))) 10 10 11 -The servo is composed of multiplesets ofparameterssuch as position loop,speed loop,filter, load inertia ratio,etc.,andtheyaffect each other.In the process of setting the servo gain, thebalancebetweenhe setting valuesofeachparametermustbe considered.11 +The servo gains are composed of multiple parameter sets, including position loop gain, speed loop gain, filter coefficients, and load inertia ratio. These gains affect each other, requiring balanced adjustment of all parameter values during servo tuning." 12 12 13 13 (% class="box infomessage" %) 14 14 ((( ... ... @@ -19,9 +19,12 @@ 19 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ 22 -|(% rowspan=" 2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__22 +|(% rowspan="3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__ 23 23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__ 24 -|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 24 +|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4 25 +|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 26 +|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3 27 +|Type A vibration suppression|Enable type A vibration suppression|7.4.4 25 25 26 26 Table 7-1 Description of gain adjustment process 27 27 ... ... @@ -118,8 +118,12 @@ 118 118 119 119 (% class="table-bordered" style="margin-right:auto" %) 120 120 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 121 -|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 124 +|(% style="text-align:left; vertical-align:middle" %)((( 125 +Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 122 122 127 +**VD2L drive does not support automatic gain adjustment!** 128 +))) 129 + 123 123 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 124 124 125 125 (% class="table-bordered" %) ... ... @@ -161,9 +161,11 @@ 161 161 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 162 162 Effective immediately 163 163 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 164 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 165 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 166 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 171 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 + 173 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 174 + 175 +2: Online automatic parameter self-adjusting mode (Not implemented yet) 167 167 )))|(% style="text-align:center; vertical-align:middle" %)- 168 168 169 169 Table 7-4 Details of self-adjusting mode selection parameters ... ... @@ -300,12 +300,12 @@ 300 300 **Setting method** 301 301 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 302 302 **Effective time** 303 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 312 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 304 304 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 305 305 Operation setting 306 306 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 307 307 Effective immediately 308 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 309 309 310 310 Table 7-8 Details of torque filter time constant parameters 311 311 ... ... @@ -644,7 +644,7 @@ 644 644 645 645 **Notch filter** 646 646 647 -The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7- 3__.656 +The notch filter can achieve the expectation of suppressing mechanical resonance by reducing the gain at a specific frequency. When setting the notch filter correctly, the vibration can be effectively suppressed. You can try to increase the servo gain. The principle of the notch filter is shown in __Figure 7-11__. 648 648 649 649 == Notch filter == 650 650 ... ... @@ -663,12 +663,12 @@ 663 663 664 664 The depth grade of notch filter represents the ratio relationship between input and output at center frequency. 665 665 666 -When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7- 4__.675 +When the notch filter depth grade is 0, the input is completely suppressed at center frequency. When the notch filter depth grade is 100, the input is completely passable at center frequency. Therefore, the smaller the the notch filter depth grade is set, the deeper the the notch filter depth, and the stronger the suppression of mechanical resonance. But the system may be unstable, you should pay attention to it when using it. The specific relationship is shown in __Figure 7-12__. 667 667 668 668 (% style="text-align:center" %) 669 669 ((( 670 670 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 671 -[[Figure 7- 7Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]]680 +[[Figure 7-11 Notch characteristics, notch width, and notch depth>>image:image-20220608174259-3.png||id="Iimage-20220608174259-3.png"]] 672 672 ))) 673 673 674 674 ... ... @@ -675,7 +675,7 @@ 675 675 (% style="text-align:center" %) 676 676 ((( 677 677 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 678 -[[Figure 7- 8Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]]687 +[[Figure 7-12 Frequency characteristics of notch filter>>image:image-20220706160046-9.png||id="Iimage-20220706160046-9.png"]] 679 679 ))) 680 680 681 681 ... ... @@ -695,8 +695,9 @@ 695 695 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 696 696 Effective immediately 697 697 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 698 -1. 0: all truncated 699 -1. 100: all passed 707 +0: all truncated 708 + 709 +100: all passed 700 700 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 701 701 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 702 702 Operation setting ... ... @@ -703,10 +703,13 @@ 703 703 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 704 704 Effective immediately 705 705 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 706 -1. 0: 0.5 times the bandwidth 707 -1. 4: 1 times the bandwidth 708 -1. 8: 2 times the bandwidth 709 -1. 12: 4 times the bandwidth 716 +0: 0.5 times the bandwidth 717 + 718 +4: 1 times the bandwidth 719 + 720 +8: 2 times the bandwidth 721 + 722 +12: 4 times the bandwidth 710 710 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 711 711 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 712 712 Operation setting ... ... @@ -718,8 +718,9 @@ 718 718 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 719 719 Effective immediately 720 720 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 721 -1. 0: all truncated 722 -1. 100: all passed 734 +0: all truncated 735 + 736 +100: all passed 723 723 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 724 724 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 725 725 Operation setting ... ... @@ -726,10 +726,13 @@ 726 726 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 727 727 Effective immediately 728 728 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 729 -1. 0: 0.5 times the bandwidth 730 -1. 4: 1 times the bandwidth 731 -1. 8: 2 times the bandwidth 732 -1. 12: 4 times the bandwidth 743 +0: 0.5 times the bandwidth 744 + 745 +4: 1 times the bandwidth 746 + 747 +8: 2 times the bandwidth 748 + 749 +12: 4 times the bandwidth 733 733 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 734 734 735 735 Table 7-11 Notch filter function code parameters ... ... @@ -738,6 +738,8 @@ 738 738 739 739 Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects. 740 740 758 +**VD2L drive does not support low frequency vibrartion suppression.** 759 + 741 741 (% style="text-align:center" %) 742 742 ((( 743 743 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -749,22 +749,34 @@ 749 749 )))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)((( 750 750 **Effective time** 751 751 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit** 752 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 771 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11((( 772 +〇 773 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 753 753 Operation setting 754 754 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 755 755 Effective immediately 756 756 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %) 757 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 778 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12((( 779 +〇 780 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 758 758 Operation setting 759 759 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 760 760 Effective immediately 761 761 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ 762 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 785 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14((( 786 +〇 787 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 763 763 Operation setting 764 764 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 765 765 Effective immediately 766 766 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001 767 767 793 +☆: Indicates that VD2F servo drive does not support this function code 794 + 795 +〇: Indicates that VD2L servo drive does not support this function code 796 + 797 +★: Indicates that VD2F and VD2L servo drives do not support this function code 798 + 768 768 **Vibration frequency detection:** 769 769 770 770 * Users can measure vibration by measuring equipment such as laser displacement. ... ... @@ -786,6 +786,8 @@ 786 786 787 787 Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14. 788 788 820 +**VD2L drive does not support type A vibration suppression.** 821 + 789 789 (% style="text-align:center" %) 790 790 ((( 791 791 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -797,32 +797,48 @@ 797 797 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)((( 798 798 **Effective time** 799 799 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit** 800 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 833 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19((( 834 +〇 835 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 801 801 Operation setting 802 802 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 803 803 Effective immediately 804 804 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.| 805 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 840 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20((( 841 +〇 842 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 806 806 Operation setting 807 807 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 808 808 Effective immediately 809 809 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ 810 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 847 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21((( 848 +〇 849 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 811 811 Operation setting 812 812 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 813 813 Effective immediately 814 814 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01 815 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 854 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22((( 855 +〇 856 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 816 816 Operation setting 817 817 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 818 818 Effective immediately 819 819 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01 820 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 861 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23((( 862 +〇 863 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 821 821 Operation setting 822 822 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 823 823 Effective immediately 824 824 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree 825 825 869 +☆: Indicates that VD2F servo drive does not support this function code 870 + 871 +〇: Indicates that VD2L servo drive does not support this function code 872 + 873 +★: Indicates that VD2F and VD2L servo drives do not support this function code 874 + 826 826 **Vibration frequency detection:** 827 827 828 828 The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation. ... ... @@ -838,4 +838,4 @@ 838 838 839 839 (% class="table-bordered" style="margin-right:auto" %) 840 840 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]] 841 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down! 890 +|(% style="text-align:left; vertical-align:middle" %)**Note:** If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!