Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Mora1 +XWiki.Karen - Content
-
... ... @@ -19,12 +19,9 @@ 19 19 |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter** 20 20 |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__ 21 21 |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__ 22 -|(% rowspan=" 3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__ 23 23 |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__ 24 -|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4 25 -|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 26 -|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3 27 -|Type A vibration suppression|Enable type A vibration suppression|7.4.4 24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__ 28 28 29 29 Table 7-1 Description of gain adjustment process 30 30 ... ... @@ -143,7 +143,7 @@ 143 143 * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured. 144 144 * Step5 After the inertia recognition test is completed, click "Save Inertia Value"; 145 145 * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement. 146 -* Step7 After the parameter measurement is completed, WeconSCToolwill pop up a confirmation window for parameter writing and saving.143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving. 147 147 148 148 (% class="table-bordered" %) 149 149 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]] ... ... @@ -333,7 +333,7 @@ 333 333 334 334 (% style="text-align:center" %) 335 335 ((( 336 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block ;" %)333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 337 337 [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]] 338 338 ))) 339 339 ... ... @@ -351,7 +351,7 @@ 351 351 352 352 (% style="text-align:center" %) 353 353 ((( 354 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block ;" %)351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 355 355 [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]] 356 356 ))) 357 357 ... ... @@ -378,9 +378,7 @@ 378 378 )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)((( 379 379 **Effective time** 380 380 )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 381 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)((( 382 -Enable model(% style="background-color:transparent" %) tracking control function 383 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 384 384 Shutdown setting 385 385 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 386 386 Effective immediately ... ... @@ -632,6 +632,368 @@ 632 632 If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately. 633 633 ))) 634 634 630 +== == 631 + 632 +== 633 + == 634 + 635 +== **Gain switching** == 636 + 637 +Gain switching function: 638 + 639 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration; 640 + 641 +●Switch to a higher gain in the motor stationary state to shorten the positioning time; 642 + 643 +●Switch to a higher gain in the motor running state to get better command tracking performance; 644 + 645 +●Switch different gain settings by external signals depending on the load connected. 646 + 647 +(1) Gain switching parameter setting 648 + 649 +①When P02-07=0 650 + 651 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching). 652 + 653 +(% style="text-align:center" %) 654 +[[image:20230515-8.png]] 655 + 656 +② When P02-07=1 657 + 658 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06). 659 + 660 +(% style="text-align:center" %) 661 +[[image:20230515-9.png]] 662 + 663 +Figure 7-9 Flow chart of gain switching when P02-07=1 664 + 665 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram** 666 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~- 667 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~- 668 +|(% style="width:72px" %)((( 669 + 670 + 671 + 672 + 673 + 674 + 675 +2 676 +)))|(% style="width:146px" %)((( 677 + 678 + 679 + 680 + 681 + 682 + 683 +Large torque command 684 +)))|[[image:image-20230515140641-1.png]] 685 +|(% style="width:72px" %)((( 686 + 687 + 688 + 689 + 690 + 691 + 692 + 693 +3 694 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]] 695 +|(% style="width:72px" %)((( 696 + 697 + 698 + 699 + 700 + 701 + 702 +4 703 +)))|(% style="width:146px" %)((( 704 + 705 + 706 + 707 + 708 + 709 + 710 +Large speed command 711 +)))|[[image:image-20230515140641-3.png]] 712 + 713 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram** 714 +|(% style="width:74px" %)((( 715 + 716 + 717 + 718 + 719 + 720 +5 721 +)))|(% style="width:176px" %)((( 722 + 723 + 724 + 725 + 726 + 727 +Fast actual speed 728 +)))|((( 729 + 730 + 731 +[[image:image-20230515140641-4.png]] 732 +))) 733 +|(% style="width:74px" %)((( 734 + 735 + 736 + 737 + 738 + 739 + 740 + 741 +6 742 +)))|(% style="width:176px" %)((( 743 + 744 + 745 + 746 + 747 + 748 + 749 + 750 +Speed command change rate is large 751 +)))|[[image:image-20230515140641-5.png]] 752 +|(% style="width:74px" %)((( 753 + 754 + 755 + 756 + 757 + 758 + 759 +7 760 + 761 + 762 +)))|(% style="width:176px" %)((( 763 + 764 + 765 + 766 + 767 + 768 + 769 +Large position deviation 770 +)))|[[image:image-20230515140641-6.png]] 771 +|(% style="width:74px" %)((( 772 + 773 + 774 + 775 + 776 + 777 +8 778 +)))|(% style="width:176px" %)((( 779 + 780 + 781 + 782 + 783 + 784 +Position command 785 +)))|[[image:image-20230515140641-7.png]] 786 + 787 +|(% style="width:73px" %)((( 788 + 789 + 790 + 791 + 792 + 793 + 794 +9 795 +)))|(% style="width:154px" %)((( 796 + 797 + 798 + 799 + 800 + 801 + 802 +Positioning completed 803 +)))|[[image:image-20230515140641-8.png]] 804 +|(% style="width:73px" %)((( 805 + 806 + 807 +10 808 + 809 + 810 +)))|(% style="width:154px" %)((( 811 + 812 + 813 +Position command + actual speed 814 +)))|((( 815 + 816 + 817 +Refer to the chart below 818 +))) 819 + 820 +(% style="text-align:center" %) 821 +[[image:20230515-10.png]] 822 + 823 +Figure 7-10 P02-08=10 Position command + actual speed gain description 824 + 825 +(2) Description of related parameters 826 + 827 +|(% rowspan="2" style="width:68px" %) 828 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 829 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control| 830 +|(% colspan="8" %)((( 831 +Set the switching mode of the second gain. 832 + 833 +|**Setting value**|**Function** 834 +|0|((( 835 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching): 836 + 837 +DI logic invalid: PI control; 838 + 839 +DI logic valid: PI control. 840 +))) 841 +|1|The first gain and the second gain are switched by the setting value of P02-08. 842 +))) 843 + 844 +|(% rowspan="2" %) 845 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 846 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control| 847 +|(% colspan="8" %)((( 848 +Set the conditions for gain switching. 849 + 850 +|Setting value|Gain switching conditions|Details 851 +|0|The default is the first gain|Fixed use of the first gain 852 +|1|Switch by DI port|((( 853 +Use DI function 10 (GAIN-SEL, gain switching); 854 + 855 +DI logic is invalid: the first gain (P02-01~~P02-03); 856 + 857 +DI logic is valid: the second gain (P02-04~~P02-06). 858 +))) 859 +|2|Large torque command|((( 860 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched; 861 + 862 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned. 863 + 864 + 865 +))) 866 +|3|Large actual torque|((( 867 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched; 868 + 869 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 870 + 871 + 872 +))) 873 +|4|Large speed command|((( 874 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched; 875 + 876 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 877 + 878 + 879 +))) 880 +|5|Large actual speed|((( 881 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched; 882 + 883 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 884 + 885 + 886 +))) 887 +|((( 888 + 889 + 890 +6 891 +)))|((( 892 + 893 + 894 +Large rate of change in speed command 895 +)))|((( 896 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched; 897 + 898 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 899 + 900 + 901 +))) 902 +|((( 903 + 904 + 905 +7 906 +)))|((( 907 + 908 + 909 +Large position deviation 910 +)))|((( 911 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched; 912 + 913 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned . 914 +))) 915 +|8|Position command|((( 916 +In the previous first gain, if the position command is not 0, switch to the second gain; 917 + 918 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned. 919 +))) 920 +|((( 921 + 922 + 923 +9 924 +)))|((( 925 + 926 + 927 +Positioning complete 928 +)))|((( 929 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned. 930 + 931 + 932 +))) 933 +|((( 934 + 935 + 936 +10 937 +)))|((( 938 + 939 + 940 +Position command + actual speed 941 +)))|((( 942 +In the previous first gain, if the position command is not 0, the second gain is switched; 943 + 944 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis). 945 + 946 + 947 +))) 948 + 949 + 950 +))) 951 + 952 +|(% rowspan="2" %) 953 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 954 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms 955 +|(% colspan="8" %)((( 956 +The duration of the switching condition required for the second gain to switch back to the first gain. 957 + 958 +[[image:image-20230515140953-9.png]] 959 + 960 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain. 961 +))) 962 + 963 +|(% rowspan="2" %) 964 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 965 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions 966 +|(% colspan="8" %)((( 967 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis. 968 + 969 +[[image:image-20230515140953-10.png]] 970 +))) 971 + 972 +|(% rowspan="2" %) 973 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 974 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions 975 +|(% colspan="8" %)((( 976 +Set the hysteresis to meet the gain switching condition. 977 + 978 +[[image:image-20230515140953-11.png]] 979 +))) 980 + 981 +|(% rowspan="2" %) 982 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit** 983 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms 984 +|(% colspan="8" %)((( 985 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode. 986 + 987 +[[image:image-20230515140953-12.png]] 988 + 989 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately. 990 +))) 991 + 635 635 = **Mechanical resonance suppression** = 636 636 637 637 == Mechanical resonance suppression methods == ... ... @@ -736,6 +736,7 @@ 736 736 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 737 737 738 738 Table 7-11 Notch filter function code parameters 1096 +~)~)~) 739 739 740 740 == Low frequency vibration suppression == 741 741 ... ... @@ -747,34 +747,46 @@ 747 747 [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]] 748 748 ))) 749 749 750 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 1 34px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 258px;" %)**Name**|=(% style="text-align:27px;" %)(((1108 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)((( 751 751 **Setting method** 752 -)))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)((( 753 -**Effective time** 754 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit** 755 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 756 -Operation setting 757 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 758 -Effective immediately 759 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %) 760 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 761 -Operation setting 762 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 763 -Effective immediately 764 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ 765 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 766 -Operation setting 767 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 768 -Effective immediately 769 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001 1110 +)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)((( 1111 +**Effective time** 1112 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 1113 +|P4-11|Enable low-frequency vibration suppression function|((( 1114 +Operation 770 770 771 -**Vibration frequency detection:** 1116 +setting 1117 +)))|((( 1118 +Effective 772 772 1120 +immediately 1121 +)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.| 1122 +|P4-12|Low-frequency vibration suppression frequency|((( 1123 +Operation 1124 + 1125 +setting 1126 +)))|((( 1127 +Effective 1128 + 1129 +immediately 1130 +)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ 1131 +|P4-14|Shutdown vibration detection amplitude|((( 1132 +Operation 1133 + 1134 +setting 1135 +)))|((( 1136 +Effective 1137 + 1138 +immediately 1139 +)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001 1140 + 1141 +**(1) Vibration frequency detection:** 1142 + 773 773 * Users can measure vibration by measuring equipment such as laser displacement. 774 774 * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software. 775 775 * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16. 776 776 777 -**Debugging method:** 1147 +**(2) Debugging method:** 778 778 779 779 * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency. 780 780 * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16. ... ... @@ -781,9 +781,8 @@ 781 781 * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11. 782 782 * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again. 783 783 784 -(% class="table-bordered" style="margin-right:auto" %) 785 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]] 786 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down! 1154 +|[[image:image-20230516105941-2.png]] 1155 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down! 787 787 788 788 == Type A vibration suppression == 789 789 ... ... @@ -792,53 +792,5 @@ 792 792 (% style="text-align:center" %) 793 793 ((( 794 794 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) 795 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]] 1164 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]] 796 796 ))) 797 - 798 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 136px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 225px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)((( 799 -**Setting method** 800 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)((( 801 -**Effective time** 802 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit** 803 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 804 -Operation setting 805 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 806 -Effective immediately 807 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.| 808 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 809 -Operation setting 810 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 811 -Effective immediately 812 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ 813 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 814 -Operation setting 815 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 816 -Effective immediately 817 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01 818 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 819 -Operation setting 820 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 821 -Effective immediately 822 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01 823 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 824 -Operation setting 825 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 826 -Effective immediately 827 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree 828 - 829 -**Vibration frequency detection:** 830 - 831 -The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation. 832 - 833 -**Debugging method:** 834 - 835 -* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression, 836 -* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency. 837 -* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1) 838 -* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20. 839 -* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed. 840 -* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300. 841 - 842 -(% class="table-bordered" style="margin-right:auto" %) 843 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]] 844 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
- image-20230516135116-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Karen - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.8 KB - Content