Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -121,8 +121,12 @@ 121 121 122 122 (% class="table-bordered" style="margin-right:auto" %) 123 123 (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]] 124 -|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 124 +|(% style="text-align:left; vertical-align:middle" %)((( 125 +Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly. 125 125 127 +**VD2L drive does not support automatic gain adjustment!** 128 +))) 129 + 126 126 The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference. 127 127 128 128 (% class="table-bordered" %) ... ... @@ -164,9 +164,11 @@ 164 164 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 165 165 Effective immediately 166 166 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 167 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 168 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 169 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 171 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 + 173 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 174 + 175 +2: Online automatic parameter self-adjusting mode (Not implemented yet) 170 170 )))|(% style="text-align:center; vertical-align:middle" %)- 171 171 172 172 Table 7-4 Details of self-adjusting mode selection parameters ... ... @@ -213,7 +213,7 @@ 213 213 Operation setting 214 214 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 215 215 Effective immediately 216 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %) 65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz222 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 217 217 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 218 218 Operation setting 219 219 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( ... ... @@ -244,7 +244,7 @@ 244 244 Operation setting 245 245 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 246 246 Effective immediately 247 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10 00|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 248 248 0.1ms 249 249 ))) 250 250 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)((( ... ... @@ -279,7 +279,7 @@ 279 279 Operation setting 280 280 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 281 281 Effective immediately 282 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %) 400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz288 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 283 283 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 284 284 Operation setting 285 285 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( ... ... @@ -303,12 +303,12 @@ 303 303 **Setting method** 304 304 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 305 305 **Effective time** 306 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 312 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 307 307 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 308 308 Operation setting 309 309 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 310 310 Effective immediately 311 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 312 312 313 313 Table 7-8 Details of torque filter time constant parameters 314 314 ... ... @@ -698,8 +698,9 @@ 698 698 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 699 699 Effective immediately 700 700 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 701 -1. 0: all truncated 702 -1. 100: all passed 707 +0: all truncated 708 + 709 +100: all passed 703 703 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 704 704 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-07|(% style="text-align:center; vertical-align:middle; width:155px" %)1st notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 705 705 Operation setting ... ... @@ -706,10 +706,13 @@ 706 706 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 707 707 Effective immediately 708 708 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 709 -1. 0: 0.5 times the bandwidth 710 -1. 4: 1 times the bandwidth 711 -1. 8: 2 times the bandwidth 712 -1. 12: 4 times the bandwidth 716 +0: 0.5 times the bandwidth 717 + 718 +4: 1 times the bandwidth 719 + 720 +8: 2 times the bandwidth 721 + 722 +12: 4 times the bandwidth 713 713 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 714 714 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-08|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter frequency|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 715 715 Operation setting ... ... @@ -721,8 +721,9 @@ 721 721 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 722 722 Effective immediately 723 723 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)100|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 100|(% style="width:362px" %)((( 724 -1. 0: all truncated 725 -1. 100: all passed 734 +0: all truncated 735 + 736 +100: all passed 726 726 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 727 727 |=(% style="text-align: center; vertical-align: middle; width: 113px;" %)P04-10|(% style="text-align:center; vertical-align:middle; width:155px" %)2nd notch filter width|(% style="text-align:center; vertical-align:middle; width:115px" %)((( 728 728 Operation setting ... ... @@ -729,10 +729,13 @@ 729 729 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 730 730 Effective immediately 731 731 )))|(% style="text-align:center; vertical-align:middle; width:99px" %)4|(% style="text-align:center; vertical-align:middle; width:102px" %)0 to 12|(% style="width:362px" %)((( 732 -1. 0: 0.5 times the bandwidth 733 -1. 4: 1 times the bandwidth 734 -1. 8: 2 times the bandwidth 735 -1. 12: 4 times the bandwidth 743 +0: 0.5 times the bandwidth 744 + 745 +4: 1 times the bandwidth 746 + 747 +8: 2 times the bandwidth 748 + 749 +12: 4 times the bandwidth 736 736 )))|(% style="text-align:center; vertical-align:middle; width:96px" %)- 737 737 738 738 Table 7-11 Notch filter function code parameters ... ... @@ -741,6 +741,8 @@ 741 741 742 742 Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects. 743 743 758 +**VD2L drive does not support low frequency vibrartion suppression.** 759 + 744 744 (% style="text-align:center" %) 745 745 ((( 746 746 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -752,22 +752,30 @@ 752 752 )))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)((( 753 753 **Effective time** 754 754 )))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit** 755 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 771 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11((( 772 +〇 773 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 756 756 Operation setting 757 757 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 758 758 Effective immediately 759 759 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %) 760 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 778 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12((( 779 +〇 780 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 761 761 Operation setting 762 762 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 763 763 Effective immediately 764 764 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ 765 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 785 +|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14((( 786 +〇 787 +)))|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 766 766 Operation setting 767 767 )))|(% style="text-align:center; vertical-align:middle; width:157px" %)((( 768 768 Effective immediately 769 769 )))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001 770 770 793 +〇 indicates that VD2L servo drive does not support this function code. 794 + 771 771 **Vibration frequency detection:** 772 772 773 773 * Users can measure vibration by measuring equipment such as laser displacement. ... ... @@ -789,6 +789,8 @@ 789 789 790 790 Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14. 791 791 816 +**VD2L drive does not support type A vibration suppression.** 817 + 792 792 (% style="text-align:center" %) 793 793 ((( 794 794 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -800,32 +800,44 @@ 800 800 )))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)((( 801 801 **Effective time** 802 802 )))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit** 803 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 829 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19((( 830 +〇 831 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 804 804 Operation setting 805 805 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 806 806 Effective immediately 807 807 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.| 808 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 836 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20((( 837 +〇 838 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 809 809 Operation setting 810 810 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 811 811 Effective immediately 812 812 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ 813 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 843 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21((( 844 +〇 845 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 814 814 Operation setting 815 815 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 816 816 Effective immediately 817 817 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01 818 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 850 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22((( 851 +〇 852 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 819 819 Operation setting 820 820 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 821 821 Effective immediately 822 822 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01 823 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 857 +|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23((( 858 +〇 859 +)))|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)((( 824 824 Operation setting 825 825 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 826 826 Effective immediately 827 827 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree 828 828 865 +〇 indicates that VD2L servo drive does not supprt this function code. 866 + 829 829 **Vibration frequency detection:** 830 830 831 831 The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.