Changes for page 07 Adjustments

Last modified by Iris on 2025/07/24 11:03

From version 71.1
edited by Mora Zhou
on 2024/07/17 14:03
Change comment: There is no comment for this version
To version 52.2
edited by Karen
on 2023/05/16 11:22
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Mora
1 +XWiki.Karen
Content
... ... @@ -19,12 +19,9 @@
19 19  |=(% colspan="3" style="text-align: center; vertical-align: middle;" %)**Gain adjustment process**|=(% style="text-align: center; vertical-align: middle;" %)**Function**|=(% style="text-align: center; vertical-align: middle;" %)**Detailed chapter**
20 20  |(% style="text-align:center; vertical-align:middle" %)1|(% colspan="2" style="text-align:center; vertical-align:middle" %)Online inertia recognition|(% style="text-align:center; vertical-align:middle" %)Use the host computer debugging platform software matched with the drive to automatically identify the load inertia ratio. With its own inertia identification function, the drive automatically calculates the load inertia ratio.|(% style="text-align:center; vertical-align:middle" %)__[[7.2>>||anchor="HInertiarecognition"]]__
21 21  |(% style="text-align:center; vertical-align:middle" %)2|(% colspan="2" style="text-align:center; vertical-align:middle" %)Automatic gain adjustment|On the premise of setting the inertia ratio correctly, the drive automatically adjusts a set of matching gain parameters.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.1>>||anchor="HAutomaticgainadjustment"]]__
22 -|(% rowspan="3" style="text-align:center; vertical-align:middle" %)3|(% rowspan="3" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
22 +|(% rowspan="2" style="text-align:center; vertical-align:middle" %)3|(% rowspan="2" style="text-align:center; vertical-align:middle" %)Manual gain adjustment|(% style="text-align:center; vertical-align:middle" %)Basic gain|On the basis of automatic gain adjustment, if the expected effect is not achieved, manually fine-tune the gain to optimize the effect.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.2>>||anchor="HManualgainadjustment"]]__
23 23  |(% style="text-align:center; vertical-align:middle" %)Feedforward gain|The feedforward function is enabled to improve the followability.|(% style="text-align:center; vertical-align:middle" %)__[[7.3.3>>||anchor="HFeedforwardgain"]]__
24 -|(% style="text-align:center; vertical-align:middle" %)Model tracking control|Enable model tracking control, shortening the responding time and improving followability.|(% style="text-align:center; vertical-align:middle" %)7.3.4
25 -|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)4|(% colspan="1" rowspan="3" style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
26 -|Low frequency vibration suppression|Enable low frequency vibration suppression|7.4.3
27 -|Type A vibration suppression|Enable type A vibration suppression|7.4.4
24 +|(% style="text-align:center; vertical-align:middle" %)4|(% style="text-align:center; vertical-align:middle" %)Vibration suppression|(% style="text-align:center; vertical-align:middle" %)Mechanical resonance|The notch filter function is enabled to suppress mechanical resonance.|(% style="text-align:center; vertical-align:middle" %)__[[7.4.1>>||anchor="HMechanicalresonancesuppressionmethods"]]__
28 28  
29 29  Table 7-1 Description of gain adjustment process
30 30  
... ... @@ -121,12 +121,8 @@
121 121  
122 122  (% class="table-bordered" style="margin-right:auto" %)
123 123  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152630-1.png]]
124 -|(% style="text-align:left; vertical-align:middle" %)(((
125 -Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
121 +|(% style="text-align:left; vertical-align:middle" %)Before adjusting the rigidity grade, set the appropriate load inertia ratio P03-01 correctly.
126 126  
127 -**VD2L drive does not support automatic gain adjustment!**
128 -)))
129 -
130 130  The value range of the rigidity grade is between 0 and 31. Grade 0 corresponds to the weakest rigidity and minimum gain, and grade 31 corresponds to the strongest rigidity and maximum gain. According to different load types, the values in the table below are for reference.
131 131  
132 132  (% class="table-bordered" %)
... ... @@ -147,7 +147,7 @@
147 147  * Step4 After the "start recognition" of inertia recognition lights up, click "start recognition" to perform inertia recognition, and the load inertia can be measured.
148 148  * Step5 After the inertia recognition test is completed, click "Save Inertia Value";
149 149  * Step6 Click "Next" at the bottom right to go to the parameter adjustment interface, and click "Parameter measurement" to start parameter measurement.
150 -* Step7 After the parameter measurement is completed, Wecon SCTool will pop up a confirmation window for parameter writing and saving.
143 +* Step7 After the parameter measurement is completed, the host computer debugging software will pop up a confirmation window for parameter writing and saving.
151 151  
152 152  (% class="table-bordered" %)
153 153  (% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20220611152634-2.png]]
... ... @@ -337,7 +337,7 @@
337 337  
338 338  (% style="text-align:center" %)
339 339  (((
340 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
333 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
341 341  [[**Figure 7-6 Speed feedforward parameters effect illustration**>>image:image-20220706155307-4.jpeg||height="119" id="Iimage-20220706155307-4.jpeg" width="835"]]
342 342  )))
343 343  
... ... @@ -355,7 +355,7 @@
355 355  
356 356  (% style="text-align:center" %)
357 357  (((
358 -(% class="wikigeneratedid img-thumbnail" style="display:inline-block;" %)
351 +(% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
359 359  [[**Figure 7-7 Block Diagram of Model Tracking Control Design**>>image:20230515-7.png||height="394" id="20230515-7.png" width="931"]]
360 360  )))
361 361  
... ... @@ -382,9 +382,7 @@
382 382  )))|=(% style="text-align: center; vertical-align: middle; width: 128px;" %)(((
383 383  **Effective time**
384 384  )))|=(% style="text-align: center; vertical-align: middle; width: 103px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 321px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
385 -|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)(((
386 -Enable model(% style="background-color:transparent" %) tracking control function
387 -)))|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
378 +|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P2-20|(% style="text-align:center; vertical-align:middle; width:163px" %)Model tracking control function|(% style="text-align:center; vertical-align:middle; width:122px" %)(((
388 388  Shutdown setting
389 389  )))|(% style="text-align:center; vertical-align:middle; width:128px" %)(((
390 390  Effective immediately
... ... @@ -636,6 +636,368 @@
636 636  If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
637 637  )))
638 638  
630 +== ==
631 +
632 +==
633 + ==
634 +
635 +== **Gain switching** ==
636 +
637 +Gain switching function:
638 +
639 +●Switch to a lower gain in the motor stationary (servo enabled)state to suppress vibration;
640 +
641 +●Switch to a higher gain in the motor stationary state to shorten the positioning time;
642 +
643 +●Switch to a higher gain in the motor running state to get better command tracking performance;
644 +
645 +●Switch different gain settings by external signals depending on the load connected.
646 +
647 +(1) Gain switching parameter setting
648 +
649 +①When P02-07=0
650 +
651 +Fixed use of the first gain (using P02-01~~P02-03), and the switching of P/PI (proportional/proportional integral) control could be realized through DI function 10 (GAIN-SEL, gain switching).
652 +
653 +(% style="text-align:center" %)
654 +[[image:20230515-8.png]]
655 +
656 +② When P02-07=1
657 +
658 +The switching conditions can be set through parameter P02-08 to realize switching between the first gain (P02-01~~P02-03) and the second gain (P02-04~~P02-06).
659 +
660 +(% style="text-align:center" %)
661 +[[image:20230515-9.png]]
662 +
663 +Figure 7-9 Flow chart of gain switching when P02-07=1
664 +
665 +|(% style="width:72px" %)**P02-08**|(% style="width:146px" %)**Content**|**Diagram**
666 +|(% style="width:72px" %)0|(% style="width:146px" %)Fixed use of the first gain|~-~-
667 +|(% style="width:72px" %)1|(% style="width:146px" %)Switching with DI|~-~-
668 +|(% style="width:72px" %)(((
669 +
670 +
671 +
672 +
673 +
674 +
675 +2
676 +)))|(% style="width:146px" %)(((
677 +
678 +
679 +
680 +
681 +
682 +
683 +Large torque command
684 +)))|[[image:image-20230515140641-1.png]]
685 +|(% style="width:72px" %)(((
686 +
687 +
688 +
689 +
690 +
691 +
692 +
693 +3
694 +)))|(% style="width:146px" %)Large actual torque|[[image:image-20230515140641-2.png]]
695 +|(% style="width:72px" %)(((
696 +
697 +
698 +
699 +
700 +
701 +
702 +4
703 +)))|(% style="width:146px" %)(((
704 +
705 +
706 +
707 +
708 +
709 +
710 +Large speed command
711 +)))|[[image:image-20230515140641-3.png]]
712 +
713 +|(% style="width:74px" %)**P02-08**|(% style="width:176px" %)**Content**|**Diagram**
714 +|(% style="width:74px" %)(((
715 +
716 +
717 +
718 +
719 +
720 +5
721 +)))|(% style="width:176px" %)(((
722 +
723 +
724 +
725 +
726 +
727 +Fast actual speed
728 +)))|(((
729 +
730 +
731 +[[image:image-20230515140641-4.png]]
732 +)))
733 +|(% style="width:74px" %)(((
734 +
735 +
736 +
737 +
738 +
739 +
740 +
741 +6
742 +)))|(% style="width:176px" %)(((
743 +
744 +
745 +
746 +
747 +
748 +
749 +
750 +Speed command change rate is large
751 +)))|[[image:image-20230515140641-5.png]]
752 +|(% style="width:74px" %)(((
753 +
754 +
755 +
756 +
757 +
758 +
759 +7
760 +
761 +
762 +)))|(% style="width:176px" %)(((
763 +
764 +
765 +
766 +
767 +
768 +
769 +Large position deviation
770 +)))|[[image:image-20230515140641-6.png]]
771 +|(% style="width:74px" %)(((
772 +
773 +
774 +
775 +
776 +
777 +8
778 +)))|(% style="width:176px" %)(((
779 +
780 +
781 +
782 +
783 +
784 +Position command
785 +)))|[[image:image-20230515140641-7.png]]
786 +
787 +|(% style="width:73px" %)(((
788 +
789 +
790 +
791 +
792 +
793 +
794 +9
795 +)))|(% style="width:154px" %)(((
796 +
797 +
798 +
799 +
800 +
801 +
802 +Positioning completed
803 +)))|[[image:image-20230515140641-8.png]]
804 +|(% style="width:73px" %)(((
805 +
806 +
807 +10
808 +
809 +
810 +)))|(% style="width:154px" %)(((
811 +
812 +
813 +Position command + actual speed
814 +)))|(((
815 +
816 +
817 +Refer to the chart below
818 +)))
819 +
820 +(% style="text-align:center" %)
821 +[[image:20230515-10.png]]
822 +
823 +Figure 7-10 P02-08=10 Position command + actual speed gain description
824 +
825 +(2) Description of related parameters
826 +
827 +|(% rowspan="2" style="width:68px" %)
828 +**P02-07**|(% style="width:150px" %)**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
829 +|(% style="width:150px" %)The second gain switching mode|Operation setting|Effective immediately|0|0 to 1|Gain control|
830 +|(% colspan="8" %)(((
831 +Set the switching mode of the second gain.
832 +
833 +|**Setting value**|**Function**
834 +|0|(((
835 +The first gain is used by default. Switching using DI function 10 (GAIN-SEL, gain switching):
836 +
837 +DI logic invalid: PI control;
838 +
839 +DI logic valid: PI control.
840 +)))
841 +|1|The first gain and the second gain are switched by the setting value of P02-08.
842 +)))
843 +
844 +|(% rowspan="2" %)
845 +**P02-08**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
846 +|Gain switching condition selection|Operation setting|Effective immediately|0|0 to 10|Gain control|
847 +|(% colspan="8" %)(((
848 +Set the conditions for gain switching.
849 +
850 +|Setting value|Gain switching conditions|Details
851 +|0|The default is the first gain|Fixed use of the first gain
852 +|1|Switch by DI port|(((
853 +Use DI function 10 (GAIN-SEL, gain switching);
854 +
855 +DI logic is invalid: the first gain (P02-01~~P02-03);
856 +
857 +DI logic is valid: the second gain (P02-04~~P02-06).
858 +)))
859 +|2|Large torque command|(((
860 +In the previous first gain, when the absolute value of torque command is greater than (grade + hysteresis), the second gain is switched;
861 +
862 +In the previous second gain, when the absolute value of torque command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned.
863 +
864 +
865 +)))
866 +|3|Large actual torque|(((
867 +In the previous first gain, when the absolute value of actual torque is greater than ( grade + hysteresis ), the second gain is switched;
868 +
869 +In the previous second gain, when the absolute value of actual torque is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
870 +
871 +
872 +)))
873 +|4|Large speed command|(((
874 +In the previous first gain, when the absolute value of speed command is greater than (grade + hysteresis), the second gain is switched;
875 +
876 +In the previous second gain, when the absolute value of speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
877 +
878 +
879 +)))
880 +|5|Large actual speed|(((
881 +In the previous first gain, when the absolute value of actual speed is greater than (grade + hysteresis), the second gain is switched;
882 +
883 +In the previous second gain, when the absolute value of actual speed is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
884 +
885 +
886 +)))
887 +|(((
888 +
889 +
890 +6
891 +)))|(((
892 +
893 +
894 +Large rate of change in speed command
895 +)))|(((
896 +In the previous first gain, when the absolute value of the rate of change in speed command is greater than (grade + hysteresis), the second gain is switched;
897 +
898 +In the previous second gain, switch to the first gain when the absolute value of the rate of change in speed command is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
899 +
900 +
901 +)))
902 +|(((
903 +
904 +
905 +7
906 +)))|(((
907 +
908 +
909 +Large position deviation
910 +)))|(((
911 +In the previous first gain, when the absolute value of position deviation is greater than (grade + hysteresis), the second gain is switched;
912 +
913 +In the previous second gain, switch to the first gain when the absolute value of position deviation is less than the value of (grade - hysteresis) and the duration is greater than [P02-13], the first gain is returned .
914 +)))
915 +|8|Position command|(((
916 +In the previous first gain, if the position command is not 0, switch to the second gain;
917 +
918 +In the previous second gain, if the position command is 0 and the duration is greater than [P02-13], the first gain is returned.
919 +)))
920 +|(((
921 +
922 +
923 +9
924 +)))|(((
925 +
926 +
927 +Positioning complete
928 +)))|(((
929 +In the previous first gain, if the positioning is not completed, the second gain is switched; In the previous second gain, if the positioning is not completed and the duration is greater than [P02-13], the first gain is returned.
930 +
931 +
932 +)))
933 +|(((
934 +
935 +
936 +10
937 +)))|(((
938 +
939 +
940 +Position command + actual speed
941 +)))|(((
942 +In the previous first gain, if the position command is not 0, the second gain is switched;
943 +
944 +In the previous second gain, if the position command is 0, the duration is greater than [P02-13] and the absolute value of actual speed is less than ( grade - hysteresis).
945 +
946 +
947 +)))
948 +
949 +
950 +)))
951 +
952 +|(% rowspan="2" %)
953 +**P02-13**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
954 +|Delay Time for Gain Switching|Operation setting|Effective immediately|20|0 to 10000|Gain control|0.1ms
955 +|(% colspan="8" %)(((
956 +The duration of the switching condition required for the second gain to switch back to the first gain.
957 +
958 +[[image:image-20230515140953-9.png]]
959 +
960 +**✎**Note: This parameter is only valid when the second gain is switched back to the first gain.
961 +)))
962 +
963 +|(% rowspan="2" %)
964 +**P02-14**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
965 +|Gain switching grade|Operation setting|Effective immediately|50|0 to 20000|Gain control|According to the switching conditions
966 +|(% colspan="8" %)(((
967 +Set the grade of the gain condition. The generation of the actual switching action is affected by the two conditions of grade and hysteresis.
968 +
969 +[[image:image-20230515140953-10.png]]
970 +)))
971 +
972 +|(% rowspan="2" %)
973 +**P02-15**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
974 +|Gain switching hysteresis|Operation setting|Effective immediately|20|0 to 20000|Gain control|According to the switching conditions
975 +|(% colspan="8" %)(((
976 +Set the hysteresis to meet the gain switching condition.
977 +
978 +[[image:image-20230515140953-11.png]]
979 +)))
980 +
981 +|(% rowspan="2" %)
982 +**P02-16**|**Parameter name**|**Setting method**|**Effective time**|**Default**|**Set range**|**Application category**|**Unit**
983 +|Position loop gain switching time|Operation setting|Effective immediately|30|0 to 10000|Gain control|0.1ms
984 +|(% colspan="8" %)(((
985 +Set the time for switching from the first position loop (P02-01) to the second position loop (P02-04) in the position control mode.
986 +
987 +[[image:image-20230515140953-12.png]]
988 +
989 +If P02-04≤P02-01, then P02-16 is invalid, and the second gain is switched from the first gain immediately.
990 +)))
991 +
639 639  = **Mechanical resonance suppression** =
640 640  
641 641  == Mechanical resonance suppression methods ==
... ... @@ -740,6 +740,7 @@
740 740  )))|(% style="text-align:center; vertical-align:middle; width:96px" %)-
741 741  
742 742  Table 7-11 Notch filter function code parameters
1096 +~)~)~)
743 743  
744 744  == Low frequency vibration suppression ==
745 745  
... ... @@ -751,34 +751,46 @@
751 751  [[**Figure 7-13 Applicable working conditions for low-frequency vibration suppression**>>image:20230516-0713.png||id="20230516-0713.png"]]
752 752  )))
753 753  
754 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 134px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 258px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)(((
1108 +|=(% scope="row" style="text-align: center; vertical-align: middle; width: 120px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 250px;" %)**Name**|=(% style="text-align:center; vertical-align:middle; width:150px" %)(((
755 755  **Setting method**
756 -)))|=(% style="text-align: center; vertical-align: middle; width: 157px;" %)(((
757 -**Effective time**
758 -)))|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 116px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 462px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 115px;" %)**Unit**
759 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-11|(% style="text-align:center; vertical-align:middle; width:258px" %)Enable low-frequency vibration suppression function|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
760 -Operation setting
761 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
762 -Effective immediately
763 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)0|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1|(% style="width:462px" %)When the function code is set to 1, enable the low-frequency vibration suppression function.|(% style="width:115px" %)
764 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-12|(% style="text-align:center; vertical-align:middle; width:258px" %)Low-frequency vibration suppression frequency|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
765 -Operation setting
766 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
767 -Effective immediately
768 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)800|(% style="text-align:center; vertical-align:middle; width:116px" %)10 to 2000|(% style="width:462px" %)Set the vibration frequency when vibration occurs at the load end.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.1HZ
769 -|=(% style="text-align: center; vertical-align: middle; width: 134px;" %)P4-14|(% style="text-align:center; vertical-align:middle; width:258px" %)Shutdown vibration detection amplitude|(% style="text-align:center; vertical-align:middle; width:127px" %)(((
770 -Operation setting
771 -)))|(% style="text-align:center; vertical-align:middle; width:157px" %)(((
772 -Effective immediately
773 -)))|(% style="text-align:center; vertical-align:middle; width:121px" %)100|(% style="text-align:center; vertical-align:middle; width:116px" %)0 to 1000|(% style="width:462px" %)When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|(% style="text-align:center; vertical-align:middle; width:115px" %)0.001
1110 +)))|=(% style="text-align:center; vertical-align:middle; width:128px" %)(((
1111 +**Effective time**
1112 +)))|=(% style="text-align: center; vertical-align: middle; width: 120px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 107px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 350px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit**
1113 +|P4-11|Enable low-frequency vibration suppression function|(((
1114 +Operation
774 774  
775 -**Vibration frequency detection:**
1116 +setting
1117 +)))|(((
1118 +Effective
776 776  
1120 +immediately
1121 +)))|0|0 to 1|When the function code is set to 1, enable the low-frequency vibration suppression function.|
1122 +|P4-12|Low-frequency vibration suppression frequency|(((
1123 +Operation
1124 +
1125 +setting
1126 +)))|(((
1127 +Effective
1128 +
1129 +immediately
1130 +)))|800|10 to 2000|Set the vibration frequency when vibration occurs at the load end.|0.1HZ
1131 +|P4-14|Shutdown vibration detection amplitude|(((
1132 +Operation
1133 +
1134 +setting
1135 +)))|(((
1136 +Effective
1137 +
1138 +immediately
1139 +)))|100|0 to 1000|When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to the U0-16 monitor quantity.|0.001
1140 +
1141 +**(1) Vibration frequency detection:**
1142 +
777 777  * Users can measure vibration by measuring equipment such as laser displacement.
778 778  * If no measuring equipment, the user can also read the position deviation waveform to confirm the vibration frequency through the "waveform" function of the PC debugging software.
779 779  * Low-frequency vibration detection needs to be coordinated by the two parameters of completion positioning threshold and vibration detection amplitude. When the vibration amplitude is greater than (P5-12*P4-14 detection amplitude ratio), the low-frequency vibration frequency can be recognized and updated to U0-16 monitoring quantity. For example, when the vibration amplitude is greater than (P5-12*P4-14*0.001) detection amplitude ratio. For example, in P05-12=800, P04_14=50, the vibration amplitude is greater than P5-12*P4-14*0.001=800*50*0.001=40 pulses, stop vibration frequency can be identified in U0-16.
780 780  
781 -**Debugging method:**
1147 +**(2) Debugging method:**
782 782  
783 783  * Set the appropriate positioning completion thresholds P5-12 and P4-14 to help the software detect the vibration frequency.
784 784  * Run the position curve command to obtain the vibration frequency, and obtain the frequency through the speed curve of oscilloscope or U0-16.
... ... @@ -785,9 +785,8 @@
785 785  * Set P4-12 vibration frequency and enable low frequency vibration suppression function P4-11.
786 786  * Run again to observe the speed waveform and determine whether to eliminate the vibration. If the vibration is not eliminated, please manually modify the vibration frequency and try again.
787 787  
788 -(% class="table-bordered" style="margin-right:auto" %)
789 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516105941-2.png]]
790 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
1154 +|[[image:image-20230516105941-2.png]]
1155 +|Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
791 791  
792 792  == Type A vibration suppression ==
793 793  
... ... @@ -796,53 +796,5 @@
796 796  (% style="text-align:center" %)
797 797  (((
798 798  (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)
799 -[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png]]
1164 +[[**Figure 7-14 Applicable situations for type A vibration suppression**>>image:20230516-0714.png||id="20230516-0714.png"]]
800 800  )))
801 -
802 -|=(% scope="row" style="text-align: center; vertical-align: middle; width: 136px;" %)**Function code**|=(% style="text-align: center; vertical-align: middle; width: 225px;" %)**Name**|=(% style="text-align: center; vertical-align: middle; width: 121px;" %)(((
803 -**Setting method**
804 -)))|=(% style="text-align: center; vertical-align: middle; width: 112px;" %)(((
805 -**Effective time**
806 -)))|=(% style="text-align: center; vertical-align: middle; width: 114px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 183px;" %)**Range**|=(% style="text-align: center; vertical-align: middle; width: 501px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle; width: 96px" %)**Unit**
807 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-19|(% style="text-align:center; vertical-align:middle; width:225px" %)Enable the type A suppression function|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
808 -Operation setting
809 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
810 -Effective immediately
811 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1|(% style="width:501px" %)When the function code is set to 1, enable the type A suppression function.|
812 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-20|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression frequency|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
813 -Operation setting
814 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
815 -Effective immediately
816 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)1000|(% style="text-align:center; vertical-align:middle; width:183px" %)100 to 20000|(% style="width:501px" %)Set the frequency of Type A suppression.|(% style="text-align:center; vertical-align:middle" %)0.1HZ
817 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-21|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression gain correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
818 -Operation setting
819 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
820 -Effective immediately
821 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)100|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 1000|(% style="width:501px" %)Correct the load inertia ratio size.|(% style="text-align:center; vertical-align:middle" %)0.01
822 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-22|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression damping gain|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
823 -Operation setting
824 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
825 -Effective immediately
826 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)0|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 500|(% style="width:501px" %)The type A rejection compensation value is gradually increased until the vibration is reduced to the acceptable range.|(% style="text-align:center; vertical-align:middle" %)0.01
827 -|=(% style="text-align: center; vertical-align: middle; width: 136px;" %)P4-23|(% style="text-align:center; vertical-align:middle; width:225px" %)Type A suppression phase correction|(% style="text-align:center; vertical-align:middle; width:121px" %)(((
828 -Operation setting
829 -)))|(% style="text-align:center; vertical-align:middle; width:112px" %)(((
830 -Effective immediately
831 -)))|(% style="text-align:center; vertical-align:middle; width:114px" %)200|(% style="text-align:center; vertical-align:middle; width:183px" %)0 to 900|(% style="width:501px" %)Type A suppression phase compensation.|(% style="text-align:center; vertical-align:middle" %)0.1 degree
832 -
833 -**Vibration frequency detection:**
834 -
835 -The vibration frequency can directly obtain the value of the current vibration frequency from the software oscilloscope vibration frequency, combined with real-time speed waveform to observe the current vibration situation.
836 -
837 -**Debugging method:**
838 -
839 -* Please set the correct inertia ratio parameter P3-1 when using type A vibration suppression,
840 -* Run the position curve command, observe the servo host computer software waveform interface (sine wave) to obtain the vibration frequency.
841 -* Set P4-20 vibration frequency and enable type A vibration suppression function P4-19. ( Type A vibration frequency takes effect when P4-19 is set to 1 for the first time. If change A-type vibration frequency P4-20, please set P4-19 to 0 again, then set to 1)
842 -* Set P4-22 damping gain, gradually increasing from 0, each time increasing about 20.
843 -* Observe the size of the vibration speed component, if the amplitude speed component is getting larger, it can be the vibration frequency setting error, if the vibration speed component is getting smaller, it means the vibration is gradually suppressed.
844 -* When the vibration is suppressed, there is still a small part of the vibration speed component, users can fine-tune the P4-23 phase correction, the recommended value of 150~~300.
845 -
846 -(% class="table-bordered" style="margin-right:auto" %)
847 -(% class="warning" %)|(% style="text-align:center; vertical-align:middle" %)[[image:image-20230516135116-1.png]]
848 -|(% style="text-align:left; vertical-align:middle" %)Note: If there is a speed substantial vibration and the vibration increases during the debugging, it may be that the low-frequency vibration suppression is not suitable for the current working conditions, please immediately close the servo, or power down!
image-20230516135116-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Karen
Size
... ... @@ -1,1 +1,0 @@
1 -1.8 KB
Content