Changes for page 07 Adjustments
Last modified by Iris on 2025/07/24 11:03
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -168,9 +168,11 @@ 168 168 )))|(% style="text-align:center; vertical-align:middle; width:105px" %)((( 169 169 Effective immediately 170 170 )))|(% style="text-align:center; vertical-align:middle; width:87px" %)0|(% style="text-align:center; vertical-align:middle; width:83px" %)0 to 2|(% style="width:431px" %)((( 171 -* 0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 -* 1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 173 -* 2: Online automatic parameter self-adjusting mode (Not implemented yet) 171 +0: Rigidity grade self-adjusting mode. Position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter settings are automatically adjusted according to the rigidity grade setting. 172 + 173 +1: Manual setting; you need to manually set the position loop gain, speed loop gain, speed loop integral time constant, torque filter parameter setting 174 + 175 +2: Online automatic parameter self-adjusting mode (Not implemented yet) 174 174 )))|(% style="text-align:center; vertical-align:middle" %)- 175 175 176 176 Table 7-4 Details of self-adjusting mode selection parameters ... ... @@ -217,7 +217,7 @@ 217 217 Operation setting 218 218 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( 219 219 Effective immediately 220 -)))|(% style="text-align:center; vertical-align:middle; width:103px" %) 65|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz222 +)))|(% style="text-align:center; vertical-align:middle; width:103px" %)200|(% style="text-align:center; vertical-align:middle; width:107px" %)0 to 35000|(% style="width:321px" %)Set speed loop proportional gain to determine the responsiveness of speed loop.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 221 221 |=(% style="text-align: center; vertical-align: middle; width: 120px;" %)P02-05|(% style="text-align:center; vertical-align:middle; width:163px" %)2nd speed loop gain|(% style="text-align:center; vertical-align:middle; width:122px" %)((( 222 222 Operation setting 223 223 )))|(% style="text-align:center; vertical-align:middle; width:128px" %)((( ... ... @@ -248,7 +248,7 @@ 248 248 Operation setting 249 249 )))|(% style="text-align:center; vertical-align:middle; width:112px" %)((( 250 250 Effective immediately 251 -)))|(% style="text-align:center; vertical-align:middle; width:109px" %)10 00|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)(((253 +)))|(% style="text-align:center; vertical-align:middle; width:109px" %)210|(% style="text-align:center; vertical-align:middle; width:114px" %)100 to 65535|(% style="width:278px" %)Set the speed loop integral constant. The smaller the set value, the stronger the integral effect.|(% style="text-align:center; vertical-align:middle; width:78px" %)((( 252 252 0.1ms 253 253 ))) 254 254 |=(% style="text-align: center; vertical-align: middle; width: 98px;" %)P02-06|(% style="text-align:center; vertical-align:middle; width:173px" %)((( ... ... @@ -283,7 +283,7 @@ 283 283 Operation setting 284 284 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( 285 285 Effective immediately 286 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %) 400|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz288 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)232|(% style="text-align:center; vertical-align:middle; width:91px" %)0 to 6200|(% style="width:355px" %)Set position loop proportional gain to determine the responsiveness of position control system.|(% style="text-align:center; vertical-align:middle" %)0.1Hz 287 287 |=(% style="text-align: center; vertical-align: middle; width: 95px;" %)P02-04|(% style="text-align:center; vertical-align:middle; width:174px" %)2nd position loop gain|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 288 288 Operation setting 289 289 )))|(% style="text-align:center; vertical-align:middle; width:114px" %)((( ... ... @@ -307,12 +307,12 @@ 307 307 **Setting method** 308 308 )))|=(% style="text-align: center; vertical-align: middle; width: 127px;" %)((( 309 309 **Effective time** 310 -)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 312 +)))|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)**Default value**|=(% style="text-align: center; vertical-align: middle; width: 79px;" %)Range|=(% style="text-align: center; vertical-align: middle; width: 371px;" %)**Definition**|=(% style="text-align: center; vertical-align: middle;" %)**Unit** 311 311 |=(% style="text-align: center; vertical-align: middle; width: 117px;" %)P04-04|(% style="text-align:center; vertical-align:middle; width:200px" %)Torque filter time constant|(% style="text-align:center; vertical-align:middle; width:120px" %)((( 312 312 Operation setting 313 313 )))|(% style="text-align:center; vertical-align:middle; width:127px" %)((( 314 314 Effective immediately 315 -)))|(% style="text-align:center; vertical-align:middle; width:79px" %)50|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 317 +)))|(% style="text-align:center; vertical-align:middle; width:79px" %)80|(% style="text-align:center; vertical-align:middle; width:79px" %)10 to 2500|(% style="width:371px" %)This parameter is automatically set when “self-adjustment mode selection” is selected as 1 or 2|(% style="text-align:center; vertical-align:middle" %)0.01ms 316 316 317 317 Table 7-8 Details of torque filter time constant parameters 318 318 ... ... @@ -745,6 +745,8 @@ 745 745 746 746 Low-frequency vibration suppression is suitable for working conditions where the motor vibrates during deceleration and shutdown after the position command is sent, and the vibration amplitude gradually decreases. The use of the low-frequency vibration suppression function is effective in reducing the time to complete positioning due to vibration effects. 747 747 750 +**VD2L drive does not support low frequency vibrartion suppression.** 751 + 748 748 (% style="text-align:center" %) 749 749 ((( 750 750 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %) ... ... @@ -793,6 +793,8 @@ 793 793 794 794 Type A vibration suppression is suitable for durational vibration during motor operation or shutdown. Use Type A suppression to help reduce vibrations at specific frequencies that occur during motion (For the situation where the vibration continues to maintain and the vibration amplitude is almost constant after the command is completed.) As shown in Figure 7-14. 795 795 800 +**VD2L drive does not support type A vibration suppression.** 801 + 796 796 (% style="text-align:center" %) 797 797 ((( 798 798 (% class="wikigeneratedid img-thumbnail" style="display:inline-block" %)